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On the parity of poly-Euler numbers

By

YASUO OHNO* and YOSHITAKA SASAKI**

Abstract

Poly-Euler numbers are introduced in [9] via special values of an L-function as a general-
ization of the Euler numbers. In this article, poly-Euler numbers with negative index are mainly
treated, and the parity of them is shown as the main theorem. Furthermore the divisibility of
poly-Euler numbers are also discussed.

§1. Introduction

For every integer k, we define poly-FEuler numbers Efzk) (n=20,1,2,...), which is
introduced as a generalization of the Euler number, by

Liz(1—e %) X EP
1.1 —_— = t".
(1.1) 4t(cosh ) Z n!

n=0

Here,

x ,..n
_ x
Lig(x) := E F (| < 1, ke Z)
n=1

is the k-th polylogarithm. When £ =1, E,gl) is the Euler number defined by

1 > g
1.2 = t".
(1.2) cosht 1;) n!
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The reason why we refer to ET(Lk)’s as “poly-Euler numbers” will be mentioned in the
next section from the point of view of the relation between the poly-Bernoulli number
and Arakawa-Kaneko’s zeta-function. In this article, we treat some number theoretical
properties of poly-Euler numbers with negative index (kK < 0). Our main theorem is
Theorem 3.1 described in Section 3, which mentions the parity of poly-Euler numbers
can be determined definitely. In Section 4, we discuss the divisibility of poly-Fuler
numbers via congruence relations of them. Tables 1 and 2 cited at the end of this
article are the lists of numerical values of poly-Euler numbers. General properties of
poly-Euler numbers including the case of positive index are treated in [8].

§2. The poly-Bernoulli numbers and Arakawa-Kaneko’s zeta-function

For every integer k, the poly-Bernoulli numbers ]B%Elk) and the modified poly-Bernoulli
numbers CF) introduced by Kaneko [4] are defined by

Lip(1—et) B Lip(1—et) & OP
2.1 sl me ) N~ B n Lig(l—e ") _ n
(2.1) 1—et ;n!t and et —1 nZ:O n!t’

respectively. When k = 1, the above generating functions become

tet t
d -
et —1 an et —1’

respectively. Therefore B%k) and C’fzk) are generalizations of the classical Bernoulli num-
bers. Some number theoretic properties of the poly-Bernoulli number were given by
Kaneko [4], Arakawa and Kaneko [2] and others. Furthermore the combinatorial inter-
pretations of BY; ™ were given by Brewbaker [3] and Launois [6]. Recently, Shikata. [10]
gives the alternative proof of the result of Brewbaker.

It is known that the poly-Bernoulli numbers are special values of Arakawa-Kaneko’s
zeta-function. Arakawa and Kaneko [1] introduced a zeta-function:

Ei(s) == ﬁ /Omts‘l% da  (k>1).

We refer to the above function as Arakawa-Kaneko’s zeta-function. Arakawa-Kaneko’s
zeta-function satisfies &;(s) = s((s + 1), and

n

&r(—n) = (-1 (TZL>]Bl(k) = (-n"c

=0

for any non-positive integer n, where ((s) is the Riemann zeta-function. Hence Arakawa-
Kaneko’s zeta-function is a kind of generalization of the Riemann zeta-function. Fur-
thermore, we should mention that Arakawa-Kaneko’s zeta-function is applied to research



ON THE PARITY OF POLY-EULER NUMBERS 273

on multiple zeta values. For example, Kaneko and Ohno [5] showed a duality property
of multiple zeta-star values by using this property.

From the point of view mentioned above, poly-Euler numbers should be defined as
special values of an L-function generalized by using the method of Arakawa and Kaneko.
Moreover it can be reasonably expected that such L-function has nice properties and
applications similar to Arakawa-Kaneko’s zeta-function.

The Euler number FE,, is the generalized Bernoulli number associated with the
Dirichlet character of conductor 4, and the L-function is

(2.2) L(s) := ﬁ /Ooo ts—lrle_t dt

satisfies L(—n) = FE, /2 for any non-negative integer n. The second author gave in
[9] a general method for defining L-functions that have similar properties to Arakawa-
Kaneko’s zeta-function. By using the method, a generalization of L(s) is given by

00 i _ 6_4t
(2.3) Lu(s) = L/O t*l% dit (k> 1).

It is natural to define poly-Euler numbers as special values at non-positive integers of
the above L-function. Therefore, we define poly-Euler numbers as above (1.1).

We should mention that the above generalized L-function is applicable to research
on multiple L values. In fact, the second author [9] treated the generalization of Dirichlet
L-functions for general Dirichlet characters and showed such generalized L-functions can
be written in terms of multiple L-functions.

Remark.  Although L4 (s) does not reduce to L(s) (Li(s) = sL(s+1)), the above
definition (2.3) is optimal as an analogue of Arakawa-Kaneko’s zeta-function. In fact,
we have &;(s) = s(s + 1).

§3. The parity of poly-Euler numbers

In this section, we determine the parity of poly-Euler numbers (n + 1)E,(L_k).

Theorem 3.1.  For any non-negative integer k, (n—l—l)E,(l_k) is even (odd, respectively)
integer, when n is odd (even, respectively).

Proof of Theorem 3.1. We first review an explicit formula:

Lemma 3.2 (Ohno-Sasaki [8]).  For any non-negative integers k and n, we have
k n+1
k n+1
3.1 DESM = (-1 (-1 4]+ 2)n o
D YCI (D S (M TR

m:odd
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where the symbol {’; } is the Stirling number of the second kind defined by the recurrence
relation

(3‘.2> SN AN
e e

for any integers k and .
See [8] for the detailed proof of Lemma 3.2.

Remark.  We easily see that the right-hand side of (3.1) is an integer, since the
Stirling numbers are integers. Furthermore this fact indicates that the denominator of
poly-Euler number Efz_k) is at most n + 1.

We prove Theorem 3.1 by using the above lemma. Note that

n+1
S (” N 1) (4l +2)mm =
m

m=1,
m:odd

(mod 2) n : even,

1
0 (mod2) n:odd

for any non-negative integer [. Hence, when n is odd, we have Theorem 3.1 immediately
from Lemma 3.2.

On the other hand, when n is even, we have

(n+1)ECF = glv{]l’c} = {]g} + {]f} = {kil} =1 (mod 2)

for any non-negative integer k. Here, we have used the recurrence relation (3.2). Thus
the proof of Theorem 3.1 is completed. O

§4. Congruence relations of poly-Euler numbers

In the previous section, we definitely determined the parity of poly-Euler numbers.
In this section, we treat the divisibility of poly-Euler numbers via congruence relations
of them. In particular, we consider the case of

(n+1)E"F  (mod n + 1),

which allows us to evaluate whether ES ™ is an integer. In [8], we treat the case when

n + 1 is an odd prime. Hence we discuss the composite cases here.
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Theorem 4.1.  For any non-negative integer k, we have

(mod 6) if k is even,

(-k) _ )4
6B =
0 (mod 6) ifk is odd.

Proof of Theorem 4.1. From Lemma 3.2, we have

(4.1) 6ES M = (1) Zk:(—nlu{’;} 22: (2],(1 1) (41 + 2)5~%

1=0 j=0
We see that I! =0 (mod 6) for [ > 3 and
2 6 '
Z (2], >(4l +2)°"% =2(41+2)* (mod 6)

iz \H T

4 (mod 6) ifl=0 (mod 3),
=40 (mod6) ifl=1 (mod 3),
2 (mod 6) ifl=2 (mod 3).

Thus (4.1) becomes

6ES =(—1)k4 ({’;} + {S}) (mod 6)

4 (mod 6) it k=0,
=40 (mod 6) if k=1,
(—1)F{%14  (mod 6) if k> 2.

Therefore, we claim

(12) {5}

Using the expression {’;} =21 1 (k> 2), we have

k k—2 ‘ k—2 ‘ k—2 .
{2} :2’“‘1—1:22J:1+223+ Z; 27
J]= J=

=0

(mod 6) if k is even,

1
3 (mod 6) if k is odd.

) ’
jrodd jreven

=1+2[(k—1)/2] +4[(k—2)/2] (mod 6),
which gives (4.2). Thus we have Theorem 4.1.

By the same way as above, we can also show the following theorem:

275
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Theorem 4.2.  For any non-negative integer k, we have

(mod 12) if k is even,

12860 =
H 0 (mod 12) if k is odd.

)

In general, to understand the prime factors of the numerator of E,(l_k is proper.

In [8], we prove a congruence relation
(n+1)EC® =0 (mod p)

holds for any odd prime p, odd positive integer n and non-positive integer k satisfying
k=p—2 (mod p—1). The second assertion of Theorem 4.1 is also given by combining
the above congruence relation with Theorem 3.1.
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Table 1. E) (positive index)
1 2 3 4
0 1 1 1 1
3 7
1 0 1 5 i
1 41 221
2 —1 ~35 bxd 5
7 85
3 0 3 § 36
4 5 51 3493 31079
25 375 5625
521 77071
5 0 =25 90 2700
6 61 33221 8169601 41535229
735 77175 8103375
18313 19160833
7 0 427 70 44100
1288391 70339397 33076559267
8 1385 945 33075 31255875
. 11557561 748381847
9 0 12465 1050 73500
10 50521 252042789 986047910537 ~ 3065162516767009
4235 14674275 50846362875
4213240267 5414464148791
11 0 555731 T 76930 716008300
12 2702765 _ 706698126353 | _ 2983263446051093 530921430493573134689
195195 976950975 132020270006625
624220472627 89775517476597787
13 0 35135945 14014 6312606300
i 66380136099899 631679911607350337 | _ 1910856585406763406371
14 199360981 225225 3381753375 5641891880625




278

YASUO OHNO AND YOSHITAKA SASAKI

Tﬁbk}Q.lﬂfk)(negaﬁveindex)

0 —1 —2 -3
0 1 1 1 1
1 2 6 14 30
2 13 109 493 1837
3 3 3 3
3 10 222 1798 10710
4 121 6841 95161 865081
5 5 5 5
5 182 8502 594554 2670350
6 1093 372709 14331493 280592677
7 7 7 7
7 410 335886 21078134 591278790
8 9841 19200241 1951326961 77624198641
9 9 9 9
9 14'57)62 681757406 11157é42694 124916013054
10 88573 964249309 252966361693 19811958812317
11 11 11 11
11 86230 | 566547774 712300066738 25898630029750
12 797161 47834153641 31933012161961 4834065180508201
13 13 13 13
13 119?742 1680297889306 25466927239262 37348182?27733890
14 7174453 2358521965909 3968998515355093 1148212279510308757
15 15 15 15




