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Imaginary quadratic fields whose exponents are less

than or equal to two, II

By

Kenichi Shimizu *

Abstract

Shimizu [14] gave some necessary conditions for e_{D}\leqq 2 ,
where e_{D} is the exponent of the

ideal class group of an imaginary quadratic field \mathrm{Q}(\sqrt{-D}) . In this paper we mainly consider

some relations between prime‐producing polynomials and the condition e_{D}\leqq 2 . First we give
a generalization of Mollin�s result. Next we consider the inverse of Mollin�s result when d\equiv 2

(mod4) and t_{D}=3 ,
and give some relations between invariants of \mathrm{Q}(\sqrt{-D}) .

§1. Introduction

Given a square‐free integer d>0 ,
we define D by

D:=\left\{\begin{array}{ll}
4d \mathrm{i}\mathrm{f} d\equiv 1, 2 & (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
d \mathrm{i}\mathrm{f} d\equiv 3 & (\mathrm{m}\mathrm{o}\mathrm{d}4),
\end{array}\right.
and call -D the discriminant of the imaginary quadratic field K_{D}=\mathrm{Q}(\sqrt{-D}) .

We denote by h_{D} the class number of K_{D} ,
and e_{D} the exponent of the ideal class

group of K_{D} that is the least positive integer n such that a^{n} are principal for all ideals

a . We denote by t_{D} the number of different prime factors of D.

We call a rational prime q a split prime if (q)=\mathrm{q}\mathrm{q}'(\mathrm{q}\neq \mathrm{q}') and a ramified prime
if (q)=\mathrm{q}^{2} for prime ideals \mathrm{q} and \mathrm{q}' in K_{D} . Let q_{D} denote the least split prime.

We define f(x) by

f_{D}(x):=\left\{\begin{array}{ll}
x^{2}+d & \mathrm{i}\mathrm{f} d\equiv 1, 2 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
x^{2}+x+(1+d)/4 & \mathrm{i}\mathrm{f} d\equiv 3 (\mathrm{m}\mathrm{o}\mathrm{d}4),
\end{array}\right.
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then we have that prime divisors of f(x) are split primes or ramified primes (Lemma
3.2).

Further for every divisor e of d
,

we define q_{D}'(e) by

q_{D}'(e):=\left\{\begin{array}{ll}
e+d/e \mathrm{i}\mathrm{f} d\equiv 2 & (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
\frac{e+d/e}{2} \mathrm{i}\mathrm{f} d\equiv 1 & (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
\frac{e+d/e}{4} \mathrm{i}\mathrm{f} d\equiv 3 & (\mathrm{m}\mathrm{o}\mathrm{d}4),
\end{array}\right.
and denote by q_{D}' the minimum of q_{D}'(e) for all divisors e of d . We have that q_{D}'(e) and

q_{D}' are split primes (see Shimizu [14]).
Let b be any divisor of d and a=d/b . We assume b>1 . Let p be the least prime

divisor of b
,

then we define I_{b} by

I_{b}:=\left\{\begin{array}{ll}
\{x|0\leqq x\leqq p-1\} & \mathrm{i}\mathrm{f} d\equiv 2 (\mathrm{m}\mathrm{o}\mathrm{d}4) \mathrm{a}\mathrm{n}\mathrm{d} b \mathrm{i}\mathrm{s} \mathrm{a} \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\\
\{x|0<x\leqq p-1\} & \mathrm{i}\mathrm{f} d\equiv 2 (\mathrm{m}\mathrm{o}\mathrm{d}4) \mathrm{a}\mathrm{n}\mathrm{d} b \mathrm{i}\mathrm{s} \mathrm{n}\mathrm{o}\mathrm{t} \mathrm{a} \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\\
\{x|0\leqq x\leqq\frac{p}{2}-1\} & \mathrm{i}\mathrm{f} d\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
\{x|0\leqq x\leqq\frac{p}{4}-\frac{1}{2}-\frac{p}{2d}\} & \mathrm{i}\mathrm{f} d\equiv 3 (\mathrm{m}\mathrm{o}\mathrm{d}4),
\end{array}\right.
where x are integers.

We define quadratic polynomials f_{D,b}(x) by

f_{D,b}(x):=\left\{\begin{array}{ll}
ax^{2}+b & \mathrm{i}\mathrm{f} d\equiv 2 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
2ax^{2}+2ax+\frac{a+b}{2} & \mathrm{i}\mathrm{f} d\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
ax^{2}+ax+\frac{a+b}{4} & \mathrm{i}\mathrm{f} d\equiv 3 (\mathrm{m}\mathrm{o}\mathrm{d}4).
\end{array}\right.
In Lemma 3.3, we show that the value of f_{D,b}(x) in I_{b} is a split prime or a product

of split primes.
We denote by v(n) the number of (not necessarily different) prime factors of an

integer n
,

and define the Ono number p_{D} as follows,

p_{D}:=\left\{\begin{array}{ll}
\max\{v(f_{D}(x))|x \mathrm{a}\mathrm{r}\mathrm{e} \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\mathrm{s} \mathrm{i}\mathrm{n} 0\leqq x\leqq D/4-1 & \mathrm{i}\mathrm{f} d\neq 1, 3\\
1 & \mathrm{i}\mathrm{f} d=1, 3.
\end{array}\right.
In this paper we assume d\neq 1 , 3 through all sections.

For these invariants, we pose the following conjecture:

Conjecture 1.1. The following conditions (i) \sim (vi) are equivalent.

(i)  e_{D}\leqq 2.

(ii) p_{D}=t_{D}.
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(iii) For every divisor b of d, f_{D,b}(x) takes only prime values for all integers x with

I_{b} . (We call this condition GEP‐property in this paper.)
(iii)� For the largest prime divisor b of d, f_{D,b}(x) takes only prime values for all

integers x with I_{b} . (We call this condition \mathrm{E}\mathrm{P}‐property in this paper.)
(iv) q_{D}=q_{D}'.
(v) q_{D}>\sqrt{D}/4.
(vi) f_{D}(x)=q_{D}^{2} for an integer x . (Only when d\equiv 1,3 (mod4))

Similar conjecture was given by Shimizu [14], two conditions are improved in this

paper as follows.

In [14], we did not have the condition (iii), and we wrote the condition q_{D}>R_{D}
instead of (v), where R_{D} is \sqrt{D} or \sqrt{D}/4 when d\equiv 2 (mod4) or d\equiv 1

, 3 (mod4),
respectively.

We here note that some relations have been known between those conditions of

Conjecture 1.1. G.Rabinowitsch [10] and F.G.Frobenius [1] showed independently that

(\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i}\mathrm{i})' when t_{D}=1 . M.D.Hendy [4] essentially showed that (\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i}\mathrm{i})' when t_{D}=2.

H.Möller [5] proved that (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{v}) and (\mathrm{i}\mathrm{v})\Rightarrow(\mathrm{v}) . R.A.Mollin [6][7][8] showed that

(i) \Rightarrow(\mathrm{i}\mathrm{i}) and (\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})' . Shimizu [14] showed that (\mathrm{i})\Rightarrow(\mathrm{v}\mathrm{i}) and (\mathrm{i}\mathrm{v})\Leftrightarrow(\mathrm{v}\mathrm{i}) when

d\equiv 1
, 3 (mod4), and showed that (i) and (iv) are equivalent when d\equiv 2 (mod4).

X.Guo and H.Qin [3] showed that (\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i}) when t_{D}=3 under the Extended Riemann

Hypothesis.
In Section 3 we show that (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i}) (Theorem 3.1), which is a generalization

of Mollin�s result. In Section 4, we show that (\mathrm{v})\Rightarrow(\mathrm{i}\mathrm{v}) when d\equiv 1
,

2 (mod4)
(Theorem 4.2). In Section 5, only when t_{D}=3 and d\equiv 2 (mod4), we show that (iii)�
\Rightarrow(\mathrm{i}) (Theorem 5.1) and that conditions in Conjecture 1.1 are equivalent except (vi)
(Theorem 5.4). Consequently by Theorem 5.4 we obtain the same result as X.Guo and

H.Qin [3] without the Extended Riemann Hypothesis in the case of d\equiv 2 (mod4). In

Section 6, we show that (iii)� \Rightarrow(\mathrm{v}) when t_{D}=3 and d\equiv 1 (mod4) (Theorem 6.1).

§2. Prime‐producing polynomials

In this section we sketch the history of prime‐producing polynomials.
In 1772, L.Euler discovered that the quadratic polynomial x^{2}+x+41 takes only

prime values for all integers with 0\leqq x\leqq 39 . Euler also noted that the quadratic

polynomial x^{2}+x+A takes only prime values with 0\leqq x\leqq A-2 ,
in the cases of

A=2
, 3, 5, 11, 17, 41.

In 1912, F.G.Frobenius [1] and G.Rabinowitsch [10] independently showed that the

above fact is related to the class number of imaginary quadratic field \mathrm{Q}(\sqrt{1-4A}) . They

proved:
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Theorem 2.1. The following (1) and (2) are equivalent.

(1) The quadratic polynomial x^{2}+x+A(A\geqq 2) takes only prime values for all integers
with 0\leqq x\leqq A-2.

(2) \mathrm{Q}(\sqrt{1-4A}) has class number one.

In the same paper, Frobenius referred to prime‐producing polynomials related to

imaginary quadratic fields with h_{D}=2 as follows.

Theorem 2.2. Let p be an odd prime number.

(i) If \mathrm{Q}(\sqrt{-2p}) has class number two, then 2x^{2}+p takes only prime values for all

integers with 0\leqq x<p.

(ii) If p\equiv 1 (mod4) and \mathrm{Q}(\sqrt{-p}) has class number two, then 2x^{2}-2x+(p+1)/2
takes only prime values for all integers with 0\leqq x<(p+1)/2.

In 1974, M.D.Hendy [4] gave a necessary and sufficient condition for prime‐producing

polynomials related to imaginary quadratic fields with h_{D}=2 as follows.

Theorem 2.3. Let p and q be odd prime numbers.

(i) If \mathrm{Q}(\sqrt{-2p}) has class number two if and only if 2x^{2}+p is prime for all integers with

0\leqq x\leqq\sqrt{p}/2.
(ii) If p\equiv 1 (mod4) and \mathrm{Q}(\sqrt{-p}) has class number two if and only if 2x^{2}+2x+(p+1)/2
is prime for all integers with 0\leqq x\leqq(\sqrt{p}-1)/2.
(iii) If pq\equiv 3 (mod4), p<q and \mathrm{Q}(\sqrt{-pq}) has class number two if and only if

px^{2}+px+(p+q)/4 is prime for all integers with 0\leqq x\leqq\sqrt{pq}/12-1/2.

In 1995, R.A.Mollin [7][8] generalized these results to imaginary quadratic fields

whose class numbers are more than two. He considered imaginary quadratic fields with

h_{D}=2^{t_{D}-1} . It is known that h_{D}=2^{t_{D}} is equivalent to e_{D}\leqq 2 . From now on we use

e_{D}\leqq 2 instead of h_{D}=2^{t_{D}-1}.
Mollin proved the following.

Theorem 2.4. (Mollin [6], [7] p.110)
If e_{D}\leqq 2 ,

then the equality p_{D}=t_{D} holds.

Using f_{D,b}(x) ,
we state Mollin�s result.

Theorem 2.5. (Mollin [7] p.115‐116, [8]) Let b be the largest prime divisor of
d and a=d/b . If e_{D}\leqq 2 ,

then f_{D,b}(x) takes only prime values for all integers x with I_{b}.

Theorem 2.5 is proved by using Theorem 2.4.
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§3. A generalization of Mollin�s result

In this section we give a generalization of Theorem 2.5. Though we have taken b

the largest prime divisor of d in Theorem 2.5, we can take b any divisor of d as follows.

Theorem 3.1. Let b>1 be any divisor of d, a=d/b and p the least prime
divisor of b . We assume a>1 when d\equiv 3 (mod4) and d is not a prime. If e_{D}\leqq 2,
then the quadratic polynomial f_{D,b}(x) takes only prime values for all integers x with I_{b}.

When d\equiv 3 (mod4) and d is not a prime, if a=1
,
then there are counter examples.

For example, if d=15 ,
then f_{D,b}(x)=x^{2}+x+4 does not take prime values x in I_{b}.

If b is the largest prime divisor of d
,

then Theorem 3.1 gives Theorem 2.5.

For the proof of Theorem 3.1, we give the following lemmas.

Lemma 3.2. Prime divisors of f(x) are split primes or ramied primes. Con‐

versely all split primes and all ramied primes divide f_{D}(x) for some integers x.

Proof. At first, we consider in the case of d\equiv 1
,

2 (mod4). Let p be a prime
which does not divide D

,
then we have that p is odd and that

p|f_{D}(x)\Leftrightarrow x^{2}+d\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} p) ,

\Leftrightarrow X^{2}\equiv-D(\mathrm{m}\mathrm{o}\mathrm{d} p) is solvable,

\Leftrightarrow p is a split prime.

If p|D ,
then p is a ramified prime. When d\equiv 2 (mod4) we have

p|D\Leftrightarrow p|f_{D}(0)

. When d\equiv 1 (mod4) we have

p|D\Leftrightarrow\left\{\begin{array}{l}
p|f(0) \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{n} \mathrm{o}\mathrm{d}\mathrm{d} \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e} p,\\
p|f(1) \mathrm{f}\mathrm{o}\mathrm{r} p=2.
\end{array}\right.
Second, we consider in the case of d\equiv 3 (mod4). For an odd prime p we have

p|f_{D}(x)\displaystyle \Leftrightarrow x^{2}+x+\frac{1+d}{4}=\frac{(2x+1)^{2}+d}{4}\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} p) ,

\Leftrightarrow(2x+1)^{2}\equiv-d (\mathrm{m}\mathrm{o}\mathrm{d} p) ,

\Leftrightarrow X^{2}\equiv-D(\mathrm{m}\mathrm{o}\mathrm{d} p) is solvable,

\Leftrightarrow p is a split prime.

For p=2 ,
when d\equiv 7 (mod8) we have that 2 is a split prime and 2 |f(x) for all x.

When d\equiv 3 (mod8) we have that 2 is neither a split prime nor a ramified prime, and

2-f(x) for all x . Thus we complete the proof. \square 
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Lemma 3.3. In I_{b} ,
the value of the quadratic polynomial f_{D,b}(x) is a split prime

or a product of split primes.

Proof. At first, we state a relation of f(x) and f_{D,b}(x) . When d\equiv 2 (mod4)
we have f_{D}(ax) =a^{2}x^{2}+d=a(ax^{2}+b)=af_{D,b}(x) .

When d\equiv 1 (mod4) we have f_{D}(2ax+a)=4a^{2}x^{2}+4a^{2}x+a^{2}+d=2a(2ax^{2}+
2ax+\displaystyle \frac{a+b}{2})=2af_{D,b}(x) .

When d\equiv 3 (mod4), since f_{D}(x)=x^{2}+x+\displaystyle \frac{1+d}{4}=\frac{(2x+1)^{2}+d}{4} ,
we have

f_{D}(ax+\displaystyle \frac{a-1}{2})=\frac{(2ax+a)^{2}+d}{4}
=a(ax^{2}+ax+\displaystyle \frac{a+b}{4})=af_{D,b}(x) .

Therefore by Lemma 3.2, we get that prime divisors of f_{D,b}(x) are split primes or

ramified primes.
Next we show that no ramified primes divide f_{D,b}(x) .

Assuming that f_{D,b}(x) is divided by a prime divisor p' of d
,

we derive a contradic‐

tion.

It holds that a and b have no common prime divisors since d is square‐free. Let p

be the least prime factor of b.

When d\equiv 2 (mod4) we have f_{D,b}(x)=ax^{2}+b . By p'|(ax^{2}+b) , p'| a immediately

implies p'|b ,
which is a contradiction. If p'|b ,

then p'|ax^{2} . Since x\in I_{b} , namely,

0<x<p\leqq p' ,
we get p'|a ,

which is a contradiction.

When d\equiv 1 (mod4) we have

f_{D,b}(x)=2ax^{2}+2ax+\displaystyle \frac{a+b}{2}.
We show that the values of f_{D,b}(x) are odd. By d=ab \equiv 1 (mod4), it holds that

a\equiv b\equiv 1 (mod4) or a\equiv b\equiv 3 (mod4). Hence we get a+b\equiv 2 (mod4), and so the

values of f_{D,b}(x) are odd.

As we assume p'|f_{D,b}(x) , p'| a implies p'|(a+b) . Hence we have p'|b ,
which is

a contradiction.

On the other hand, from p'|f_{D,b}(x) we have p'|(4ax^{2}+4ax+a+b) . If p'|b,
then we have

4ax^{2}+4ax+a+b\equiv 4ax^{2}+4ax+a

\equiv a(2x+1)^{2}\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} p') .

Hence we have p'|(2x+1) since p'-a . By x\in I_{b} , namely, 0\leqq x\leqq p/2-1 ,
we have

0<2x+1\leqq p-1\leqq p'-1 ,
which is contradict to p'|(2x+1) .
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Finally, when d\equiv 3 (mod4) we have

f_{D,b}(x)=ax^{2}+ax+\displaystyle \frac{a+b}{4}.
As we assume p'|f_{D,b}(x) , p'| a implies p'|b ,

which is a contradiction. If p'|b ,
then

ax^{2}+ax+\displaystyle \frac{a+b}{4}=\frac{a(2x+1)^{2}+b}{4}
\displaystyle \equiv\frac{a(2x+1)^{2}}{4}\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} p') .

Hence we get p'|a(2x+1)^{2} . Thus we have p' (2x+1) since p'-a . From x\in I_{b},

namely, 0\leqq x\leqq p/4-1/2-p/(2d) ,
we have

0<2x+1\displaystyle \leqq\frac{p}{2}-\frac{p}{d}<p\leqq p',
which is contradict to p'|(2x+1) . Thus we complete the proof. \square 

Möller gave an lower bound for q_{D}.

Theorem 3.4. (Möller [5]) If e_{D}\leqq 2 ,
then q_{D}>\sqrt{D} or q_{D}>\sqrt{D}/4 when

d\equiv 2 or d\equiv 1
, 3 (mod4), respectively.

Using Lemma 3.3 and Theorem 3.4, we prove Theorem 3.1.

Proof. (Theorem 3:1) We prove this theorem by two steps. First, assume that

b is a prime divisor of d
, second, assume that b is not a prime.

Step I: Let b be a prime divisor of d . When d\equiv 2 (mod4) we have f_{D}(ax) =

af_{D,b}(x) . By Theorem 2.4 we have p_{D}=t_{D} ,
and v(a)=t_{D}-1 since b is a prime

divisor of d . Hence we get that f_{D,b}(x) takes only prime values for all integers x with

0\leqq ax\leqq D/4-1=d-1 ,
which corresponds to 0\leqq x\leqq d/a-1/a=b-1/a ,

that is,

0\leqq x\leqq b-1 . Therefore f_{D,b}(x) takes only prime values for all integers x with I_{b}.

Next, when d\equiv 1 (mod4) we have f_{D}(2ax+a)=2af_{D,b}(x) . Since p_{D}=t_{D} and

v(2a)=t_{D}-1 ,
we get that f_{D,b}(x) takes only prime values for all integers x with

0\leqq 2ax+a\leqq D/4-1=d-1 ,
which corresponds to 0\leqq x\leqq d/2a-1/2a-1/2 ,

that

is, 0\leqq x\leqq b/2-1 . Therefore f_{D,b}(x) takes only prime values for all integers x with I_{b}.
a-1

Last, when d\equiv 3 (mod4) we have f_{D}(ax+\overline{2}) =af_{D,b}(x) . From p_{D}=t_{D} and

v(a)=t_{D}-1 ,
we get that f_{D,b}(x) takes only prime values for all integers x with  0\leqq

 ax+(a-1)/2\leqq D/4-1=d/4-1 ,
which corresponds to 0\leqq x\leqq d/(4a)-1/2-1/(2a) ,

that is, 0\leqq x\leqq b/4-1/2-b/(2d) . Therefore f_{D,b}(x) takes only prime values for all

integers x with I_{b}.
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Step II: Let b be not a prime and p the least prime divisor of b
,

then it holds

ap^{2}<ab=d . We assume that there is an integer x such that f_{D,b}(x) is not a prime in

I_{b} ,
and let f_{D,b}(x)=q_{1} . . .

q_{r} ( q_{i} is a split prime, 1\leqq i\leqq r and r\geqq 2 ) by Lemma 3.3.

Then we have f_{D,b}(x)\geqq q_{D}^{2}.
At first, when d\equiv 2 (mod4) we have f_{D,b}(x)=ax^{2}+b\geqq q_{D}^{2} . Since e_{D}\leqq 2 ,

we

have q_{D}^{2}>D=4d by Theorem 3.4. Hence we get 4d<q_{D}^{2}\leqq ax^{2}+b . On the other

hand, since x<p and ap^{2}<d ,
we get

ax^{2}+b<ap^{2}+b<d+b.

Therefore we have 4d<d+b ,
which is a contradiction. Hence f_{D,b}(x) takes only prime

values for all integers x with I_{b}.

Second, when d\equiv 1 (mod4) we have f_{D,b}(x)=2ax^{2}+2ax+(a+b)/2\geqq q_{D^{:}}^{2} Since

x\leqq p/2-1, ap^{2}<d and a+b\leqq 1+d ,
we have

2ax^{2}+2ax+\displaystyle \frac{a+b}{2}
\displaystyle \leqq 2a(\frac{p}{2}-1)^{2}+2a(\frac{p}{2}-1)+\frac{1+d}{2}
=2a(\displaystyle \frac{p^{2}}{4}-p+1)+ap-2a+\frac{1+d}{2}
=\displaystyle \frac{ap^{2}}{2}-ap+\frac{1+d}{2}
<\displaystyle \frac{d}{2}+\frac{1+d}{2}=d+\frac{1}{2}.

Hence 2ax^{2}+2ax+(a+b)/2\leqq d . By Theorem 3.4 we have q_{D}^{2}>D/4=d ,
therefore

we get

d<q_{D}^{2}\displaystyle \leqq 2ax^{2}+2ax+\frac{a+b}{2}\leqq d,
which is a contradiction.

Finally, when d\equiv 3 (mod4) we have f_{D,b}(x)=ax^{2}+ax+(a+b)/4\geqq q_{D}^{2} . By
Theorem 3.4, we have q_{D}^{2}>D/4=d/4 . Since x\leqq p/4-1/2-p/(2d) and ap^{2}<d ,

we

get

ax^{2}+ax+\displaystyle \frac{a+b}{4}=\frac{a(2x+1)^{2}+b}{4}
\displaystyle \leqq\frac{a}{4}(\frac{p}{2}-\frac{p}{d})^{2}+\frac{b}{4}
=\displaystyle \frac{ap^{2}}{4}(\frac{1}{2}-\frac{1}{d})^{2}+\frac{b}{4}<\frac{d}{4}(\frac{1}{4}-\frac{1}{d}+\frac{1}{d^{2}})+\frac{b}{4}
=\displaystyle \frac{d}{16}-\frac{1}{4}+\frac{1}{4d}+\frac{b}{4}<\frac{d}{16}+\frac{b}{4}.
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In this case, since we assume a>1 ,
we have a\geqq 3 . Thus we have b\leqq d/3 . Therefore

\displaystyle \frac{d}{16}+\frac{b}{4}\leqq\frac{d}{16}+\frac{d}{12}=\frac{7}{48}d<\frac{d}{4}.
Hence we get

\displaystyle \frac{d}{4}<q_{D}^{2}\leqq ax^{2}+ax+\frac{a+b}{4}<\frac{d}{4},
which is a contradiction. Thus we complete the proof of Theorem 3.1. \square 

§4. On the condition q_{D}>\sqrt{D}/4

In this section we show Theorem 4.2 below. For the proof of Theorem 4.2 we give
the following lemma.

Lemma 4.1. For an odd split prime q there are two integers x in 0\leqq x<q
such that q|f_{D}(x) . If d\equiv 1

,
2 (mod4), then they are positive, and one is even and

the other is odd. If d\equiv 3 (mod4), then they are non‐negative, and both even or both

odd.

Proof. By Lemma 3.2, there are integers x such that q|f_{D}(x) . When d\equiv 1
,

2

(mod4), since q-f(0) we may put x_{0} the least positive integers such that q|f_{D}(x_{0}) .

Since f_{D}(q-x_{0})=(q-x_{0})^{2}+d=q(q-2x_{0})+f_{D}(x_{0}) ,
we get that q f(X)

implies q|f_{D}(q-x_{0}) . Then we have that two integers x_{0} and q-x_{0} are different,
for x_{0}=q-x_{0} implies 2x_{0}=q ,

which is impossible since q is odd. Thus we get

0<x_{0}<q/2<q-x_{0}<q . Therefore there are two integers x in 0<x<q such that

q|f_{D}(x) ,
and one of them is even and the other odd since q is odd.

When d\equiv 3 (mod4), let x_{0} be the least non‐negative integers such that q|f_{D}(x_{0}) .

We have:

f_{D}(q-1-x_{0})=(q-1-x_{0})^{2}+(q-1-x_{0})+(1+d)/4

=q\{q-1-2x_{0}\}+x_{0}^{2}+x_{0}+(1+d)/4

=q\{q-1-2x_{0}\}+f_{D}(x_{0}) ,

hence we get that q|f(X) implies q|f_{D}(q-1-x_{0}) . Assuming x_{0}=q-1-x_{0} ,
we

have x_{0}=(q-1)/2 and f_{D}(x_{0})=(q^{2}+d)/4 . Thus by q|f(x) we get q|d ,
which is a

contradiction. Thus we obtain x_{0}<q-1-x_{0} ,
that is, 0\leqq x_{0}<(q-1)/2<q-1-x_{0}<q.

Hence there are two integers x in 0\leqq x<q such that q|f_{D}(x) . Further we obtain that

both x_{0} and q-1-x_{0} are even or both odd since q is odd. \square 



264 Kenichi Shimizu

Theorem 4.2. Suppose d\equiv 1
,

2 (mod4). If q_{D}>\sqrt{D}/4 ,
then q_{D}=q_{D}'.

Proof. When d\equiv 1
,

2 (mod4), we have that q_{D} is odd, and that there are two

integers x in 0<x<q_{D} such that q_{D}|f(x) by Lemma 4.1.

First, we prove the theorem when d\equiv 2 (mod4). Assume that x is even, then we

have that x^{2}+d is even, hence we put x^{2}+d=2q_{D}c(c\geqq 1) .

If c is divided by a split prime, then x^{2}+d\geqq 2q_{D}^{2} . By q_{D}>x we get q_{D}^{2}+d>
x^{2}+d\geqq 2q_{D}^{2} ,

hence we obtain q_{D}^{2}+d>2q_{D}^{2} ,
and so q_{D}<\sqrt{D}/4 . Therefore q_{D}>\sqrt{D}/4

implies that c=1 or the divisors of c are only ramified primes. Since x is even, it holds

x^{2}+d\equiv 2 (mod4). Hence we have 4-(x^{2}+d) ,
and so c is odd. Then an odd

ramified prime p divides c exactly, because p^{2} c implies p^{2} d
,

which is impossible
since d is square‐free. Thus we get 2c d

,
and so 2c x . Putting x=2cx_{1} ,

we

have 4c^{2}x_{1}^{2}+d=2q_{D}c ,
hence we get 2cx_{1}^{2}+d/(2c)=q_{D} . Since x_{1}\geqq 1 ,

we have

q_{D}\geqq 2c+d/(2c)=q_{D}'(2c)\geqq q_{D}' . On the other hand, we have q_{D}\leqq q_{D}' since q_{D} is the

least split prime. Hence we get q_{D}=q_{D}'.
Second, we show this theorem when d\equiv 1 (mod4). Assume that x is odd, then

x^{2}+d is even, hence we put x^{2}+d=2q_{D}c(c\geqq 1) . If c is divided by a split prime,
then by the same way as d\equiv 2 (mod4), we get q_{D}<\sqrt{d}=\sqrt{D}/4.

Therefore q_{D}>\sqrt{D}/4 implies that c=1 or the divisors of c are only ramified

primes. Since x is odd, it holds x^{2}+d\equiv 2 (mod4). Hence we have 4-(x^{2}+d) ,
and

so c is odd. We get that an odd ramified prime divides c exactly by the same reason

as d\equiv 2 (mod4). Hence we get c|d . Therefore we obtain c|x . Putting x=cx_{1} ,
we

have cx_{1}^{2}+d/c=2q_{D} . Since x_{1}\geqq 1 ,
we have q_{D}\geqq(c+d/c)/2=q_{D}'(c)\geqq q_{D}' . On the

other hand, we have q_{D}\leqq q_{D}' . Thus we get q_{D}=q_{D}'. \square 

We conjecture that q_{D}>\sqrt{D}/4 implies q_{D}=q_{D}' when d\equiv 3 (mod4), but we can

not prove it yet. From Theorem 4.2 we have two corollaries as follows.

Corollary 4.3. When d\equiv 2 (mod4), it holds that the conditions in Conjecture
1:1 (i); (iv) and (v) are equivalent.

Proof. Theorem 3.4 says that e_{D}\leqq 2 implies q_{D}>\sqrt{D}>\sqrt{D}/4 . And Theorem

4.2 says that q_{D}>\sqrt{D}/4 implies q_{D}=q_{D}' , On the other hand, q_{D}=q_{D}' implies

q_{D}>\sqrt{D}/3 ,
because by q_{D}=q_{D}' there is a divisor e of d such that q_{D}=e+d/e ,

hence

q_{D}=e+d/e>2\sqrt{d}=\sqrt{D}>\sqrt{D}/3 . We have the property such that the ideal class

group of K_{D} is generated by split ideals or ramified ideals which norms are less than

\sqrt{D}/3 . Therefore by q_{D}>\sqrt{D}/3 the ideal class group is generated by only ramified

prime ideals, and so a^{2} is principal for any ideal a of K_{D} . Thus we obtain e_{D}\leqq 2 . Hence

we show that q_{D}=q_{D}' implies e_{D}\leqq 2 . Therefore (i), (iv) and (v) are equivalent. \square 
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Corollary 4.4. When d\equiv 1 (mod4), it holds that the conditions in Conjecture
1:1 (iv), (v) and (vi) are equivalent.

Proof. Shimizu [14] proved that q_{D}=q_{D}' is equivalent to f_{D}(x)=q_{D}^{2} for a integer
x . Further we have that q_{D}=q_{D}' implies q_{D}>\sqrt{D}/4 ,

because by q_{D}=q_{D}' there is a

divisor e of d such that q_{D}=(e+d/e)/2 ,
hence q_{D}>\sqrt{d}=\sqrt{D}/4 . On the other hand

we have proved that q_{D}>\sqrt{D}/4 implies q_{D}=q_{D}' in Theorem 4.2. Therefore (iv), (v)
and (vi) are equivalent. \square 

§5. Relations between prime‐producing polynomials and e_{D}\leqq 2

In this section, we consider the inverse of Theorem 2.5, that is, whether it holds

that \mathrm{E}\mathrm{P}‐property implies e_{D}\leqq 2 . But it does not hold when d\equiv 1
, 3 (mod4). There

are three counter examples with d<100 , 000, 000.

\mathrm{d} \mathrm{m}\mathrm{o}\mathrm{d} 4

2737

9867

42427

prime factors

71723

3111323

7111929

16

16

24

These imaginary quadratic fields satisfy \mathrm{E}\mathrm{P}‐property, but do not satisfy e_{D}\leqq 2.
On the other hand, when d\equiv 2 (mod4) we conjecture that \mathrm{E}\mathrm{P}‐property implies e_{D}\leqq 2,
and only when t_{D}=3 we can prove it as below. Furthermore we generally conjecture
that GEP‐property implies e_{D}\leqq 2 ,

but we can not prove it yet.
As we have described in Section 2, Rabinowitsch and Frobenius showed when t_{D}=1

that \mathrm{E}\mathrm{P}‐property holds if and only if e_{D}\leqq 2 ,
and Hendy obtained the similar result

when t_{D}=2 . From now on we consider the problem on \mathrm{E}\mathrm{P}‐property when t_{D}=3 . We

show the following theorem.

Theorem 5.1. When d=2p_{1}p_{2}\equiv 2 (mod4) (p_{1}<p_{2}) ,
the quadratic polyno‐

mial 2p_{1}x^{2}+p_{2} takes prime values for all integers with 0<x\leqq p_{2}-1 ,
then it holds

e_{D}\leqq 2.

For the proof of Theorem 5.1 we show the following lemma and theorem.

Lemma 5.2. For any split prime q ,
there are integers x such that q|f_{D,b}(x) .
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Proof. There is an integer x_{0} such that q|f(X) by Lemma 3.2, then it holds

q|f_{D}(x_{0}+yq) for every integer y.

When d\equiv 2 (mod4), we consider the equation x_{0}+yq=ax ,
that is, ax‐qy =x_{0}

in which x and y are integers. Since \mathrm{g}\mathrm{c}\mathrm{d}(a, q)=1 ,
there are solutions of this equation.

Let (x_{1}, y_{1}) be a solution, then we have x_{0}+y_{1}q=ax_{1} . Since f_{D}(x_{0}+y_{1}q)=f_{D}(ax_{l})=
a(ax_{1}^{2}+b) ,

we obtain q|a(ax_{1}^{2}+b) ,
and so q|(ax_{1}^{2}+b) . Hence we have q|f_{D,b}(x_{1}) .

When d\equiv 1 (mod4), we consider x_{0}+yq=2ax+a . Since \mathrm{g}\mathrm{c}\mathrm{d}(2a, q)=1 ,
there

are solutions of this equation. Let (x_{1}, y) be a solution, then we have x_{0}+y_{1}q=

2ax_{1}+a . Since f_{D}(x_{0}+y_{1}q)=f_{D}(2ax_{1}+a)=2a\{2ax_{1}^{2}+2ax_{1}+(a+b)/2\} ,
we obtain

q|2a\{2ax_{1}^{2}+2ax_{1}+(a+b)/2\} ,
and so q|\{2ax_{1}^{2}+2ax_{1}+(a+b)/2\} . Hence we have

q|f_{D,b}(x_{1}) .

When d\equiv 3 (mod4), we consider x_{0}+yq=ax+(a-1)/2 . Since \mathrm{g}\mathrm{c}\mathrm{d}(a, q)=1,
there are solutions of this equation. Let (x_{1}, y_{1}) be a solution, then we have x_{0}+y_{1}q=

ax_{1}+(a-1)/2 . Since f_{D}(x_{0}+y_{1}q)=f_{D}(ax_{1}+(a-1)/2)=a\{ax_{1}^{2}+ax_{1}+(a+b)/4\},
we obtain q|\{ax_{1}^{2}+ax_{1}+(a+b)/4\} . Hence we have q|f_{D,b}(x_{1}) . \square 

Using Lemma 5.2 we prove the following.

Theorem 5.3. Suppose d\equiv 2 (mod4). Let b be the largest prime divisor of d

and a=d/b . We assume b>\sqrt{D}/16 . If the quadratic polynomial f_{D,b}(x) takes prime
values for all integers x with I_{b} ,

then it holds e_{D}\leqq 2.

Proof. In this case, we have f_{D,b}(x)=ax^{2}+b and I_{b}=\{x|0<x\leqq b-1\}.
From Lemma 5:2, there are integers x such that q_{D}|(ax^{2}+b) . Suppose that x_{1} is the

least positive integer such x.

If 0<x_{1}\leqq b-1 , namely, x\in I_{b} ,
then by Lemma 3.3 we have that ax_{1}^{2}+b is a

split prime. Since q_{D} is the least split prime, we get q_{D}=f_{D,b}(1) ,
thus

q_{D}=a+b>2\sqrt{d}>\sqrt{D}/4.

Now suppose x_{1}\geqq b . Since x_{1} is the least positive integer such that q_{D}|(ax^{2}+b) ,

we have q_{D}/2>x_{1} . By x_{1}\geqq b ,
we have q_{D}/2>b . Since b>\sqrt{D}/16 we get

q_{D}/2>\sqrt{D}/16 , namely, q_{D}>\sqrt{D}/4.
Therefore we obtain e_{D}\leqq 2 by Corollary 4:3. \square 

Using Theorem 5.3 we prove Theorem 5.1.

Proof. (Theorem 5.1) Let a=2p_{1} and b=p_{2} ,
then we have f_{D,b}(x)=2p_{1}x^{2}+p_{2}

and I_{b}=\{x|0<x\leqq p_{2}-1\} . In this case the condition b>\sqrt{D}/16 holds. Thus we

complete the proof. \square 
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Theorem 5.4. When d\equiv 2 (mod4) and t_{D}=3 ,
it holds that the conditions in

Conjecture 1.1 (i), (ii), (iii), (iii)�, (iv) and (v) are equivalent.

Proof. We have already shown that (i), (iv) and (v) are equivalent in Corollary
4.3. Further by Theorem 5.1 \mathrm{E}\mathrm{P}‐property implies e_{D}\leqq 2 when t_{D}=3 . On the other

hand, it holds that e_{D}\leqq 2 implies p_{D}=t_{D} and that p_{D}=t_{D} implies \mathrm{E}\mathrm{P}‐property by
Mollin [6][7][8]. Furthermore by Theorem 3.1 e_{D}\leqq 2 implies GEP‐property, and it is

trivial that GEP‐property implies \mathrm{E}\mathrm{P}‐property. Thus we complete the proof. \square 

X.Guo and H.Qin [3] showed under the Extended Riemann Hypothesis that e_{D}\leqq 2
is equivalent to p_{D}=3 when t_{D}=3 . By Theorem 5.4 we have obtained without the

Extended Riemann Hypothesis that e_{D}\leqq 2 is equivalent to p_{D}=3 and t_{D}=3 when

d\equiv 2(\mathrm{m}\mathrm{o}\mathrm{d} 4) .

§6. Relations between prime‐producing polynomials and q_{D}>\sqrt{D}/4

We want to prove that \mathrm{E}\mathrm{P}‐property implies e_{D}\leqq 2 when t_{D}=3 and d\equiv 1

(mod4), too. But we cannot prove it yet. In this section we show that \mathrm{E}\mathrm{P}‐property

implies q_{D}>\sqrt{D}/4 when t_{D}=3 and d\equiv 1 (mod4). We prove the following theorem.

Theorem 6.1. Suppose d=p_{1}p_{2}\equiv 1 (mod4) (p_{1}<p_{2}) . If the quadratic

polynomial 2p_{1}x^{2}+2p_{1}x+(p_{1}+p_{2})/2 takes prime values for all integers with  0\leqq x\leqq

 p_{2}/2-1 ,
then it holds q_{D}>\sqrt{D}/4.

For the proof of Theorem 6.1 we show the following.

Theorem 6.2. Suppose d\equiv 1 (mod4). Let b be the largest prime divisor of d

and a=d/b . We assume b>\sqrt{D}/4 . If the quadratic polynomial f_{D,b}(x) takes prime
values for all integers x with I_{b} ,

then it holds q_{D}>\sqrt{D}/4.

Proof. In this case, we have f_{D,b}(x)=2ax^{2}+2ax+(a+b)/2 and  I_{b}=\{x|0\leqq x\leqq
 b/2-1\} . From Lemma 5.2, there are integers x such that q_{D}|\{2ax^{2}+2ax+(a+b)/2\}.
Suppose that x_{1} is the least non‐negative integer such x.

If 0\leqq x_{1}\leqq b/2-1 , namely, x_{1}\in I_{b} ,
then we have that f_{D,b}(x)=2ax_{1}^{2}+2ax_{1}+

(a+b)/2 is a split prime. Since q_{D} is the least split prime, we get q_{D}=f_{D,b}(0) . Hence

we have

q_{D}=(a+b)/2>\sqrt{d}=\sqrt{D}/4.
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Next, suppose x_{1}>b/2-1 . Since (q_{D}-1)/2>x_{1} ,
we have (q_{D}-1)/2>b/2-1,

and so q_{D}\geqq b . By b>\sqrt{D}/4 ,
we have q_{D}>\sqrt{D}/4 . Thus we complete the proof. \square 

From Theorem 6.2 we have the proof of Theorem 6.1.

Proof. (Theorem 6.1) Let a=p_{1} and b=p_{2} ,
then we have f_{D,b}(x)=2p_{1}x^{2}+

2p_{1}x+(p_{1}+p_{2})/2 and I_{b}=\{x|0\leqq x\leqq p_{2}/2-1\} . In this case, the condition b>\sqrt{D}/4
holds. Thus from Theorem 6.2 we complete the proof. \square 

Theorem 6.3. When d\equiv 1 (mod4) and t_{D}=3 ,
we have the following relations

between conditions in Conjecture 1.1.

(i) \Rightarrow (ii) \Rightarrow (iii)�
\Downarrow

(iv) \Leftrightarrow(\mathrm{v})\Leftrightarrow (vi)

Proof. Theorem 2.4 and 2.5 say that (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})' ,
and Theorem 6.1 says

that (iii)� \Rightarrow(\mathrm{v}) when t_{D}=3 . Further the equivalence between (iv), (v) and (vi) is

given by Corollary 4.4. Thus we complete the proof. \square 
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