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Continued fractions in p‐adic numbers

By

Michitaka Kojima *

Abstract

The theory of continued fractions of irrational numbers is developed in the field \mathbb{R} of real

numbers, and there are many well known results on this subject. In this paper, we discuss

some of the corresponding results for continued fractions of irrational numbers in the p‐adic

number field \mathbb{Q}_{p}.

§1. Introduction

Let  $\alpha$ be an irrational real number. Then the regular continued fraction expansion

\mathrm{C}\mathrm{F}() of it is the following expression

\displaystyle \mathrm{C}\mathrm{F}( $\alpha$)=q_{1}+\frac{1}{q_{2}}|+\frac{1}{q_{3}}|+\frac{1}{q_{4}}|+\cdots
(1.1)

:=q_{1}+\displaystyle \frac{1}{q_{2}+\frac{1}{q_{3}+\frac{1}{q_{4}+}}}.,
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where q_{n}'s(n\geq 1) are integers determined from  $\alpha$ inductively by

(1.2)

\left\{\begin{array}{ll}
q_{1} :=[$\alpha$_{1}], & (\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e} $\alpha$_{1}= $\alpha$ \mathrm{a}\mathrm{n}\mathrm{d} [] \mathrm{i}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t} \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r} \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h} \mathrm{d}\mathrm{o}\mathrm{e}\mathrm{s} \mathrm{n}\mathrm{o}\mathrm{t} \mathrm{e}\mathrm{x}\mathrm{c}\mathrm{e}\mathrm{e}\mathrm{d} $\alpha$_{1}.),\\
q_{2}:=[$\alpha$_{2}], & ($\alpha$_{2}:=\frac{1}{$\alpha$_{1}-q_{1}}>1) ,\\
q_{3}:=[$\alpha$_{3}], & ($\alpha$_{3}:=\frac{1}{$\alpha$_{2}-q_{2}}>1) ,\\
q_{n}:=[$\alpha$_{n}], & ($\alpha$_{n}:=\frac{1}{$\alpha$_{n-1}-q_{n-1}}>1)
\end{array}\right.
We note, in particular, that the sequence \{q_{n}\}_{n\geq 1} satisfies

(1.3) q_{n}\in \mathbb{Z} for n\geq 1 and q_{n}>0 for n\geq 2.

From this follows the fundamental equality

(1.4) \mathrm{C}\mathrm{F}( $\alpha$)= $\alpha$

Namely, if we put for each  n\geq 1

a_{n}=q_{1}+\displaystyle \frac{1}{q_{2}}|+\frac{1}{q_{3}}|+\frac{1}{q_{4}}|+\cdots+\frac{1}{q_{n}}|
(1.5) :=q_{1}+\displaystyle \frac{1}{1},

q_{2}+-
1

.. +-
1

q_{n-1}+_{\overline{q_{n}}}
then the sequence \{a_{n}\}_{n\geq 1} converges to  $\alpha$ in \mathbb{R}.

Conversely, if the sequence \{q_{n}\}_{n\geq 1} satisfy the condition (1.3) then the continued

fraction (1.1) converges in \mathbb{R} to an irrational number. Thus we see that the map CF

gives one‐to‐one correspondence

(1.6) \mathbb{R}\backslash \mathbb{Q} \underline{\mathrm{C}\mathrm{F}} \{\mathrm{t}\mathrm{h}\mathrm{e} set of sequences \{q_{n}\}_{n\geq 1} satisfying (1.3)\}.
We refer to [5], [2], [3] for details of these facts.

Now an interesting question is to ask whether a similar correspondence as above

holds in the field \mathbb{Q}_{p} of p‐adic numbers for some prime number p . It turns out, however,
that the continued fraction (1.1) does not converge in \mathbb{Q}_{p} for any sequence \{q_{n}\}_{n\geq 1}
satisfying the condition (1.3). We shall show this in §3.
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So we need to modify the expression (1.1) of ((regular� continued fractions, if we

wish to establish a meaningful theory of continued fractions in \mathbb{Q}_{p}.
Browkin [1] studied a construction of certain type of continued fractions which

converge in p‐adic numbers, where the general terms q_{n} are allowed to be non‐integral
rational numbers.

We shall consider the continued fractions \mathrm{C}\mathrm{F}_{p}^{*}(q) with integral general terms q_{n}

having slightly different shapes from (1.1). The simplest such continued fractions are of

the following type, which will be called \mathrm{a}^{((}p‐regular� continued fraction.

\displaystyle \mathrm{C}\mathrm{F}_{p}^{*}(\{q_{n}\})=q_{1}+\frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\frac{p}{q_{4}}|+\cdots
(1.7) :=q_{1}+\underline{p},

q_{2}+\underline{p}

q_{3}+\displaystyle \frac{p}{q_{4}+}
One of the main results of this paper is the following

Theorem 1.1. Let q_{1} be an integer and q_{2}, q_{3}, q_{4} ,
be natural numbers. If q_{n}

is not divisible by pfor any n\geq 2 ,
then (1.7) converges in \mathbb{R} and in \mathbb{Q}_{p} simultaneously.

Moreover, we shall show that our construction \mathrm{C}\mathrm{F}_{p}^{*}(q) gives a surjective map

onto \mathbb{Z}_{p}.

Theorem 1.2. Let \{q_{n}\}_{n\geq 1} be a sequence of integers such that forn\geq 2, q_{n} is

positive and is not divisible by p . Then the continued fraction (1.7) converges to a p ‐adic

integer in \mathbb{Q}_{p} . Conversely any p ‐adic integer  $\alpha$ is obtained as the limit of a continued

fraction (1.7) satisfy ing the above conditions.

§2. Convergence of  p‐regular� continued fractions

Let p be a prime number, and \mathbb{Q}_{p} the p‐adic number field. In this section, we

consider the continued fraction of the following type, which will be called \mathrm{a}^{((}p‐regular�
continued fraction:

(2.1) q_{1}+\underline{p} .

q_{2}+\underline{p}

q_{3}+\displaystyle \frac{p}{q_{4}+}
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As in the case of ((regular� continued fractions, we shall denote this by

(2.2)  q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\frac{p}{q_{4}}|+\cdots .

Our first task is to study the condition for the convergence of (1.7) in the real

number field \mathbb{R} or the p‐adic number field \mathbb{Q}_{p} . For this purpose we introduce, for each

positive integer n
, independent indeterminates x_{1}, x_{n} ,

and put

[x_{1}, x_{n}]=x_{1}+\displaystyle \frac{p}{x_{2}}|+\cdots+\frac{p}{x_{n}}|.
For n=1

, 2, 3 they are computed explicitly as

[x_{1}]=x_{1}=\displaystyle \frac{x_{1}}{1},
[x_{1}, x_{2}]=x_{1}+\displaystyle \frac{p}{x_{2}}=\frac{p+x_{1}x_{2}}{x_{2}},

[x_{1}, x_{2}, x_{3}]=x_{1}+\displaystyle \frac{p}{x_{2}+\frac{p}{x_{3}}}=\frac{px_{1}+px_{3}+x_{1}x_{2}x_{3}}{p+x_{2}x_{3}}.
We shall find the sequences of pairs of coprime polynomials P_{n}(x_{1}, x_{n}) ,  Q_{n}(x_{1}, x_{n})\in
\mathbb{Z}[x_{1}, x_{n}] such that

(2.3) [x_{1}, x_{n}]=\displaystyle \frac{P_{n}(x_{1},..\cdot.\cdot.' x_{n})}{Q_{n}(x_{1},,x_{n})}.
From the above computation of [x_{1}, x_{n}] for n=1

, 2, 3, we have

\left\{\begin{array}{l}
P_{1}=x_{1}, Q_{1}=1,\\
P_{2}=p+x_{1}x_{2}, Q_{2}=x_{2},\\
P_{3}=px_{1}+px_{3}+x_{1}x_{2}x_{3}, Q_{3}=p+x_{2}x_{3}.
\end{array}\right.
If we set P_{0}=1, Q_{0}=0 ,

then we observe that the following equalities hold for

n=2
, 3.

(2.4) \left\{\begin{array}{l}
P_{n}=x_{n}P_{n-1}+pP_{n-2}.\\
Q_{n}=x_{n}Q_{n-1}+pQ_{n-2}
\end{array}\right.
We shall show that (2.4) holds for all n\geq 1 . It suffices to show that the polynomials
defined by the recurring formulas (2.4) satisfies (2.3). This will be proved by induction

on n . Let P_{n}, Q_{n}(n\geq 1) be defined by (2.4), and assume that (2.3) holds for all natural

numbers less than n . Then we can express [x_{1}, x_{n}] as follows:

[x_{1}, x_{n}]=[x_{1}, \displaystyle \cdots, x_{n-2}, x_{n-1}+\frac{p}{x_{n}}]



Continued fractions 1N p‐adic numbers 243

=\displaystyle \frac{P_{n-1}(x_{1},..\cdot.\cdot.' x_{n-2},x_{n-1}+\frac{p}{x_{n}})}{Q_{n-1}(x_{1},,x_{n-2},x_{n-1}+\frac{p}{x_{n}})}

=\displaystyle \frac{(x_{n-1}+\frac{p}{x_{n}})P_{n-2}+pP_{n-3}}{(x_{n-1}+\frac{p}{x_{n}})Q_{n-2}+pQ_{n-3}}
=\displaystyle \frac{(x_{n}x_{n-1}+p)P_{n-2}+px_{n}P_{n-3}}{(x_{n}x_{n-1}+p)Q_{n-2}+px_{n}Q_{n-3}}
=\displaystyle \frac{x_{n}(x_{n-1}P_{n-2}+pP_{n-3})+pP_{n-2}}{x_{n}(x_{n-1}Q_{n-2}+pQ_{n-3})+pQ_{n-2}}

x_{n}P_{n-1}+pP_{n-2}

x_{n}Q_{n-1}+pQ_{n-2}
P_{n}

\overline{Q_{n}},
which proves our assertion.

Next we show that the polynomials P_{n}(x_{1}, x_{n}) , Q_{n}(x_{1}, x_{n}) determined as

above satisfy the equalities

(2.5) \left\{\begin{array}{ll}
P_{n}Q_{n-1}-P_{n-1}Q_{n}= (-1)^{n}p^{n-1} & (n\geq 1) ,\\
P_{n}Q_{n-2}-P_{n-2}Q_{n}= (-1)^{n-1}p^{n-2}x_{n} & (n\geq 2) .
\end{array}\right.
Let us prove the first equality of (2.5) by induction. Since

P_{1}Q_{0}-P_{0}Q_{1}=x_{1}\cdot 0-1 1=-1=(-1)^{1}p^{0},

the equality holds for n=1 . Now let n\geq 2 and assume that for n-1 the equality

P_{n-1}Q_{n-2}-P_{n-2}Q_{n-1}=(-1)^{n-1}p^{n-2}

holds. Then by (2.4) we have

P_{n}Q_{n-1}-P_{n-1}Q_{n}=(x_{n}P_{n-1}+pP_{n-2})Q_{n-1}-P_{n-1}(x_{n}Q_{n-1}+pQ)

=-p(P_{n-1}Q_{n-2}-P_{n-2}Q_{n-1})

=-p(-1)^{n-1}p^{n-2}

=(-1)^{n}p^{n-1}

The second equality of (2.5) is proved similarly. Namely from the definition of P_{n} and

the equation (2.4) with induction hypothesis for n-1
,

we have

P_{n}Q_{n-2}-P_{n-2}Q_{n}=(x_{n}P_{n-1}+pP_{n-2})Q_{n-2}-P_{n-2}(x_{n}Q_{n-1}+pQ)

=x_{n}(P_{n-1}Q_{n-2}-P_{n-2}Q_{n-1})

=x_{n}(-1)^{n-1}p^{n-2}

=(-1)^{n-1}p^{n-2}x_{n}.
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Theorem 1.1. Let q_{1} be an integer and q_{2}, q_{3}, q_{4} ,
be natural numbers. If q_{n}

is not divisible by pfor any n\geq 2 ,
then (1.7) converges in \mathbb{R} and in \mathbb{Q}_{p} simultaneously.

Proof. Suppose that \{q_{n}\} satisfies the same condition as Theorem 1.1 and let

a_{n}=[q_{1}, q_{2}, q_{n}]=q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\cdots+\frac{p}{q_{n}}| (n\geq 1) .

Then for n\geq 2,

a_{n}-a_{n-2}=\displaystyle \frac{P_{n}(q_{1},..\cdot.\cdot.' q_{n})}{Q_{n}(q_{1},,q_{n})}-\frac{P_{n-2}(q_{1},..\cdot.\cdot.' q_{n-2})}{Q_{n-2}(q_{1},,q_{n-2})}
=\displaystyle \frac{P_{n}Q_{n-2}-P_{n-2}Q_{n}}{Q_{n}Q_{n-2}}

(2.6) =\displaystyle \frac{(-1)^{n-1}p^{n-2}q_{n}}{Q_{n}Q_{n-2}}.
From the definition of Q_{n} we have Q_{n}>0 for n\geq 1 . Therefore from (2.6),

a_{1}\leq a_{3}\leq a_{5}\leq a_{7}\leq. . .

,

(2.7) a_{2}\geq a_{4}\geq a_{6}\geq a_{8}\geq. . .

.

On the other hand, for n\geq 1,

a_{n}-a_{n-1}=\displaystyle \frac{P_{n}(q_{1},..\cdot.\cdot.' q_{n})}{Q_{n}(q_{1},,q_{n})}-\frac{P_{n-1}(q_{1},..\cdot.\cdot.' q_{n-1})}{Q_{n-1}(q_{1},,q_{n-1})}
=\displaystyle \frac{P_{n}Q_{n-1}-P_{n-1}Q_{n}}{Q_{n}Q_{n-1}}

(2.8) =\displaystyle \frac{(-1)^{n}p^{n-1}}{Q_{n}Q_{n-1}}.
This gives a_{2m}\geq a_{2m-1} for m\geq 1 . From (2.7) and (2.8), the sequences \{a_{2m-1}\}
(resp. \{a_{2m}\} ) are monotonically increasing (resp. decreasing) and are bounded. So

they converge in \mathbb{R} . We next prove that

\displaystyle \lim_{m\rightarrow\infty}a_{2m-1}=\lim_{m\rightarrow\infty}a_{2m}.
To show this assertion we need a lower bound of Q_{n}(q_{1}, q_{n}) .

Lemma 2.1. We have the following inequality

Q_{n}(q_{1}, q_{n})\displaystyle \geq\frac{$\alpha$^{n}-$\beta$^{n}}{ $\alpha$- $\beta$}(n\geq 1) ,

where  $\alpha$=(1+\sqrt{1+4p})/2,  $\beta$=(1-\sqrt{1+4p})/2.
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Proof of Lemma 2.1. From Q_{0}=0, Q_{1}=1 and Q_{n}=x_{n}Q_{n-1}+pQ_{n-2} for n\geq 2,
we can evaluate Q_{n} (1, 1) as

Q_{n}(1, 1)=\displaystyle \frac{$\alpha$^{n}-$\beta$^{n}}{ $\alpha$- $\beta$} (n\geq 1) .

Since Q_{n} is a polynomial in x_{1}, x_{n} with non‐negative integral coefficients, we have

Q_{n}(q_{1}, q_{n})\displaystyle \geq Q_{n}(1, 1)=\frac{$\alpha$^{n}-$\beta$^{n}}{ $\alpha$- $\beta$} (n\geq 1)
for n\geq 1 . This proves the lemma. \square 

Substituting this for (2.8) and replacing n by 2m gives

|a_{2m}-a_{2m-1}|\displaystyle \leq|\frac{p^{2m-1}( $\alpha$- $\beta$)^{2}}{($\alpha$^{2m}-$\beta$^{2m})($\alpha$^{2m-1}-$\beta$^{2m-1})}|

=|(\displaystyle \frac{p}{$\alpha$^{2}})^{2m-1}\times\frac{( $\alpha$- $\beta$)^{2}}{ $\alpha$(1-(\frac{ $\beta$}{ $\alpha$})^{2m})(1-(\frac{ $\beta$}{ $\alpha$})^{2m-1})}|\rightarrow 0 (as  m\rightarrow\infty ),

since  $\alpha$>| $\beta$|,  $\alpha$>\sqrt{p} . This completes the proof of convergence for a_{n} in \mathbb{R} . Next we

prove that a_{n} converges in \mathbb{Q}_{p} . Let | |_{p} be the normalized valuation on \mathbb{Q}_{p} and show

that |Q_{n}|_{p}=1 for all n\geq 1 . First we have |Q_{1}|_{p}=|1|_{p}=1, |Q_{2}|_{p}=|q_{2}|_{p}=1 which

shows the assertion in the case n=1
,
2. Assume that n\geq 3 and the assertion holds for

n-1, n-2 . Then we have

(2.9) |Q_{n}|_{p}=|q_{n}Q_{n-1}+pQ_{n-2}|_{p}

=\displaystyle \max(1,\frac{1}{p}) by the induction hypothesis

=1.

From (2.8) and (2.9) we conclude that

|a_{n}-a_{n-1}|_{p}=|\displaystyle \frac{(-1)^{n}p^{n-1}}{Q_{n}Q_{n-1}}|_{p}
=p^{-(n-1)}\rightarrow 0 (n\rightarrow\infty) .

This completes the proof of Theorem 1.1. \square 

Remark 1. If we modify the condition in Theorem 1.1 and assume that q_{n} are

not divisible by p for all but finitely many n
,

then Theorem 1.1 becomes false.

For example, let q_{1}=0, q_{2}=p and q_{n}=p-1 for n\geq 3 . Then we have

Q_{0}=0,
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Q_{1}=1,

Q_{2}=q_{2}Q_{1}+pQ_{0}=p\cdot 1+0=p,

Q_{3}=q_{3}Q_{2}+pQ_{1}=(p-1)p+p\cdot 1=p^{2},

Q_{4}=q_{4}Q_{3}+pQ_{2}=(p-1)p^{2}+p\cdot p=p^{3},

Q_{5}=q_{5}Q_{4}+pQ_{3}=(p-1)p^{3}+p\cdot p^{2}=p^{4},

Q_{n}=p^{n-1} (n\geq 1) .

So we have

|a_{n}-a_{n-1}|_{p}=|\displaystyle \frac{(-1)^{n}p^{n-1}}{Q_{n}Q_{n-1}}|_{p}
=|\displaystyle \frac{(-1)^{n}p^{n-1}}{p^{n-1}p^{n-2}}|_{p}
=|\displaystyle \frac{(-1)^{n}}{p^{n-2}}|_{p}
=p^{n-2}

This shows that a_{n} does not converge in \mathbb{Q}_{p}.

§3. Some examples

In this section, we give some examples of continued fractions which converge in

either \mathbb{R} or \mathbb{Q}_{p} and do not converge in another.

§3.1. CF which converges in \mathbb{R} but not in \mathbb{Q}_{p}

Proposition 3.1. Let q_{1} be an integer and q_{2}, q_{3}, q_{4} ,
natural numbers. Then

the continued fraction

 q_{1}+\displaystyle \frac{1}{q_{2}}|+\frac{1}{q_{3}}|+\frac{1}{q_{4}}|+\cdots
(which is called a regular continued fr action in the theory of classic continued fr actions)
converges in \mathbb{R} and do not converge in \mathbb{Q}_{p}.

Proof. Define the sequences of polynomials P_{n}, Q_{n}\in \mathbb{Z}[x_{1}, x_{n}] by

\left\{\begin{array}{l}
P_{0}=1, Q_{0}=0\\
P_{1}=x_{1}, Q_{1}=1\\
P_{n}=x_{n}P_{n-1}+P_{n-2} \mathrm{f}\mathrm{o}\mathrm{r} n\geq 2,\\
Q_{n}=x_{n}Q_{n-1}+Q_{n-2} \mathrm{f}\mathrm{o}\mathrm{r} n\geq 2.
\end{array}\right.
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Then we have

x_{1}+\displaystyle \frac{1}{x_{2}}|+\frac{1}{q_{3}}|\cdots+\frac{1}{x_{n}}|=\frac{P_{n}}{Q_{n}}(n\geq 1) ,

P_{n}Q_{n-1}-P_{n-1}Q_{n}=(-1)^{n}(n\geq 1) ,

P_{n}Q_{n-2}-P_{n-2}Q_{n}=(-1)^{n-1}x_{n}(n\geq 2) .

The proofs of these facts are similar to those in the proof of Theorem 1.1. Now, let

q_{1}, q_{2}, q_{3} ,
be as in the proposition and let

a_{n}=q_{1}+\displaystyle \frac{1}{q_{2}}|+\frac{1}{q_{3}}|+\cdots+\frac{1}{q_{n}}|.
Then we have

|a_{n}-a_{n-1}|_{p}=|\displaystyle \frac{P_{n}(q_{1},..\cdot.\cdot.' q_{n})}{Q_{n}(q_{1},,q_{n})}-\frac{P_{n-1}(q_{1},..\cdot.\cdot.' q_{n-1})}{Q_{n-1}(q_{1},,q_{n-1})}|_{p}
=|\displaystyle \frac{P_{n}Q_{n-1}-P_{n-1}Q_{n}}{Q_{n}Q_{n-1}}|_{p}
=|\displaystyle \frac{(-1)^{n}}{Q_{n}Q_{n-1}}|_{p}
=\displaystyle \frac{1}{|Q_{n}Q_{n-1}|_{p}}
\geq 1 since Q_{n}, Q_{n-1} are integers.

This shows that a_{n} does not converge in \mathbb{Q}_{p}. \square 

§3.2. CF which converges in \mathbb{Q}_{p} but not in \mathbb{R}

Proposition 3.2. Let a, b be integers with 0<|a|, |b|<p and -4p<ab <0.

Then the continued fraction

 a+^{p\rfloor}\displaystyle \lceil b+\frac{p}{a}|+^{p\rfloor}\lceil b+\frac{p}{a}|+^{p\rfloor}\lceil b+\cdots
converges in \mathbb{Q}_{p} and does not converge in \mathbb{R}.

Proof. The convergence of the continued fraction in \mathbb{Q}_{p} is immediately from The‐

orem 1.1. (Note that in the proof of Theorem 1.1, the convergence of the continued

fraction in \mathbb{Q}_{p} does not require that q_{n}>0 for n\geq 2. ) Now suppose that the continued

fraction converges to  $\alpha$ in \mathbb{R} . Then we have

 $\alpha$=a+^{p\rfloor_{+}p\rfloor_{+}p\rfloor_{+}p\rfloor_{+}p\rfloor_{+}}\lceil b\lceil a\lceil b\lceil a\lceil b\ldots
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=a+^{p\rfloor_{+}p\rfloor}\lceil b\lceil $\alpha$

=a+\displaystyle \frac{p}{b+\frac{p}{ $\alpha$}}
=\displaystyle \frac{pa+(ab+p) $\alpha$}{b $\alpha$+p}.

So we have

b$\alpha$^{2}-ab $\alpha$-pa=0.

But this quadratic equation has discriminant

D=(-ab)^{2}-4b(-pa)=ab(ab+4p)<0

from the assumption of a, b . This contradicts that  $\alpha$ is a real number, and we conclude

that the continued fraction does not converge in \mathbb{R}. \square 

Example 3.3. Let p be an odd prime such that p\equiv 1 (mod4), so that \sqrt{-1}\in

\mathbb{Q}_{p} . Then from Theorem 1.1 there exists a p‐regular continued fraction which converges

to k\sqrt{-1} in \mathbb{Q}_{p} for some k\in \mathbb{N} . One can illustrate it explicitly for p=5 , 13 as

\displaystyle \sqrt{-1}=2+\frac{5}{-4}|+\lceil 45\rfloor+\frac{5}{-4}|+^{5\rfloor}\lceil 4+\frac{5}{-4}|+\cdots ( \mathrm{i}\mathrm{n} \mathbb{Q}_{5} ),

 3\displaystyle \sqrt{-1}=2+\frac{13}{-4}|+\frac{13}{4}|+\frac{13}{-4}|+\frac{13}{4}|+\frac{13}{-4}|+\cdots ( \mathrm{i}\mathrm{n} \mathbb{Q}_{13} ).

§4. Image of the p‐regular continued fraction map

Next we determine the set of p‐adic numbers which do occur as the limiting value

of continued fraction (1.7).

Theorem 1.2. Let q_{1} be an integer and q_{2}, q_{3}, q_{4} ,
natural numbers which are

not divisible by p . Then the continued fraction

(4.1)  q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\frac{p}{q_{4}}|+\cdots
converges to a  p ‐adic integer in \mathbb{Q}_{p} . Conversely any p ‐adic integer  $\alpha$ is obtained as the

limit of a continued fraction (1.7) satisfy ing the above conditions.

Proof. As before we set the following notations:

 P_{n}=P_{n}(q_{1}, q_{2}, q_{n}) ,
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Q_{n}=Q_{n}(q_{1}, q_{2}, q_{n}) ,

a_{n}=\displaystyle \frac{P_{n}}{Q_{n}}=q_{1}+\frac{p}{q_{2}}|+\cdots+\frac{p}{q_{n}}|,
| |_{p} : the normalized valuation on \mathbb{Q}_{p}.

Then, as in the proof of Theorem 1.1, we have |Q_{n}|_{p}=1 for n\geq 1 . Further, from the

definition of P_{n} ,
we have |P_{n}|_{p}\leq 1 for n\geq 1 . These imply

|a_{n}|_{p}=|P_{n}/Q_{n}|_{p}=|P_{n}|_{p}/|Q_{n}|_{p}\leq 1.

So a_{n}\in \mathbb{Z}_{p} for n\geq 1 . Since \mathbb{Z}_{p} is closed (see [4] p.17), the limiting value of a_{n} is also a

p‐adic integer.

Next, for given  $\alpha$\in \mathbb{Z}_{p} ,
we construct q_{1}, q_{2}, q_{3} ,

such that the continued fraction (4.1)
converges to  $\alpha$ in \mathbb{Q}_{p} . First, we set  $\alpha$_{1}= $\alpha$ and take an integer  q_{1} such that p||($\alpha$_{1}-q_{1}) .

(Note that $\alpha$_{1}\in \mathbb{Z}_{p} ,
so we can choose an integer q_{1} with p||($\alpha$_{1}-q_{1} Next, we put

$\alpha$_{1}-q_{1}=p$\alpha$_{2}^{-1} . Then from the condition of q_{1} ,
we see that $\alpha$_{2} is a p‐adic unit. Now

we take a natural number q_{2} such that p|| ($\alpha$_{2} - q2) . Since $\alpha$_{2} is a p‐adic unit (i.e.,
$\alpha$_{2}\in \mathbb{Z}_{p}-p\mathbb{Z}_{p}) ,

the integer q_{2} is not divisible by p as required in Theorem 1.2. We

continue in these fashion,

$\alpha$_{1}= $\alpha$,

p||($\alpha$_{1}-q_{1}) , $\alpha$_{1}-q_{1}=p$\alpha$_{2}^{-1},
p||($\alpha$_{2}-q_{2}) , $\alpha$_{2}-q_{2}=p$\alpha$_{3}^{-1},
p||($\alpha$_{3}-q_{3}) , $\alpha$_{3}-q_{3}=p$\alpha$_{4}^{-1},

p||($\alpha$_{n}-q_{n}) , $\alpha$_{n}-q_{n}=p$\alpha$_{n+1}^{-1}.

Then we see that $\alpha$_{n} are p‐adic units for n\geq 2 and q_{n} are not divisible by p for n\geq 2.

Now we show that the continued fraction

 q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\frac{p}{q_{4}}|+\cdots
converges to  $\alpha$ . From the definition of  $\alpha$_{n} ,

we can express it by successive transformation

as

 $\alpha$=$\alpha$_{1}

=q_{1}+p/$\alpha$_{2}

=q_{1}+|$\alpha$_{2}\lrcorner p
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=q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{$\alpha$_{3}}|

=q_{1}+\displaystyle \frac{p}{q_{2}}|+\frac{p}{q_{3}}|+\cdots+\frac{p}{$\alpha$_{n}}|.
Hence, it follows that

(4.2)  $\alpha$-a_{n-1}=\displaystyle \frac{P_{n}(q_{1},..\cdot.\cdot.' q_{n-1},$\alpha$_{n})}{Q_{n}(q_{1},,q_{n-1},$\alpha$_{n})}-\frac{P_{n-1}(q_{1},..\cdot.\cdot.' q_{n-1})}{Q_{n-1}(q_{1},,q_{n-1})}
=\displaystyle \frac{P_{n}(q_{1},\ldots,.q_{n-1},$\alpha$_{n})Q_{n-1}(.q_{1},\ldots,q_{n-1})}{Q_{n-1}(q_{1},..,q_{n-1})Q_{n}(q_{1},..,q_{n-1},$\alpha$_{n})}
-\displaystyle \frac{P_{n-1}(q_{1},..\cdot.\cdot.' q_{n-1})Q_{n}(q_{1},..\cdot.\cdot.' q_{n-1},$\alpha$_{n})}{Q_{n-1}(q_{1},,q_{n-1})Q_{n}(q_{1},,q_{n-1},$\alpha$_{n})}
=\displaystyle \frac{(-1)^{n}p^{n-1}}{Q_{n-1}(q_{1},\ldots,q_{n-1})Q_{n}(q_{1},\ldots,q_{n-1},$\alpha$_{n})}.

On the other hand, as in the proof of Theorem 1.1, we see that |Q_{n}|_{p}=1 for n\geq 1.

So, from (4.2), we conclude that

| $\alpha$-a_{n-1}|_{p}=|\displaystyle \frac{(-1)^{n}p^{n-1}}{Q_{n-1}(q_{1},\ldots,q_{n-1})Q_{n}(q_{1},\ldots,q_{n-1},$\alpha$_{n})}|_{p}=\frac{1}{p^{n-1}}\rightarrow 0 (as  n\rightarrow\infty ).

\square 

Remark 2. Let  $\alpha$\in \mathbb{Z}_{p} . From the proof of Theorem 1.2, for any sequence

q_{1}, q_{2}, q_{3} ,
which satisfy the condition in the proof, the continued fraction (4.1) con‐

verges to  $\alpha$ . So there exist infinitely many sequences \{q_{n}\} such that the continued

fraction (4.1) converges to  $\alpha$ . In the next section, we consider the continued fraction of

another type and prove the Theorem 5.1 which establishes the uniqueness for certain

type of  p‐adic continued fraction expansion.

§5. p‐semiregula� continued fractions in \mathbb{Q}_{p}

Let p be a prime number, \mathbb{Q}_{p} the p‐adic number field and S=\{1, 2, p-1\} . In

this section we consider the continued fraction of following type:

(5.1) p^{b_{1}}(q_{1}+\displaystyle \frac{p^{b_{2}}}{q_{2}}|+\frac{p^{b_{3}}}{q_{3}}|+\frac{p^{b_{4}}}{q_{4}}|+\cdots) ,

where q_{1}, q_{2}, q_{3}, \in S, b_{1} is an integer, and b_{2}, b_{3}, b_{4} ,
are natural numbers.

We shall call it \mathrm{a}^{((}p‐semiregular� continued fraction.
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Theorem 5.1. Let q_{1}, q_{2}, q_{3}, \in S, b_{1} an integer, b_{2}, b_{3}, b_{4} ,
natural numbers.

Suppose that there exist innitely many n such that (q_{n}, b_{n})\neq(p-1,1) . Then the

continued fraction (5.1) converges to an irrational p ‐adic number. Conversely, for any

irrational p ‐adic number  $\alpha$
,

there exist unique sequences \{q_{n}\} and \{b_{n}\} with q_{n}\in S for

n\geq 1, b_{1}\in \mathbb{Z}, b_{n}\in \mathbb{N} for n\geq 2 and (q_{n}, b_{n})\neq(p-1,1) for innitely many n
,

such

that the continued fraction (5.1) converges to  $\alpha$.

For the proof of Theorem 5.1, we start with several propositions.

Proposition 5.2. If q_{n}\in S forn\geq 1, b_{1}\in \mathbb{Z} and b_{n}\in \mathbb{N} for n\geq 2 ,
then the

continued fraction (5.1) converges to a p ‐adic number.

Proof. Let

P_{0}=p^{b_{1}}, P_{1}=p^{b_{1}}x_{1},

Q_{0}=0, Q_{1}=1,

P_{n}=x_{n}P_{n-1}+p^{b_{n}}P_{n-2},

Q_{n}=x_{n}Q_{n-1}+p^{b_{n}}Q_{n-2}

for n\geq 2 . Then we have

p^{b_{1}}(x_{1}+\displaystyle \frac{p^{b_{2}}}{x_{2}}|+\cdots+\frac{p^{b_{n}}}{x_{n}}|)=\frac{P_{n}}{Q_{n}}(n\geq 1) ,

P_{n}Q_{n-1}-P_{n-1}Q_{n}=(-1)^{n}p^{b_{1}+b_{2}+\cdots+b_{n}}(n\geq 1) ,

P_{n}Q_{n-2}-P_{n-2}Q_{n}=(-1)^{n-1}p^{b_{1}+b_{2}+\cdots+b_{n-1}}x_{n}(n\geq 2) .

The proofs of these facts are similar to those in the proof of Theorem 1.1. Now the

proof in Theorem 1.1 can be repeated to prove the proposition. \square 

For a given 2 \mathrm{Q} \mathrm{n}\mathrm{Q} letProposition 5.3. For a given  $\alpha$\in \mathbb{Q}_{p}\backslash \mathbb{Q} let

q_{n}\in S, b_{n}\in \mathbb{Z}, $\alpha$_{n}\in \mathbb{Q}_{p}

be dened inductively by

b_{1}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}( $\alpha$) , $\alpha$_{1}=p^{-b_{1}} $\alpha$,
p|($\alpha$_{1}-q_{1}) , b_{2}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{1}-q_{1}) , $\alpha$_{1}-q_{1}=p^{b_{2}}$\alpha$_{2}^{-1},
p|($\alpha$_{2}-q_{2}) , b_{3}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{2}-q_{2}) , $\alpha$_{2}-q_{2}=p^{b_{3}}$\alpha$_{3}^{-1},

p|($\alpha$_{n}-q_{n}) , b_{n+1}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{n}-q_{n}) , $\alpha$_{n}-q_{n}=p^{b_{n+1}}$\alpha$_{n+1}^{-1}(n\geq 1) .

Then, the continued fraction (5.1) converges to  $\alpha$.
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Proof. Similar to the proof of Theorem 1.2. \square 

Proposition 5.4. Suppose that the continued fraction (5.1) converges to  $\alpha$\in \mathbb{Q}_{p}
(rational numbers are allowed). Then the sequences {qn}, \{b_{n}\} are recovered from  $\alpha$ as

in Proposition 5.3.

Proof. Let

(n\geq 1) .

Then we can easily see that |$\alpha$_{n}|_{p}=1 for n\geq 1 and

 $\alpha$=p^{b_{1}}$\alpha$_{1},

$\alpha$_{n}=q_{n}+\displaystyle \frac{p^{b_{n+1}}}{$\alpha$_{n+1}} (n\geq 1) .

Hence,

\mathrm{o}\mathrm{r}\mathrm{d}_{p}( $\alpha$)=\mathrm{o}\mathrm{r}\mathrm{d}_{p}(p^{b_{1}}$\alpha$_{1})=b_{1},

\displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{1}-q_{1})=\mathrm{o}\mathrm{r}\mathrm{d}_{p}(\frac{p^{b_{2}}}{$\alpha$_{2}})=b_{2},
\displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{2}-q_{2})=\mathrm{o}\mathrm{r}\mathrm{d}_{p}(\frac{p^{b_{3}}}{$\alpha$_{3}})=b_{3},

\displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{n}-q_{n})=\mathrm{o}\mathrm{r}\mathrm{d}_{p}(\frac{p^{b_{n}}}{$\alpha$_{n+1}})=b_{n+1}.
So, the sequences \{q_{n}\} and \{b_{n}\} satisfy the conditions in Proposition 5.3. \square 

Proposition 5.5. For a given  $\alpha$\in \mathbb{Q} let

q_{n}\in S, b_{n}\in \mathbb{Z}, $\alpha$_{n}\in \mathbb{Q}

be dened inductively by

b_{1}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}( $\alpha$) , $\alpha$_{1}=p^{-b_{1}} $\alpha$,
p|($\alpha$_{1}-q_{1}) , b_{2}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{1}-q_{1}) , $\alpha$_{1}-q_{1}=p^{b_{2}}$\alpha$_{2}^{-1},
p|($\alpha$_{2}-q_{2}) , b_{3}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{2}-q_{2}) , $\alpha$_{2}-q_{2}=p^{b_{3}}$\alpha$_{3}^{-1},

p|($\alpha$_{n}-q_{n}) , b_{n+1}=\mathrm{o}\mathrm{r}\mathrm{d}_{p}($\alpha$_{n}-q_{n}) , $\alpha$_{n}-q_{n}=p^{b_{n+1}}$\alpha$_{n+1}^{-1}(n\geq 1) .

Then, either $\alpha$_{n}-q_{n}=0 for some n
,

or q_{n}=p-1, b_{n}=1 for all n\gg 1.
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Proof. Suppose that $\alpha$_{n}-q_{n}\neq 0 for all n
,

and write

$\alpha$_{n}=\displaystyle \frac{r_{n}}{s_{n}} with (r_{n}, s_{n})=1.

Now, consider the sequence of natural numbers \{|r_{n}|+p|s_{n}|\} . From the definition, we

have

|r_{n+1}|+p|s_{n+1}|

\displaystyle \leq|s_{n}|+\frac{p}{p^{b_{n+1}}}(|r_{n}|+(p-1)s)
\leq|s_{n}|+(|r_{n}|+(p-1)s)

=|r_{n}|+p|s_{n}|.

The equality holds if and only if q_{n}=p-1, b_{n+1}=1 . Since the numbers |r_{n}|+p|s_{n}|
become a constant for sufficiently large n

,
we have

q_{n}=p-1, b_{n}=1(n\gg 1) .

\square 

Proposition 5.6.

(\mathrm{p} 1)+ (in \mathbb{Q}_{p} ).

Proof. We prove the following equality which is obviously equivalent to the asser‐

tion.

\mathrm{p} + (in \mathbb{Q}_{p} ).

In the proof of Proposition 5.2, we set

q_{1}=p, q_{n}=p-1 (n\geq 2) , b_{1}=0, b_{n}=1 (n\geq 2) .

Then we have

P_{0}=1,

P_{1}=p,

P_{2}=(p-1)P_{1}+pP_{0}=(p-1)p+p\cdot 1=p^{2},

P_{3}=(p-1)P_{2}+pP_{1}=(p-1)p^{2}+p\cdot p=p^{3},

P_{n}=p^{n} (n\geq 1) .
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On the other hand, as in the proof of Theorem 1.1, we have |Q_{n}|_{p}=1 for n\geq 1 . So we

conclude

concludep (as  n\rightarrow\infty ).

\square 

We now have most of the ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. Let  $\alpha$\in \mathbb{Q}_{p}\backslash \mathbb{Q} . First, Proposition 5.3 asserts that there

exist q_{n}\in S ,
for n\geq 1, b_{1}\in \mathbb{Z} ,

and b_{n}\in \mathbb{N} for n\geq 2 such that

p^{b_{1}}(q_{1}+^{p}|q_{2}|q_{3}|q_{4}\lrcorner_{+^{p}}^{b_{2}}\lrcorner_{+^{p}}^{b_{3}}\lrcorner_{+}^{b_{4}}\cdots)= $\alpha$.
Now we show that (q_{n}, b_{n})\neq(p-1,1) for infinitely many n . If this is not the case,

there exists N\in \mathbb{N} such that (q_{n}, b_{n})=(p-1,1) for all n\geq N . Then from Proposition

5.6, we have

So it follows that

 $\alpha$=p^{b_{1}}(q_{1}
This contradict that  $\alpha$ is an irrational number. Hence the sequences {qn}, \{b_{n}\} satisfy
all the condition in Theorem 5.1. Further, Proposition 5.4 guarantees the uniqueness
of \{q_{n}\} and {bn}. Next, let q_{n}\in S for n\geq 1, b_{1} an integer, b_{n} natural numbers for

n\geq 2 ,
and suppose that there exist infinitely many n such that (q_{n}, b_{n})\neq(p-1,1) .

Then Proposition 5.2 says that the continued fraction

p^{b_{1}}(q_{1}+\displaystyle \frac{p^{b_{2}}}{q_{2}}|+\frac{p^{b_{3}}}{q_{3}}|+\frac{p^{b_{4}}}{q_{4}}|+\cdots)
converges to a p‐adic number. If this limiting value is a rational number, then from

Proposition 5.4 and Proposition 5.5, (q_{n}, b_{n}) must be (p-1,1) for sufficiently large n.

This contradict the assumption of \{q_{n}\} and {bn}. This completes the proof of Theorem

5.1. \square 
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