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An extension of Voronin’s functional independence
for a general Dirichlet series

By

Hirofumi NAGOSHI*

Abstract

We give a hybrid joint denseness result for values of an axiomatically defined general
Dirichlet series F'(s) and its derivatives. A typical example of F'(s) is the Lerch zeta-function
L\ a,s) =32 €™ (n+a)~® with « transcendental. Further, from this result we deduce
two independence properties of those functions. One of them is stronger than the functional
independence in the sense of Voronin for those functions.

§1. Introduction

The study of differential independence for Dirichlet series has a long history. At
the International Congress of Mathematicians in 1900, Hilbert stated that the Riemann
zeta-function ((s) and its derivatives are algebraically independent over the rational
functions C(s). His proof is based on the functional equation of ((s) and the similar
independence property of the Gamma-function I'(s) proved by Hélder in 1886.

Much later, Voronin obtained another proof of Hilbert’s result and a stronger result,
from the viewpoint of the value-distribution of ((s). In fact, Voronin proved that for
any o € (%, 1] and any non-negative integer K, the set

{(¢lo+it), V(o +it),...,¢ (o +it)) e CEH |t e R}

is dense in CE+! (see [16]), and from this he deduced the following functional indepen-
dence for ((s) and its derivatives (see [17] and [7, p.254]).
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Theorem A. Let K and J be non-negative integers. Let Gy, ...,Gy: CKTl —
C be continuous functions. If

J
> 5Gi(C(5).¢M(s),.... ¢ (s)) =0
j=0

holds identically for s, then we have G; =0 for all 0 < j < J.

Similar and stronger results for L-functions have been established. See e.g. [18],
[15], [10] and [11]. In the proofs of these results, the fact that the set {logp|p is prime}
is linearly independent over the rationals Q is crucial.

For A € R and 0 < a < 1, the Lerch zeta-function L(\, a, s) is defined by

627rin)\

o
L\ a,s) = Z  ——
n=0 (7’L + Oé) °
This series has an analytic continuation to C (except for a simple pole at s = 1 when A €
7). In the sequel we assume that « is transcendental. Then the numbers {log(n+a)|n =
0,1,...} are linearly independent over @Q. As an analog of Theorem A, Garunkstis and
Laurincikas [8] [5, p.137] obtained the following result for L(\, «, s).

Theorem B.  The function L(\, «,s) and its derivatives are functionally inde-
pendent in the sense of Voronin. That is, we have the following: Let K and J be
non-negative integers. Let Go,...,Gy: CEFL — C be continuous functions. If

J
Z ey (L()\, a,s), L(l)()\, a,s),... ,L(K)()\, «Q, s)) =0
§=0

holds identically for s, then we have G; =0 for all 0 < j < J.

As a related result, we have the next theorem, which is due to Amou and Kat-
surada [1, Theorem 1, Corollay 2]. Let D, denote the set of Dirichlet polynomials
(>N awn® | N € N,a, € C}.

Theorem C.  The function L(\, «,s) and its derivatives are algebraically inde-
pendent over Dy.

In this paper we show two independence results (Theorems 1 and 2) for a general
Dirichlet series F'(s) mentioned below and its derivatives, from the viewpoint of their
value-distribution (Theorem 3). A typical example of F'(s) is the Lerch zeta-function
L(\, a, s), where « is transcendental as above, and our Theorems 1 and 2 with F(s) =
L(\, a, s) are stronger than Theorems B and C, respectively.
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We now give a general Dirichlet series which is treated in the present paper. Let
o] an
F(S) - Z e)\ns
n=1
be a general Dirichlet series satisfying the following conditions (I), (II) and (III):
D o<A <A<+, limy o Ay =00, and a,, € Cforalln=1,2,....

(IT) There exists a real number oy > 0 such that F(s) converges absolutely in the
half-plane Re s > 0y and such that

Z [on| —s 00 as X — oo.

e)\noo
n<X

Further, the series

00 2
2 : |an|
An S
e n
n=1
converges for some real number s = oy with og < 01 < 209.

(ITIT) The numbers {\,, |[n =1,2,...} are linearly independent over the rationals Q.

To state our results, we introduce the following. For a real number ¢, let D, . denote
the set of all general Dirichlet series D(s) such that each D(s) converges absolutely at
some complex number s = sy with Re sy < ¢, where sop may depend on D(s). If ¢; > ¢
then

Ds,cl 2 DS,C2~

For any real number ¢ we have
Ds,c D Ds,—oo D) Ds;

where D; _o, denotes the set of general Dirichlet polynomials {ij:l ane | N €
N,a, € C, \,, € R} and D; is as before.

The next theorem shows that the Dirichlet series F(s) and its derivatives are func-
tionally independent in the sense of Voronin and further that they have a stronger
independence property. Actually, in this theorem, the case Do(s) =1,...,Dj(s) = 11is
the functional independence in the sense of Voronin for those functions.

Theorem 1.  Let F(s) be as above. Let K and J be non-negative integers. Let
Go,...,Gy: CEFTY — C be continuous functions, and Do(s),...,Dj(s) € Ds.y- If

J
Z sD;j(s) Gj(F(s), FV(s),...,FE)(s)) =0
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holds identically for Res > og, then we have
G;j=0 or Dj(s)=0
forall0 < j < J.

/
Let Ny denote the set of non-negative integers. In this paper, the symbol Z will
denote a finite sum.

Theorem 2.  Let F(s) be as above. Let K be a non-negative integer. Let

/
(1.1) P(s,Xo,...,XK) = Z D(s;a,ap,...,ax)s" X% - X3,

a,ag,...,ax €ENg

be a polynomial in (K +2)-variables s, Xy, ..., Xk whose coefficients D(s;a,ag, .. .,a0x)
are general Dirichlet series in Dy o,. If

P(s,F(s),....,F5)(s)) =0
holds identically for Res > og, then P is the zero polynomial.

Theorems 1 and 2 are obtained from the next theorem, which is a ”hybrid” joint
denseness result on values of F'(s) and its derivatives. For related hybrid type results,
see e.g. [6] and [13]. As usual, for z € R let x| := minyez |z — n|. Let meas denote
the Lebesgue measure on R.

Theorem 3. Let F(s) be as above, and let K be a non-negative integer. Let
2 ECO<E<K), tgeR,e>0and > 0. Let ay,...,an be real numbers linearly
independent over Q, and 0y,...,0n € R. Then there exists a real number of, > o¢ such
that, for every o with oy < o < o[, the set of real numbers t satisfying

|F(k)(a + itg +it) — zk| <e forany0< k<K
and
lejt =05 <0 forany 1 <j <N
has a positive lower density, that is,

1
lijgninf fmeas({t € 10,7 ‘ ‘F(k)(a +itg+it) — 2| <e forany 0 <k < K

—00
and |jat — 65| <0 foranyl <j< N}) > 0.

§2. Preliminary results

Let T denote the unit circle {s € C| |s| = 1}.
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Lemma 4.  As in condition (III), let {\,|n =1,2,...} be real numbers linearly
independent over Q. As in Theorem 38, let aq,...,an be real numbers linearly indepen-
dent over Q, and 01, ...,0n € R. Then there exist a finite set B = B(ay,...,any) CN
and real numbers 0} (n € B) such that for any finite set A C N\ B, any real numbers
¢On (n € A) and any 6 > 0, the set of real numbers t satisfying the inequalities

max |ja;t —6;] <9, maXH - —t— g
1<j<N

<0 and maXH — —t—an
neA

has a positive lower density.

Proof. Lemma 2.6 of [12] gives this lemma, since the linear independence of
{A|n =1,2,...} over Q implies the linear independence of {— " zln =12,...}
over Q. O

Lemma 5. Let F(s) = > .0 ane —AnS be a general Dirichlet series satisfying
conditions (1) and (II). Let K be any non-negative integer, and tg € R. For each n € N,
let F,, be the element of CE*Y given by

F, ::( @ (Aa)an (“Aa)an (—An)Kan)

eAn(0otito) ’ pAn(oo+ite) ’ pAn(ootito) " "7 pAn(0o+ito)

Let y be any positive real number. Then the set

{ Z cnFy,

y<n<v

VZy,an']I‘foreveryneNwithygngu}

is dense in CE+1,

Proof. Lemma 4 of [9] gives this lemma, since if ¢ € T then ce=*»%0 ¢ T. O

Lemma 6. Let F(s) = > .2 anpe —Ans be a general Dirichlet series satisfying
conditions (I) and (II). Let K be any non-negative integer, and ty € R. Then there
exist a real number oo with 0 < o9 < o¢ and a sequence {e,, € T|n =1,2,...} such
that for every 0 < k < K the series

e’}
Z sn(—)\n)kan
€>\n(0'2-|—it0)
n=1

converges.

Proof. This is obtained from [9, Lemma 5]. O

From Lemmas 5 and 6 we obtain the next proposition.
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Proposition 7.  Let F(s) =Y o2, aye *"* be a general Dirichlet series satisfy-
ing conditions (I) and (II). Let B be a finite subset of N, and 0}, € R forn € B. Let K
be a non-negative integer and to € R. Let z;, € C (0 < k < K) and € > 0 be arbitrary.
Then there exist a sequence {b, € T |n € N\ B}, a large real number Xo > 0 and a
real number ol > o such that if o satisfies o9 < o < o) then for all X > Xy and
0 <k <K we have

Z bn(—)\n)kan _ Z €2ﬂ19”(—)\n)kan
e}\n(o'—l-ito) e)\n(o'—l-ito)
neN\B,n<X neB,n<X

2k — <eg

Proof. Let og and {e, € T|n=1,2,...} be asin Lemma 6. Then by a well-known
property of Dirichlet series (see [4, p. 28, Corollary 1.3]), the series

= en(=Mn)kay,

e)\n (S+it0)

converges uniformly on compacta (in particular, on the segment [og,00 + 1]) in the
half-plane Re s > o5. Thus we can take a large number y > 0 such that

(2.1) y > sup n
neB

and such that

(2.2) sup
oo<o<oo+1

Z 6>\n(0'+it0) <

n>yi

€
4

for every y3; >y and 0 < k < K.
By Lemma 5, there exist a real number v > y and numbers {c, € T |y < n < v}
such that

(2.3)
(—=\)*ay, 200 (=) kay en(=Xn)*an
(Zk - Z 6)\" (O‘O -|—it0) - Z €>\n (O‘O -|—it0) - Z €>\n (00+it0)

neN\B,n<y neEB,n<y y<n<v

<

5
4

for every 0 < k < K.
For each n € N\ B, we put

1 ifl<n<y,
(2.4) b =14 ¢, ify<n<uv,

e, ifn>wv.
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By continuity, there exists a real number o¢ < o) < gg + 1 such that if o satisfies
oo < o < g, then

b ( 271'10* -\ )kan
(25) ‘( Z 6)‘ (cro—i-zto) + Z e)\ (Uo-Hto)

neN\B,n<v neB,n<y

b ( 27r7,9 )kan
- ( Z ern (O‘—|—lt0) + Z eAn (a—l—zto) <

neN\B,n<v neB,n<y

S

for every 0 < k < K.

Let X( := v and let o be a real number with op < 0 < ¢{. Let X be any real
number greater than Xy. By the triangle inequality, (2.5), (2.3), (2.1) and (2.4), we
have

bn(_)\n)kan e2mify, (_)\n)kan
(2.6) Pk Z An(otito) Z on (o Fito)
neN\ B,n<v neB,n<y
b (—An)Fan 2™ (—\)ra,| e e
< Bk Z eXn(ootito) Z eAn(ootito) + 4 < 2
neN\B,n<v neBn<y
By (2.2) we have
en(—An)fan| en(—n)Fan en(—n)Fan
(2'7) Z e)\n(o'—l-ito) o Z €>\n(0'-|—it0) B Z €>\n(0'-|—it0)
r<n<X n>v n>X
en(—Mn)kay, en(—Mn)kay, £
< Z exn(o+ito) + Z exn(o+ito) 9
n>v n>X
Thus, from (2.1), (2.6), (2.4) and (2.7) we conclude
bn(_)\n)kan 6271'1'0; (_)\n)kan
“k Z Anlotite) Z oAn (o tito)
neEN\B,n<X neBn<X
b(—=An)*an e2™ 00 (= An)Fan bu(—=An)*an,
=|*k Z An(otite) Z Anlotite) Z oAn (0 +ito)
neN\B,n<v n€EBn<y v<n<X
bu(—Xn)*ay, e2™ 00 (= \p)*an bu(—Xn)*ay,
< |7k — Z oAn(otito) Z oAn (oFito) + Z oA (o Fito)
neN\ B,n<v neEB,n<y v<n<X
< e.
This completes the proof. O

8§3. Proof of Theorem 3

Let B and 6} (n € B) be as in Lemma 4. According to Proposition 7, there exist a
sequence {b, € T |n € N\ B}, a large real number Xy > 0 and a real number o, > og
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such that if o satisfies 09 < 0 < o), then for all X > X, and 0 < k < K we have

b (—M)*ay, 62”i9;(—)\n)kan
Zk_( Z An(otito) T Z (ot ito) <

neN\B,n<X neB,n<X

(3.1)

wl ™

In the following, we fix a number ¢ with oy < ¢ < o(,. By condition (II), the
series F(k)(s) converges absolutely in the half-plane Res > o¢ for every 0 < k < K.
Therefore, if X is a large positive real number satisfying

for all A Jan] _ £
Ap > 1foralln>X; and Z e <§,
n>Xq
then, for all 0 < k < K, X > X; and t € R, we have
3.2 F® (o + ity + it G AT _(FAn)tan
(3.2) (o + ity +it) — Z oAn (o titotit) | = Z oA (o+itotit)
n<X n>X
A lan] Ay lan] Anlan| e
S Z e>\n0' S Z e>\n0' S Z e>\n0' < §'
n>X n>Xq n>X1q

We fix a large number X5 satisfying
Xo > max{Xy, X1} and Xy>n forallne B.

For each b, € T in (3.1), we write b,, = €2™%» with 0 < ¢,, < 1. Then, by continuity,
there exists a small number §; with 0 < §; < § such that if ¢ € R satisfies

(3.3) H—g—”t—% <6, foranyne N\ B with n < X,
N
and
An .
(3.4) H — 2—t —00ll <& for any n € B,
T

then for any 0 < k < K we have

b (—M)*ay, 62”i9;(—)\n)kan (—\n)Fa,
‘( Z €>\n(0'-|—it0) + Z €>\n(0+it0) o Z e}\n(G—Fito—Fit)

neEN\B,n<X, neB n<Xs

<8
3

This, (3.1) and (3.2) imply that if ¢ € R satisfies (3.3) and (3.4), then for any 0 < k < K
we have

(3.5) ‘F(k)(a +ito + it) — zk’

k k

_ | pte) ito + it) — ()t () an

= ’F (o + ity +it) Z oAn (0 titotit) + Z eAn (o +ito+it)
n<Xs n<Xo
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b (—\p, kan 627ri0; —\n kan
(3 b s eion

€>\n(0'+it0) 6)\'” (O’-i—ito)
neEN\B,n<Xs neB
N Z bn(_)\n)kan N Z e27ri9; (_)‘n)kan .
oAn(otito) oAn (o tito) k
neEN\B,n<Xs neB

<5+s+s_€
3 3 3 7

Lemma 4 gives

1 An
li%ninf Tmeas({t € 0,7 ’ ” - 2—t — ¢n|| < 01 for any n € N\ B with n < X,
— 00 Y3
H—ﬁt—e;; <0, foranyn e B
21

and ||a;t — 0| <61 forany 1 <j < N}> > 0.
Using this and (3.5) and recalling 6; < 0, we conclude

1
lim inf fmeas({t € [0,T] ’ ‘F(k)(a + itg +it) — zk‘ <e forany 0 <k <K

T—o00

and ||a;t — 0| <6 forany 1 <j SN}) > 0.

This completes the proof of Theorem 3.

8§4. Proof of Theorem 1

We can prove Theorem 1 by using an argument in [10]. For the sake of completeness
of the present paper, we will give a detailed proof. Let F(s), K, J,G;,D;(s) be as in
Theorem 1. Assume that for some 0 < j < J we have G; # 0 and Dj;(s) # 0. In order
to obtain Theorem 1, it suffices to show that there exists a complex number s, with
Re s, > og such that

J

(4.1) > siDj(s.) Gi(F(s.), FV(s4) ..., FF)(s,)) #0.
§=0
Let Jy := max{0 < j < J|G; # 0 and D;(s) # 0}. By the definition of D; ,, the
series D j,(s) is holomorphic for Res > o7 with some real number o; < 0g, and we
have Dj,(s) # 0. Hence, by a fundamental property of a holomorphic function (see [14,
Theorem 10.18]), we have

(4.2) co = |DJO (o0 + ito)| #0

for some real number to. We write

DJO(S) = Z bm

eVms
m=1
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and set

E = ‘o
" 100°

Since by the definition of Dy ., the series D, (s) converges absolutely at s = o, we
have a large positive integer M such that

bin
(4.3) > e'ymjo <e

m>M

By definition, there exists a small number §g = do(e, {bm }, {vm}, M) > 0 such that
if t € R satisfies

U, )
(4.4) H — 2—t” < dp for every integer 1 <m < M
T

then
b bin
Z eVm (ootito+it) Z eVm (o+ito) <é&
m<M m<M

Hence it follows from the triangle inequality, (4.2) and (4.3) that, for any ¢ € R satisfying
(4.4), we have

(4.5) Dy (o0 +ito +it) = | D oom(ootitori) T > e (o0 tito+it)
m<M m>M
b bm
Z ;\4 evm(00+it0+it) B Z]w eVm(UO‘i‘itO"‘it)
m< m>
b bm
= ;\/leum(ao—i—ito) &= ZMeVm(Uo—Hto—Ht)
m< m>
> |D ' m S —
= JO(UO‘l‘ZtO)_ Z evm (Totito) —E&- Z eVm (oo+ito+it)
m>M m>M
> Do i) — | 3 | e 3 Al
e Jo go v 0) eum(00+it0) € evymoo
m>M m>M
. |brm| b |
> Dy (o0 ito)] = Y e - D

C
260—38>50.
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Let {a1,...,an} be a basis of the vector space over Q generated by the numbers vy,
(1 <m < M). Let Ny be an integer such that, for each 1 <m < M,

(4.6) Z Mo Ny

where n,, ; € Z. Then, since we have the inequalities
161+ 02| < [|02]] + (621 (01,02 € R)
and
[nf] < nfll0]l (0 €R,neZ)

(see e.g. [2, p.ix]), there exists a small number §; = (o, NV, {nm,;}) > 0 such that if
t satisfies

(4.7) H2 N tH < 0y for every integer 1 < j < N
mNo

then ¢ satisfies (4.4). This fact and (4.5) imply that, for any ¢ € R satisfying (4.7), we

have

C
(4.8) |DJO (0'0 + ity + Zt)| > EO

By recalling that D, (s) converges absolutely at s = gy and taking a large number
Mo with > < g [bm] e < £, we find that, for any o > og and 7 € R,

. . . b,
|D g, (00 +iT) — Dy, (0 +it)| < |Dy, (00 +i1) — Z

VUm (0o+iT
Wi eVm (oo+iT)
Y Do+ Y oy D
evm (o+1iT) Jo (U vr evm (oo+1iT) evm (o+iT)
m< My m<My m<Mo
Z evm(oo+iT) Z eVm (o+iT) + Z eVm (oo+iT) 1= eVm(o—00)
m>M0 m>M0 mSMO
b | b | || 1
< Z eVmoo + Z evmo + Z evmoo 1= evm(o0—00)
m>M0 m>M0 mSMo
|6 | 1
< _+ Z evm el/m(O'—O'()) ’

m<M0

Thus there exists a real number of) = o{/ (g, Mo, {bm}, {vm}) > 00 such that

(4.9) |Dj, (00 +iT) — Dy (0 +iT)| < &
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uniformly for op < o <o and 7 € R.
Since G, = Gj,(20,...,2K) is a continuous function and G ;, # 0, there exist a
constant ¢; > 0 and a bounded open set U € CE+1 such that

(4.10) |G 1, (20,---,2K)|] > 1 for all (z,...,2Kx) € U.

By Theorem 3, there exist a real number o and a sequence of real numbers {¢,, |n =
1,2,...} satisfying

(4.11) oo < o < min{o{,00 + 1},
(4.12) lim t, = oo,
n—oo
(4.13) wy, = (F(o + ity +itn), ..., FF) (o +itg +it,)) €U for any n,
and
(4.14) H & th <6, forany 1 <j <N and n.
27TNO

We write
Sy 1= 0 + ity + it,,.
Using (4.14) and (4.8), we have
| D, (00 + itg + ity)| > %0 for any n,

which, together with (4.9) and (4.11), gives

(4.15) |Djy(sn)| > |Dy, (00 + ito +it,)| — e > %0 —e> %O for any n.
Combining (4.15), (4.13) and (4.10), we have
(4.16) Dy (s0) Gy (w,)] = =% for any .

Now, in the case Jy > 1, we shall deduce (4.1). If D(s) = Z;’le cme P € Ds oy,
then we have

. = Cm - |Cm| S |Cm|
(4.17) [D(o +im)| < ) ‘W =2 e = eHm o
m=1 m=1 m=1

uniformly for ¢ > o¢ and 7 € R. Hence there exists a constant Cy > 0 such that

(4.18) |D;(sn)| < Co for any 0 < j < J and n.
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Since all G; are bounded on the bounded open set U, by (4.13) there exists a constant
C1 > 0 such that

(4.19) |Gj(wy)| < Cy for any 0 < j < J and n.
By (4.11) and (4.12), we have
lim |s,| = oc.

Consequently, since Jo > 1 and % > 0, it follows from (4.16), (4.18), and (4.19) that

J
> s1D;(s0) G (wn)
j=0

SiODJo (5n) G, (w,) + SZO_IDJO—I(STL) GJo—l('wn) + -+ Do(sn) Go(ws,)

> (522D gy (sn) Gy (wn)| — [0 Dyy—1(50) Gg—1(wy)| — -+ — ’DO(Sn) Go(ws,)
7. [ coc1 CoCh CoCh
Z |8n| 0 - - - - ... _JO
4 |5n N
— X as n — O0.

Thus (4.1) holds in the present case.

In the case Jy = 0, (4.1) is obtained from (4.16), since ¢t > 0. We have completed

the proof of Theorem 1.

85. Proof of Theorem 2

We follow an argument in [10] again. For the sake of completeness of the present
paper, we will give a detailed proof. Let F(s) and K be as in Theorem 2. Let
P(s,Xo,...,Xk) be as in (1.1). Assume that P(s, Xo,...,Xk) is not the zero poly-
nomial. In order to obtain Theorem 2, it suffices to show that there exists a complex
number s, with Re s, > og such that

(5.1) P(s4, F(s4),...,FF)(s,)) #£0.
We order the terms of P(s, Xy,..., Xk) lexicographically with
S>X0>"'>XK,

and let (d,do,- - ,dk) denote the multidegree of P(s, Xy,...,Xk) (see e.g. [3]). The
/
symbol Z will denote a finite sum.
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First we shall consider
Case 1: d # 0 and d # 0 for some 0 < k < K.
Let £ :=min{0 < k < K | dy, # 0}. Then

(5.2) P(s,Xo,..., XKg) = D(5;d,0,...,0,ds,...,dg)s? X% ... XK
/
+ Y D(53d,0,...,0,dp, ... d—1,ax)s X I - XE XK
ar €Ng,
ax <di

/

Z D(s;d,O,...,O,a,i,...,aK)sta“~--X?<K

K

Ay, 0 ENg,
A <djg
/

+ Z D(s;a,ap,...,ax)s* X% - X3,

a,aq,...,ax €ENg,
a<d

where
(5.3) Dy(s) := D(s;d,0,...,0,dy,...,dg) Z0.
As in (4.2), by (5.3) we have

¢ :=|Dg(og +ity)| # 0

for some real number t5. We write

and set

Then, let M,{ay,...,an} and Ny be as in the proof of Theorem 1 (see (4.3) and (4.6)).
As in (4.8), there exists a small number §; > 0 such that if ¢ satisfies

H ) tH < for every integer 1 < j < N
27TNO
then
. . C
(5.4) [Doloo + ito +it)] > .

As in (4.9), there exists a real number o] > o( such that

(5.5) |Do(0¢ +i1) — Do(0 +iT)| < €
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uniformly for op < o <o and 7 € R.
For a large positive integer n, we set

(5.6) 20m =M, Z1pi=logn, zo,:=loglogn, ..., zg,:=log---logn.

Let ng be a large positive integer with zx ,, > 10. According to Theorem 3, for each
integer n > ng there exist real numbers o, and ¢, such that

(5.7) oo < 0, < min{c(,00 + 1},
(5.8) tn >e",
1
(5.9) ‘F(k)(an ity +ity) = 2| < 105 forany 0< k< K,
and
a.
1 H J_t. f 1<4j<N.
(5.10) 27TN0t <9y forany 1 <5<
We write

Sp 1= Oy + 1tg + ity,.
Since (5.10) and (5.4) give
| Do (00 + ito + ity)| > g for any n > ny,
it follows from (5.5) and (5.7) that

(5.11) |Do(sn)| > |Do(og + ity + ity)| —e > g —&> 2 for any n > ny.

By (4.17), there exists a positive constant Cy such that

sup |D(sp;a,a9,...,ar)] < Cp.
a,ag,...,ar in (1.1)
n>ng

This, (5.2) and (5.11) imply that, for any n > ny,
’P(sn, F(sn),... ,F(K)(sn))‘

dy d
2|D(sn;d,o,...,o,dm,...,dK)||sn|d‘F<“>(sn)] ---’F(K)(sn)’ "

/

ds
-y |D(sn;d,0,...,O,d,i,...,dK_l,aK)||sn|d’F(’i)(sn)’

aK eNOa
ag <dg
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aK

F(K) (Sn)

X

[P [

/ Ay
- Y |D(sn;d,0,...,o,am,...,aK)||Sn|d‘p<m>(sn)‘ ...’Fm(sn)

K

IDlsaia a0,z sul* ()| - | PO s,

a,aq,...,ax €ENg,
a<d

dy d
Zi |sn|d‘F("“)(sn)’ -"’F(K)(sn)’ K
/ dy dr—1 aK
_ Z Co|sn|d’F(’i)(sn)‘ ~~~‘F(K_1)(Sn)‘ FU)(s,)
GKEN07
ax <di

/ QA a
_ Z C’O|Sn|d‘F(”)(sn)‘ -"’F(K)(sn) ®
[0 aKENo,
ar<dy
aK

/
-3 Colsal (sl [P (s)

a,aq,...,ax €ENg,
a<d

d d
= ISnld’F(”)(sn)‘ ~~~’F(K)(sn)‘ "

c r o JsalTEO) ()| [P (5,)| 5 [ FUO (5,
x5 n

ax €Ng, ’ |8n|d |F(&)(Sn)|d’i T |F(K)(Sn)|dK
ax <dg

e Z

Qp,...,ak €Ng,

! |3n|a |F(3n)|a0 T |F(K)(3n)|aK
- Z Co—3 d dr |
EN |F(")(sn)| ”"'|F(K)(sn)| K

/ |Sn|d|F(K)(Sn)|aN"'|F(K)(8n)|aK
Co d d d
|8n| |F(R)(Sn)| n,..|F(K)(Sn)| K

a,aq,..., ak €Np,
a<d

For every m € N we have

(log z)™
T

—0 as T — o0.
This fact, (5.6), (5.7), (5.8) and (5.9) imply that the numbers

(5| [ ) (5,) | - |[PED () |7 | FUO (5,
15| |F(ﬁ)(3n)|d” . |F(K)(3n)|dK

(CLK c No,aK < dK),

aK
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|Sn|d |F('€)(8n)|aﬁ . |F(K)(sn)|‘”<

[0 [ F) (5,)| ™ - [P (5,,)]
5| [P (50)|" -+ [FUD (5]
(50 4 [F ) (5,)] ™ - - - [F ) (5,,)] ™

(g, ... ax € No,a, < dy),

ey

(a,ag,...,ax € Nog,a < d)

go to 0 as n — 00, and that

— OO as n — oQ.

dy d
15| ‘F(’i)(sn)‘ ‘F(K)(Sn)‘ K

Therefore, we have

‘P(sn,F(sn),...,F(K)(sn))‘ — 0 as n — oo.

Thus (5.1) holds in Case 1.
Similarly we can verify (5.1) in the following remaining cases:
Case2: d#0and dp =0forall 0 < k< K,
Case 3: d =0 and dj # 0 for some 0 < k < K,
Case4: d=0and dp, =0forall 0 <k < K.
We have completed the proof of Theorem 2.

Acknowledgments. The author would like to express his sincere gratitude to the orga-

nizers of this conference.
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