An extension of Voronin's functional independence for a general Dirichlet series

Ву

Hirofumi Nagoshi*

Abstract

We give a hybrid joint denseness result for values of an axiomatically defined general Dirichlet series F(s) and its derivatives. A typical example of F(s) is the Lerch zeta-function $L(\lambda,\alpha,s)=\sum_{n=0}^{\infty}e^{2\pi in\lambda}(n+\alpha)^{-s}$ with α transcendental. Further, from this result we deduce two independence properties of those functions. One of them is stronger than the functional independence in the sense of Voronin for those functions.

§ 1. Introduction

The study of differential independence for Dirichlet series has a long history. At the International Congress of Mathematicians in 1900, Hilbert stated that the Riemann zeta-function $\zeta(s)$ and its derivatives are algebraically independent over the rational functions $\mathbb{C}(s)$. His proof is based on the functional equation of $\zeta(s)$ and the similar independence property of the Gamma-function $\Gamma(s)$ proved by Hölder in 1886.

Much later, Voronin obtained another proof of Hilbert's result and a stronger result, from the viewpoint of the value-distribution of $\zeta(s)$. In fact, Voronin proved that for any $\sigma \in (\frac{1}{2}, 1]$ and any non-negative integer K, the set

$$\{(\zeta(\sigma+it),\zeta^{(1)}(\sigma+it),\ldots,\zeta^{(K)}(\sigma+it))\in\mathbb{C}^{K+1}\mid t\in\mathbb{R}\}$$

is dense in \mathbb{C}^{K+1} (see [16]), and from this he deduced the following functional independence for $\zeta(s)$ and its derivatives (see [17] and [7, p. 254]).

Received May 31, 2011. Accepted August 31, 2011.

²⁰⁰⁰ Mathematics Subject Classification(s): 11M41, 11M35.

Key Words: value-distribution, independence, general Dirichlet series, Lerch zeta-function.

^{*}Department of Fundamental Studies, Gunma University, Tenjin-cho 1-5-1, Kiryu, 376-8515, Japan. e-mail: nagoshi@gunma-u.ac.jp

Theorem A. Let K and J be non-negative integers. Let $G_0, \ldots, G_J : \mathbb{C}^{K+1} \to \mathbb{C}$ be continuous functions. If

$$\sum_{j=0}^{J} s^{j} G_{j}(\zeta(s), \zeta^{(1)}(s), \dots, \zeta^{(K)}(s)) = 0$$

holds identically for s, then we have $G_j \equiv 0$ for all $0 \le j \le J$.

Similar and stronger results for L-functions have been established. See e.g. [18], [15], [10] and [11]. In the proofs of these results, the fact that the set $\{\log p \mid p \text{ is prime}\}$ is linearly independent over the rationals \mathbb{Q} is crucial.

For $\lambda \in \mathbb{R}$ and $0 < \alpha \le 1$, the Lerch zeta-function $L(\lambda, \alpha, s)$ is defined by

$$L(\lambda, \alpha, s) = \sum_{n=0}^{\infty} \frac{e^{2\pi i n \lambda}}{(n+\alpha)^s}.$$

This series has an analytic continuation to \mathbb{C} (except for a simple pole at s=1 when $\lambda \in \mathbb{Z}$). In the sequel we assume that α is transcendental. Then the numbers $\{\log(n+\alpha)|n=0,1,\ldots\}$ are linearly independent over \mathbb{Q} . As an analog of Theorem A, Garunkštis and Laurinčikas [8] [5, p. 137] obtained the following result for $L(\lambda, \alpha, s)$.

Theorem B. The function $L(\lambda, \alpha, s)$ and its derivatives are functionally independent in the sense of Voronin. That is, we have the following: Let K and J be non-negative integers. Let $G_0, \ldots, G_J : \mathbb{C}^{K+1} \to \mathbb{C}$ be continuous functions. If

$$\sum_{j=0}^{J} s^{j} G_{j} \left(L(\lambda, \alpha, s), L^{(1)}(\lambda, \alpha, s), \dots, L^{(K)}(\lambda, \alpha, s) \right) = 0$$

holds identically for s, then we have $G_j \equiv 0$ for all $0 \le j \le J$.

As a related result, we have the next theorem, which is due to Amou and Katsurada [1, Theorem 1, Corollay 2]. Let \mathcal{D}_s denote the set of Dirichlet polynomials $\{\sum_{n=1}^N a_n n^{-s} \mid N \in \mathbb{N}, a_n \in \mathbb{C}\}.$

Theorem C. The function $L(\lambda, \alpha, s)$ and its derivatives are algebraically independent over \mathcal{D}_s .

In this paper we show two independence results (Theorems 1 and 2) for a general Dirichlet series F(s) mentioned below and its derivatives, from the viewpoint of their value-distribution (Theorem 3). A typical example of F(s) is the Lerch zeta-function $L(\lambda, \alpha, s)$, where α is transcendental as above, and our Theorems 1 and 2 with $F(s) = L(\lambda, \alpha, s)$ are stronger than Theorems B and C, respectively.

We now give a general Dirichlet series which is treated in the present paper. Let

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{e^{\lambda_n s}}$$

be a general Dirichlet series satisfying the following conditions (I), (II) and (III):

- (I) $0 \le \lambda_1 < \lambda_2 < \cdots$, $\lim_{n \to \infty} \lambda_n = \infty$, and $a_n \in \mathbb{C}$ for all $n = 1, 2, \ldots$
- (II) There exists a real number $\sigma_0 > 0$ such that F(s) converges absolutely in the half-plane $\text{Re } s > \sigma_0$ and such that

$$\sum_{n \le X} \frac{|a_n|}{e^{\lambda_n \sigma_0}} \longrightarrow \infty \quad \text{as } X \to \infty.$$

Further, the series

$$\sum_{n=1}^{\infty} \frac{|a_n|^2}{e^{\lambda_n s}}$$

converges for some real number $s = \sigma_1$ with $\sigma_0 < \sigma_1 < 2\sigma_0$.

(III) The numbers $\{\lambda_n \mid n=1,2,\dots\}$ are linearly independent over the rationals \mathbb{Q} .

To state our results, we introduce the following. For a real number c, let $\mathcal{D}_{s,c}$ denote the set of all general Dirichlet series D(s) such that each D(s) converges absolutely at some complex number $s = s_0$ with Re $s_0 < c$, where s_0 may depend on D(s). If $c_1 > c_2$ then

$$\mathcal{D}_{s,c_1}\supset\mathcal{D}_{s,c_2}.$$

For any real number c we have

$$\mathcal{D}_{s,c}\supset\mathcal{D}_{s,-\infty}\supset\mathcal{D}_s,$$

where $\mathcal{D}_{s,-\infty}$ denotes the set of general Dirichlet polynomials $\{\sum_{n=1}^{N} a_n e^{-\lambda_n s} \mid N \in \mathbb{N}, a_n \in \mathbb{C}, \lambda_n \in \mathbb{R}\}$ and \mathcal{D}_s is as before.

The next theorem shows that the Dirichlet series F(s) and its derivatives are functionally independent in the sense of Voronin and further that they have a stronger independence property. Actually, in this theorem, the case $D_0(s) \equiv 1, \ldots, D_J(s) \equiv 1$ is the functional independence in the sense of Voronin for those functions.

Theorem 1. Let F(s) be as above. Let K and J be non-negative integers. Let $G_0, \ldots, G_J : \mathbb{C}^{K+1} \to \mathbb{C}$ be continuous functions, and $D_0(s), \ldots, D_J(s) \in \mathcal{D}_{s,\sigma_0}$. If

$$\sum_{j=0}^{J} s^{j} D_{j}(s) G_{j}(F(s), F^{(1)}(s), \dots, F^{(K)}(s)) = 0$$

holds identically for Re $s > \sigma_0$, then we have

$$G_i \equiv 0$$
 or $D_i(s) \equiv 0$

for all $0 \le j \le J$.

Let \mathbb{N}_0 denote the set of non-negative integers. In this paper, the symbol \sum' will denote a finite sum.

Theorem 2. Let F(s) be as above. Let K be a non-negative integer. Let

$$(1.1) P(s, X_0, \dots, X_K) = \sum_{a, a_0, \dots, a_K \in \mathbb{N}_0}' D(s; a, a_0, \dots, a_K) s^a X_0^{a_0} \cdots X_K^{a_K},$$

be a polynomial in (K+2)-variables s, X_0, \ldots, X_K whose coefficients $D(s; a, a_0, \ldots, a_K)$ are general Dirichlet series in \mathcal{D}_{s,σ_0} . If

$$P(s, F(s), \dots, F^{(K)}(s)) = 0$$

holds identically for Re $s > \sigma_0$, then P is the zero polynomial.

Theorems 1 and 2 are obtained from the next theorem, which is a "hybrid" joint denseness result on values of F(s) and its derivatives. For related hybrid type results, see e.g. [6] and [13]. As usual, for $x \in \mathbb{R}$ let $||x|| := \min_{n \in \mathbb{Z}} |x - n|$. Let meas denote the Lebesgue measure on \mathbb{R} .

Theorem 3. Let F(s) be as above, and let K be a non-negative integer. Let $z_k \in \mathbb{C}$ $(0 \le k \le K)$, $t_0 \in \mathbb{R}$, $\varepsilon > 0$ and $\delta > 0$. Let $\alpha_1, \ldots, \alpha_N$ be real numbers linearly independent over \mathbb{Q} , and $\theta_1, \ldots, \theta_N \in \mathbb{R}$. Then there exists a real number $\sigma'_0 > \sigma_0$ such that, for every σ with $\sigma_0 < \sigma \le \sigma'_0$, the set of real numbers t satisfying

$$\left| F^{(k)}(\sigma + it_0 + it) - z_k \right| < \varepsilon \quad \text{for any } 0 \le k \le K$$

and

$$\|\alpha_j t - \theta_j\| < \delta \quad \text{for any } 1 \le j \le N$$

has a positive lower density, that is,

$$\lim_{T \to \infty} \inf \frac{1}{T} meas \Big(\Big\{ t \in [0, T] \ \Big| \ \Big| F^{(k)}(\sigma + it_0 + it) - z_k \Big| < \varepsilon \text{ for any } 0 \le k \le K \\
and \|\alpha_j t - \theta_j\| < \delta \text{ for any } 1 \le j \le N \Big\} \Big) > 0.$$

§ 2. Preliminary results

Let \mathbb{T} denote the unit circle $\{s \in \mathbb{C} \mid |s| = 1\}$.

Lemma 4. As in condition (III), let $\{\lambda_n \mid n=1,2,\ldots\}$ be real numbers linearly independent over \mathbb{Q} . As in Theorem 3, let α_1,\ldots,α_N be real numbers linearly independent over \mathbb{Q} , and $\theta_1,\ldots,\theta_N\in\mathbb{R}$. Then there exist a finite set $B=B(\alpha_1,\ldots,\alpha_N)\subset\mathbb{N}$ and real numbers θ_n^* $(n\in B)$ such that for any finite set $A\subset\mathbb{N}\setminus B$, any real numbers ϕ_n $(n\in A)$ and any $\delta>0$, the set of real numbers t satisfying the inequalities

$$\max_{1 \le j \le N} \|\alpha_j t - \theta_j\| < \delta, \quad \max_{n \in B} \left\| -\frac{\lambda_n}{2\pi} t - \theta_n^* \right\| < \delta \quad and \quad \max_{n \in A} \left\| -\frac{\lambda_n}{2\pi} t - \phi_n \right\| < \delta$$

has a positive lower density.

Proof. Lemma 2.6 of [12] gives this lemma, since the linear independence of $\{\lambda_n \mid n=1,2,\ldots\}$ over \mathbb{Q} implies the linear independence of $\{-\frac{\lambda_n}{2\pi} \mid n=1,2,\ldots\}$ over \mathbb{Q} .

Lemma 5. Let $F(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$ be a general Dirichlet series satisfying conditions (I) and (II). Let K be any non-negative integer, and $t_0 \in \mathbb{R}$. For each $n \in \mathbb{N}$, let \mathbf{F}_n be the element of \mathbb{C}^{K+1} given by

$$\boldsymbol{F}_n := \left(\frac{a_n}{e^{\lambda_n(\sigma_0 + it_0)}}, \frac{(-\lambda_n) a_n}{e^{\lambda_n(\sigma_0 + it_0)}}, \frac{(-\lambda_n)^2 a_n}{e^{\lambda_n(\sigma_0 + it_0)}}, \dots, \frac{(-\lambda_n)^K a_n}{e^{\lambda_n(\sigma_0 + it_0)}}\right).$$

Let y be any positive real number. Then the set

$$\left\{ \sum_{y \le n \le \nu} c_n \boldsymbol{F}_n \mid \nu \ge y, \, c_n \in \mathbb{T} \text{ for every } n \in \mathbb{N} \text{ with } y \le n \le \nu \right\}$$

is dense in \mathbb{C}^{K+1} .

Proof. Lemma 4 of [9] gives this lemma, since if $c \in \mathbb{T}$ then $ce^{-\lambda_n i t_0} \in \mathbb{T}$.

Lemma 6. Let $F(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$ be a general Dirichlet series satisfying conditions (I) and (II). Let K be any non-negative integer, and $t_0 \in \mathbb{R}$. Then there exist a real number σ_2 with $0 < \sigma_2 < \sigma_0$ and a sequence $\{\varepsilon_n \in \mathbb{T} \mid n = 1, 2, ...\}$ such that for every $0 \le k \le K$ the series

$$\sum_{n=1}^{\infty} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_2 + it_0)}}$$

converges.

Proof. This is obtained from [9, Lemma 5].

From Lemmas 5 and 6 we obtain the next proposition.

Proposition 7. Let $F(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$ be a general Dirichlet series satisfying conditions (I) and (II). Let B be a finite subset of \mathbb{N} , and $\theta_n^* \in \mathbb{R}$ for $n \in B$. Let K be a non-negative integer and $t_0 \in \mathbb{R}$. Let $z_k \in \mathbb{C}$ $(0 \le k \le K)$ and $\varepsilon > 0$ be arbitrary. Then there exist a sequence $\{b_n \in \mathbb{T} \mid n \in \mathbb{N} \setminus B\}$, a large real number $X_0 > 0$ and a real number $\sigma_0' > \sigma_0$ such that if σ satisfies $\sigma_0 \le \sigma \le \sigma_0'$ then for all $X > X_0$ and $0 \le k \le K$ we have

$$\left| z_k - \sum_{n \in \mathbb{N} \setminus B, n \le X} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n \in B, n \le X} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| < \varepsilon.$$

Proof. Let σ_2 and $\{\varepsilon_n \in \mathbb{T} | n = 1, 2, ...\}$ be as in Lemma 6. Then by a well-known property of Dirichlet series (see [4, p. 28, Corollary 1.3]), the series

$$\sum_{n=1}^{\infty} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(s+it_0)}}$$

converges uniformly on compacta (in particular, on the segment $[\sigma_0, \sigma_0 + 1]$) in the half-plane Re $s > \sigma_2$. Thus we can take a large number y > 0 such that

$$(2.1) y > \sup_{n \in B} n$$

and such that

(2.2)
$$\sup_{\sigma_0 \le \sigma \le \sigma_0 + 1} \left| \sum_{n > y_1} \frac{\varepsilon_n (-\lambda_n)^k a_n}{e^{\lambda_n (\sigma + it_0)}} \right| < \frac{\varepsilon}{4}$$

for every $y_1 \geq y$ and $0 \leq k \leq K$.

By Lemma 5, there exist a real number $\nu \geq y$ and numbers $\{c_n \in \mathbb{T} \mid y \leq n \leq \nu\}$ such that

$$\left| \left(z_k - \sum_{n \in \mathbb{N} \setminus B, n < y} \frac{(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} - \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*} (-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} \right) - \sum_{y \le n \le \nu} \frac{c_n (-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} \right| < \frac{\varepsilon}{4}$$

for every $0 \le k \le K$.

For each $n \in \mathbb{N} \setminus B$, we put

(2.4)
$$b_n := \begin{cases} 1 & \text{if } 1 \le n < y ,\\ c_n & \text{if } y \le n \le \nu ,\\ \varepsilon_n & \text{if } n > \nu . \end{cases}$$

By continuity, there exists a real number $\sigma_0 < \sigma_0' < \sigma_0 + 1$ such that if σ satisfies $\sigma_0 \le \sigma \le \sigma_0'$, then

$$(2.5) \qquad \left| \left(\sum_{n \in \mathbb{N} \setminus B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} + \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} \right) - \left(\sum_{n \in \mathbb{N} \setminus B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} + \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right) \right| < \frac{\varepsilon}{4}$$

for every $0 \le k \le K$.

Let $X_0 := \nu$ and let σ be a real number with $\sigma_0 \leq \sigma \leq \sigma'_0$. Let X be any real number greater than X_0 . By the triangle inequality, (2.5), (2.3), (2.1) and (2.4), we have

$$(2.6) \left| z_k - \sum_{n \in \mathbb{N} \setminus B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right|$$

$$< \left| z_k - \sum_{n \in \mathbb{N} \setminus B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} - \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma_0 + it_0)}} \right| + \frac{\varepsilon}{4} < \frac{\varepsilon}{2}.$$

By (2.2) we have

$$\left| \sum_{\nu < n \le X} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| = \left| \sum_{n > \nu} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n > X} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right|$$

$$\leq \left| \sum_{n > \nu} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| + \left| \sum_{n > X} \frac{\varepsilon_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| < \frac{\varepsilon}{2}.$$

Thus, from (2.1), (2.6), (2.4) and (2.7) we conclude

$$\begin{aligned} & \left| z_k - \sum_{n \in \mathbb{N} \backslash B, n \le X} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n \in B, n \le X} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| \\ &= \left| z_k - \sum_{n \in \mathbb{N} \backslash B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{\nu < n \le X} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| \\ &\leq \left| z_k - \sum_{n \in \mathbb{N} \backslash B, n \le \nu} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} - \sum_{n \in B, n < y} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| + \left| \sum_{\nu < n \le X} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right| \\ &< \varepsilon. \end{aligned}$$

This completes the proof.

§ 3. Proof of Theorem 3

Let B and θ_n^* $(n \in B)$ be as in Lemma 4. According to Proposition 7, there exist a sequence $\{b_n \in \mathbb{T} \mid n \in \mathbb{N} \setminus B\}$, a large real number $X_0 > 0$ and a real number $\sigma_0' > \sigma_0$

such that if σ satisfies $\sigma_0 \leq \sigma \leq \sigma_0'$, then for all $X \geq X_0$ and $0 \leq k \leq K$ we have

$$\left| z_k - \left(\sum_{n \in \mathbb{N} \setminus B, n \le X} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} + \sum_{n \in B, n \le X} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right) \right| < \frac{\varepsilon}{3}.$$

In the following, we fix a number σ with $\sigma_0 < \sigma \leq \sigma'_0$. By condition (II), the series $F^{(k)}(s)$ converges absolutely in the half-plane $\text{Re } s > \sigma_0$ for every $0 \leq k \leq K$. Therefore, if X_1 is a large positive real number satisfying

$$\lambda_n > 1 \text{ for all } n > X_1 \quad \text{ and } \quad \sum_{n > X_1} \frac{\lambda_n^K |a_n|}{e^{\lambda_n \sigma}} < \frac{\varepsilon}{3},$$

then, for all $0 \le k \le K$, $X \ge X_1$ and $t \in \mathbb{R}$, we have

$$\left| F^{(k)}(\sigma + it_0 + it) - \sum_{n \le X} \frac{(-\lambda_n)^k a_n}{e^{\lambda_n (\sigma + it_0 + it)}} \right| \le \sum_{n > X} \left| \frac{(-\lambda_n)^k a_n}{e^{\lambda_n (\sigma + it_0 + it)}} \right|$$

$$\le \sum_{n > X} \frac{\lambda_n^k |a_n|}{e^{\lambda_n \sigma}} \le \sum_{n > X_1} \frac{\lambda_n^k |a_n|}{e^{\lambda_n \sigma}} \le \sum_{n > X_1} \frac{\lambda_n^K |a_n|}{e^{\lambda_n \sigma}} < \frac{\varepsilon}{3}.$$

We fix a large number X_2 satisfying

$$X_2 > \max\{X_0, X_1\}$$
 and $X_2 > n$ for all $n \in B$.

For each $b_n \in \mathbb{T}$ in (3.1), we write $b_n = e^{2\pi i \phi_n}$ with $0 \le \phi_n < 1$. Then, by continuity, there exists a small number δ_1 with $0 < \delta_1 < \delta$ such that if $t \in \mathbb{R}$ satisfies

(3.3)
$$\left\| -\frac{\lambda_n}{2\pi} t - \phi_n \right\| < \delta_1 \quad \text{for any } n \in \mathbb{N} \setminus B \text{ with } n \leq X_2$$

and

(3.4)
$$\left\| -\frac{\lambda_n}{2\pi}t - \theta_n^* \right\| < \delta_1 \quad \text{for any } n \in B,$$

then for any $0 \le k \le K$ we have

$$\left| \left(\sum_{n \in \mathbb{N} \setminus B, n < X_2} \frac{b_n(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} + \sum_{n \in B} \frac{e^{2\pi i \theta_n^*}(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0)}} \right) - \sum_{n < X_2} \frac{(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0 + it)}} \right| < \frac{\varepsilon}{3}.$$

This, (3.1) and (3.2) imply that if $t \in \mathbb{R}$ satisfies (3.3) and (3.4), then for any $0 \le k \le K$ we have

(3.5)
$$\left| F^{(k)}(\sigma + it_0 + it) - z_k \right|$$

$$= \left| F^{(k)}(\sigma + it_0 + it) - \sum_{n \le X_2} \frac{(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0 + it)}} + \sum_{n \le X_2} \frac{(-\lambda_n)^k a_n}{e^{\lambda_n(\sigma + it_0 + it)}} \right|$$

$$-\left(\sum_{n\in\mathbb{N}\backslash B, n\leq X_{2}} \frac{b_{n}(-\lambda_{n})^{k}a_{n}}{e^{\lambda_{n}(\sigma+it_{0})}} + \sum_{n\in B} \frac{e^{2\pi i\theta_{n}^{*}}(-\lambda_{n})^{k}a_{n}}{e^{\lambda_{n}(\sigma+it_{0})}}\right)$$

$$+\left(\sum_{n\in\mathbb{N}\backslash B, n\leq X_{2}} \frac{b_{n}(-\lambda_{n})^{k}a_{n}}{e^{\lambda_{n}(\sigma+it_{0})}} + \sum_{n\in B} \frac{e^{2\pi i\theta_{n}^{*}}(-\lambda_{n})^{k}a_{n}}{e^{\lambda_{n}(\sigma+it_{0})}}\right) - z_{k}\right|$$

$$<\frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Lemma 4 gives

$$\liminf_{T \to \infty} \frac{1}{T} meas \Big(\Big\{ t \in [0, T] \mid \Big\| - \frac{\lambda_n}{2\pi} t - \phi_n \Big\| < \delta_1 \quad \text{for any } n \in \mathbb{N} \setminus B \text{ with } n \leq X_2, \\
\Big\| - \frac{\lambda_n}{2\pi} t - \theta_n^* \Big\| < \delta_1 \quad \text{for any } n \in B \\
\text{and } \|\alpha_j t - \theta_j\| < \delta_1 \quad \text{for any } 1 \leq j \leq N \Big\} \Big) > 0.$$

Using this and (3.5) and recalling $\delta_1 < \delta$, we conclude

$$\lim_{T \to \infty} \inf \frac{1}{T} meas \Big(\Big\{ t \in [0, T] \ \Big| \ \Big| F^{(k)}(\sigma + it_0 + it) - z_k \Big| < \varepsilon \text{ for any } 0 \le k \le K \\
\text{and } \|\alpha_j t - \theta_j\| < \delta \text{ for any } 1 \le j \le N \Big\} \Big) > 0.$$

This completes the proof of Theorem 3.

§ 4. Proof of Theorem 1

We can prove Theorem 1 by using an argument in [10]. For the sake of completeness of the present paper, we will give a detailed proof. Let F(s), K, J, G_j , $D_j(s)$ be as in Theorem 1. Assume that for some $0 \le j \le J$ we have $G_j \not\equiv 0$ and $D_j(s) \not\equiv 0$. In order to obtain Theorem 1, it suffices to show that there exists a complex number s_* with $\operatorname{Re} s_* > \sigma_0$ such that

(4.1)
$$\sum_{j=0}^{J} s_*^j D_j(s_*) G_j(F(s_*), F^{(1)}(s_*) \dots, F^{(K)}(s_*)) \neq 0.$$

Let $J_0 := \max\{0 \le j \le J \mid G_j \not\equiv 0 \text{ and } D_j(s) \not\equiv 0\}$. By the definition of \mathcal{D}_{s,σ_0} the series $D_{J_0}(s)$ is holomorphic for $\operatorname{Re} s > \sigma_1$ with some real number $\sigma_1 < \sigma_0$, and we have $D_{J_0}(s) \not\equiv 0$. Hence, by a fundamental property of a holomorphic function (see [14, Theorem 10.18]), we have

$$(4.2) c_0 := |D_{J_0}(\sigma_0 + it_0)| \neq 0$$

for some real number t_0 . We write

$$D_{J_0}(s) = \sum_{m=1}^{\infty} \frac{b_m}{e^{\nu_m s}}$$

and set

$$\varepsilon := \frac{c_0}{100}.$$

Since by the definition of \mathcal{D}_{s,σ_0} the series $D_{J_0}(s)$ converges absolutely at $s = \sigma_0$, we have a large positive integer M such that

$$(4.3) \sum_{m>M} \frac{|b_m|}{e^{\nu_m \sigma_0}} < \varepsilon.$$

By definition, there exists a small number $\delta_0 = \delta_0(\varepsilon, \{b_m\}, \{\nu_m\}, M) > 0$ such that if $t \in \mathbb{R}$ satisfies

(4.4)
$$\left\| -\frac{\nu_m}{2\pi}t \right\| < \delta_0 \quad \text{for every integer } 1 \le m \le M$$

then

$$\left| \sum_{m \le M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} - \sum_{m \le M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0)}} \right| < \varepsilon.$$

Hence it follows from the triangle inequality, (4.2) and (4.3) that, for any $t \in \mathbb{R}$ satisfying (4.4), we have

$$(4.5) |D_{J_0}(\sigma_0 + it_0 + it)| = \left| \sum_{m \le M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} + \sum_{m > M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} \right|$$

$$\geq \left| \sum_{m \le M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} \right| - \left| \sum_{m > M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} \right|$$

$$\geq \left| \sum_{m \le M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0)}} \right| - \varepsilon - \left| \sum_{m > M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} \right|$$

$$\geq \left| D_{J_0}(\sigma_0 + it_0) - \sum_{m > M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0)}} \right| - \varepsilon - \sum_{m > M} \left| \frac{b_m}{e^{\nu_m(\sigma_0 + it_0 + it)}} \right|$$

$$\geq |D_{J_0}(\sigma_0 + it_0)| - \left| \sum_{m > M} \frac{b_m}{e^{\nu_m(\sigma_0 + it_0)}} \right| - \varepsilon - \sum_{m > M} \frac{|b_m|}{e^{\nu_m\sigma_0}}$$

$$\geq |D_{J_0}(\sigma_0 + it_0)| - \sum_{m > M} \frac{|b_m|}{e^{\nu_m\sigma_0}} - \varepsilon - \sum_{m > M} \frac{|b_m|}{e^{\nu_m\sigma_0}}$$

$$\geq c_0 - 3\varepsilon > \frac{c_0}{2}.$$

Let $\{\alpha_1, \ldots, \alpha_N\}$ be a basis of the vector space over \mathbb{Q} generated by the numbers ν_m $(1 \leq m \leq M)$. Let N_0 be an integer such that, for each $1 \leq m \leq M$,

(4.6)
$$\nu_m = \sum_{j=1}^{N} n_{m,j} \frac{\alpha_j}{N_0},$$

where $n_{m,j} \in \mathbb{Z}$. Then, since we have the inequalities

$$\|\theta_1 + \theta_2\| \le \|\theta_1\| + \|\theta_2\|$$
 $(\theta_1, \theta_2 \in \mathbb{R})$

and

$$||n\theta|| \le |n| \, ||\theta|| \qquad (\theta \in \mathbb{R}, n \in \mathbb{Z})$$

(see e.g. [2, p. ix]), there exists a small number $\delta_1 = \delta_1(\delta_0, N, \{n_{m,j}\}) > 0$ such that if t satisfies

(4.7)
$$\left\| \frac{\alpha_j}{2\pi N_0} t \right\| < \delta_1 \quad \text{for every integer } 1 \le j \le N$$

then t satisfies (4.4). This fact and (4.5) imply that, for any $t \in \mathbb{R}$ satisfying (4.7), we have

$$|D_{J_0}(\sigma_0 + it_0 + it)| > \frac{c_0}{2}.$$

By recalling that $D_{J_0}(s)$ converges absolutely at $s = \sigma_0$ and taking a large number M_0 with $\sum_{m>M_0} |b_m| e^{-\nu_m \sigma_0} < \frac{\varepsilon}{4}$, we find that, for any $\sigma \geq \sigma_0$ and $\tau \in \mathbb{R}$,

$$\begin{split} |D_{J_0}(\sigma_0 + i\tau) - D_{J_0}(\sigma + i\tau)| &\leq \left| D_{J_0}(\sigma_0 + i\tau) - \sum_{m \leq M_0} \frac{b_m}{e^{\nu_m(\sigma_0 + i\tau)}} \right| \\ &+ \left| \sum_{m \leq M_0} \frac{b_m}{e^{\nu_m(\sigma + i\tau)}} - D_{J_0}(\sigma + i\tau) \right| + \left| \sum_{m \leq M_0} \frac{b_m}{e^{\nu_m(\sigma_0 + i\tau)}} - \sum_{m \leq M_0} \frac{b_m}{e^{\nu_m(\sigma + i\tau)}} \right| \\ &\leq \sum_{m > M_0} \left| \frac{b_m}{e^{\nu_m(\sigma_0 + i\tau)}} \right| + \sum_{m > M_0} \left| \frac{b_m}{e^{\nu_m(\sigma + i\tau)}} \right| + \sum_{m \leq M_0} \left| \frac{b_m}{e^{\nu_m(\sigma_0 + i\tau)}} \left(1 - \frac{1}{e^{\nu_m(\sigma - \sigma_0)}} \right) \right| \\ &\leq \sum_{m > M_0} \frac{|b_m|}{e^{\nu_m \sigma_0}} + \sum_{m > M_0} \frac{|b_m|}{e^{\nu_m \sigma}} + \sum_{m \leq M_0} \frac{|b_m|}{e^{\nu_m \sigma_0}} \left(1 - \frac{1}{e^{\nu_m(\sigma - \sigma_0)}} \right) \\ &\leq \frac{\varepsilon}{2} + \sum_{m \leq M_0} \frac{|b_m|}{e^{\nu_m}} \left(1 - \frac{1}{e^{\nu_m(\sigma - \sigma_0)}} \right). \end{split}$$

Thus there exists a real number $\sigma_0'' = \sigma_0''(\varepsilon, M_0, \{b_m\}, \{\nu_m\}) > \sigma_0$ such that

$$(4.9) |D_{J_0}(\sigma_0 + i\tau) - D_{J_0}(\sigma + i\tau)| < \varepsilon$$

uniformly for $\sigma_0 \leq \sigma \leq \sigma_0''$ and $\tau \in \mathbb{R}$.

Since $G_{J_0} = G_{J_0}(z_0, \ldots, z_K)$ is a continuous function and $G_{J_0} \not\equiv 0$, there exist a constant $c_1 > 0$ and a bounded open set $U \subset \mathbb{C}^{K+1}$ such that

$$(4.10) |G_{J_0}(z_0, \dots, z_K)| > c_1 \text{for all } (z_0, \dots, z_K) \in U.$$

By Theorem 3, there exist a real number σ and a sequence of real numbers $\{t_n | n = 1, 2, ...\}$ satisfying

(4.11)
$$\sigma_0 < \sigma < \min\{\sigma_0'', \sigma_0 + 1\},\$$

$$\lim_{n \to \infty} t_n = \infty,$$

$$(4.13) w_n := (F(\sigma + it_0 + it_n), \dots, F^{(K)}(\sigma + it_0 + it_n)) \in U for any n,$$

and

(4.14)
$$\left\| \frac{\alpha_j}{2\pi N_0} t_n \right\| < \delta_1 \quad \text{for any } 1 \le j \le N \text{ and } n.$$

We write

$$s_n := \sigma + it_0 + it_n$$
.

Using (4.14) and (4.8), we have

$$|D_{J_0}(\sigma_0 + it_0 + it_n)| > \frac{c_0}{2}$$
 for any n ,

which, together with (4.9) and (4.11), gives

$$(4.15) |D_{J_0}(s_n)| > |D_{J_0}(\sigma_0 + it_0 + it_n)| - \varepsilon > \frac{c_0}{2} - \varepsilon > \frac{c_0}{4} \text{for any } n.$$

Combining (4.15), (4.13) and (4.10), we have

(4.16)
$$|D_{J_0}(s_n) G_{J_0}(\boldsymbol{w}_n)| \ge \frac{c_0 c_1}{4} \quad \text{for any } n.$$

Now, in the case $J_0 \ge 1$, we shall deduce (4.1). If $D(s) = \sum_{m=1}^{\infty} c_m e^{-\mu_m s} \in \mathcal{D}_{s,\sigma_0}$, then we have

$$(4.17) |D(\sigma + i\tau)| \le \sum_{m=1}^{\infty} \left| \frac{c_m}{e^{\mu_m(\sigma + i\tau)}} \right| = \sum_{m=1}^{\infty} \frac{|c_m|}{e^{\mu_m \sigma}} \le \sum_{m=1}^{\infty} \frac{|c_m|}{e^{\mu_m \sigma_0}}$$

uniformly for $\sigma \geq \sigma_0$ and $\tau \in \mathbb{R}$. Hence there exists a constant $C_0 > 0$ such that

$$(4.18) |D_j(s_n)| < C_0 \text{for any } 0 \le j \le J \text{ and } n.$$

Since all G_j are bounded on the bounded open set U, by (4.13) there exists a constant $C_1 > 0$ such that

$$(4.19) |G_j(\boldsymbol{w}_n)| < C_1 \text{for any } 0 \le j \le J \text{ and } n.$$

By (4.11) and (4.12), we have

$$\lim_{n\to\infty} |s_n| = \infty.$$

Consequently, since $J_0 \ge 1$ and $\frac{c_0c_1}{4} > 0$, it follows from (4.16), (4.18), and (4.19) that

$$\begin{vmatrix} \int_{j=0}^{J} s_n^j D_j(s_n) G_j(\boldsymbol{w}_n) \\ = \left| s_n^{J_0} D_{J_0}(s_n) G_{J_0}(\boldsymbol{w}_n) + s_n^{J_0 - 1} D_{J_0 - 1}(s_n) G_{J_0 - 1}(\boldsymbol{w}_n) + \dots + D_0(s_n) G_0(\boldsymbol{w}_n) \right| \\ \ge \left| s_n^{J_0} D_{J_0}(s_n) G_{J_0}(\boldsymbol{w}_n) \right| - \left| s_n^{J_0 - 1} D_{J_0 - 1}(s_n) G_{J_0 - 1}(\boldsymbol{w}_n) \right| - \dots - \left| D_0(s_n) G_0(\boldsymbol{w}_n) \right| \\ \ge \left| s_n \right|^{J_0} \left(\frac{c_0 c_1}{4} - \frac{C_0 C_1}{|s_n|} - \dots - \frac{C_0 C_1}{|s_n|^{J_0}} \right) \\ \longrightarrow \infty \quad \text{as } n \to \infty.$$

Thus (4.1) holds in the present case.

In the case $J_0 = 0$, (4.1) is obtained from (4.16), since $\frac{c_0 c_1}{4} > 0$. We have completed the proof of Theorem 1.

§ 5. Proof of Theorem 2

We follow an argument in [10] again. For the sake of completeness of the present paper, we will give a detailed proof. Let F(s) and K be as in Theorem 2. Let $P(s, X_0, \ldots, X_K)$ be as in (1.1). Assume that $P(s, X_0, \ldots, X_K)$ is not the zero polynomial. In order to obtain Theorem 2, it suffices to show that there exists a complex number s_* with $\operatorname{Re} s_* > \sigma_0$ such that

(5.1)
$$P(s_*, F(s_*), \dots, F^{(K)}(s_*)) \neq 0.$$

We order the terms of $P(s, X_0, ..., X_K)$ lexicographically with

$$s > X_0 > \cdots > X_K$$

and let (d, d_0, \dots, d_K) denote the multidegree of $P(s, X_0, \dots, X_K)$ (see e.g. [3]). The symbol \sum' will denote a finite sum.

First we shall consider

Case 1: $d \neq 0$ and $d_k \neq 0$ for some $0 \leq k \leq K$.

Let $\kappa := \min\{0 \le k \le K \mid d_k \ne 0\}$. Then

$$(5.2) P(s, X_{0}, \dots, X_{K}) = D(s; d, 0, \dots, 0, d_{\kappa}, \dots, d_{K}) s^{d} X_{\kappa}^{d_{\kappa}} \cdots X_{K}^{d_{K}}$$

$$+ \sum_{\substack{a_{K} \in \mathbb{N}_{0}, \\ a_{K} < d_{K}}}' D(s; d, 0, \dots, 0, d_{\kappa}, \dots, d_{K-1}, a_{K}) s^{d} X_{\kappa}^{d_{\kappa}} \cdots X_{K-1}^{d_{K-1}} X_{K}^{a_{K}}$$

$$+ \dots$$

$$+ \sum_{\substack{a_{\kappa}, \dots, a_{K} \in \mathbb{N}_{0}, \\ a_{\kappa} < d_{\kappa}}}' D(s; d, 0, \dots, 0, a_{\kappa}, \dots, a_{K}) s^{d} X_{\kappa}^{a_{\kappa}} \cdots X_{K}^{a_{K}}$$

$$+ \sum_{\substack{a, a_{0}, \dots, a_{K} \in \mathbb{N}_{0}, \\ a < d}}' D(s; a, a_{0}, \dots, a_{K}) s^{a} X_{0}^{a_{0}} \cdots X_{K}^{a_{K}},$$

where

$$(5.3) D_0(s) := D(s; d, 0, \dots, 0, d_{\kappa}, \dots, d_K) \not\equiv 0.$$

As in (4.2), by (5.3) we have

$$c := |D_0(\sigma_0 + it_0)| \neq 0$$

for some real number t_0 . We write

$$D_0(s) = \sum_{m=1}^{\infty} \frac{b_m}{e^{\nu_m s}}$$

and set

$$\varepsilon := \frac{c}{100}.$$

Then, let $M, \{\alpha_1, \ldots, \alpha_N\}$ and N_0 be as in the proof of Theorem 1 (see (4.3) and (4.6)). As in (4.8), there exists a small number $\delta_1 > 0$ such that if t satisfies

$$\left\| \frac{\alpha_j}{2\pi N_0} t \right\| < \delta_1$$
 for every integer $1 \le j \le N$

then

$$|D_0(\sigma_0 + it_0 + it)| > \frac{c}{2}.$$

As in (4.9), there exists a real number $\sigma_0'' > \sigma_0$ such that

$$(5.5) |D_0(\sigma_0 + i\tau) - D_0(\sigma + i\tau)| < \varepsilon$$

uniformly for $\sigma_0 \leq \sigma \leq \sigma_0''$ and $\tau \in \mathbb{R}$.

For a large positive integer n, we set

$$(5.6) z_{0,n} := n, z_{1,n} := \log n, z_{2,n} := \log \log n, \ldots, z_{K,n} := \log \cdots \log n.$$

Let n_0 be a large positive integer with $z_{K,n_0} > 10$. According to Theorem 3, for each integer $n \ge n_0$ there exist real numbers σ_n and t_n such that

$$(5.7) \sigma_0 < \sigma_n < \min\{\sigma_0'', \sigma_0 + 1\},$$

$$(5.8) t_n > e^n,$$

(5.9)
$$\left| F^{(k)}(\sigma_n + it_0 + it_n) - z_{k,n} \right| < \frac{1}{100} \text{ for any } 0 \le k \le K,$$

and

(5.10)
$$\left\| \frac{\alpha_j}{2\pi N_0} t_n \right\| < \delta_1 \quad \text{for any } 1 \le j \le N.$$

We write

$$s_n := \sigma_n + it_0 + it_n$$
.

Since (5.10) and (5.4) give

$$|D_0(\sigma_0 + it_0 + it_n)| > \frac{c}{2}$$
 for any $n \ge n_0$,

it follows from (5.5) and (5.7) that

$$(5.11) |D_0(s_n)| \ge |D_0(\sigma_0 + it_0 + it_n)| - \varepsilon > \frac{c}{2} - \varepsilon > \frac{c}{4} \text{for any } n \ge n_0.$$

By (4.17), there exists a positive constant C_0 such that

$$\sup_{\substack{a, a_0, \dots, a_K \text{ in } (1.1) \\ n \ge n_0}} |D(s_n; a, a_0, \dots, a_K)| < C_0.$$

This, (5.2) and (5.11) imply that, for any $n \ge n_0$,

$$\left| P(s_n, F(s_n), \dots, F^{(K)}(s_n)) \right|$$

$$\geq \left| D(s_n; d, 0, \dots, 0, d_{\kappa}, \dots, d_K) \right| \left| s_n \right|^d \left| F^{(\kappa)}(s_n) \right|^{d_{\kappa}} \cdots \left| F^{(K)}(s_n) \right|^{d_K}$$

$$- \sum_{\substack{a_K \in \mathbb{N}_0, \\ a_K < d_K}} \left| D(s_n; d, 0, \dots, 0, d_{\kappa}, \dots, d_{K-1}, a_K) \right| \left| s_n \right|^d \left| F^{(\kappa)}(s_n) \right|^{d_{\kappa}} \cdots$$

$$\times \left| F^{(K-1)}(s_n) \right|^{d_{K-1}} \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \dots$$

$$- \sum_{\substack{a_K, \dots, a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} \left| D(s_n; d, 0, \dots, 0, a_K, \dots, a_K) \right| \left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \sum_{\substack{a_A = 0, \dots, a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} \left| D(s_n; a, a_0, \dots, a_K) \right| \left| s_n \right|^a \left| F(s_n) \right|^{a_0} \dots \left| F^{(K)}(s_n) \right|^{a_K}$$

$$\ge \frac{c}{4} \left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{d_K} \dots \left| F^{(K)}(s_n) \right|^{d_K}$$

$$- \sum_{\substack{a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} C_0 \left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{d_K} \dots \left| F^{(K-1)}(s_n) \right|^{d_{K-1}} \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \dots$$

$$- \sum_{\substack{a_K, \dots, a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} C_0 \left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_0} \dots \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}$$

$$- \sum_{\substack{a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} C_0 \frac{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{d_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}$$

$$- \sum_{\substack{a_K, \dots, a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} C_0 \frac{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}$$

$$- \sum_{\substack{a_K, \dots, a_K \in \mathbb{N}_0, \\ a_K < d_K}}^{\prime} C_0 \frac{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}}{\left| s_n \right|^d \left| F^{(K)}(s_n) \right|^{a_K} \dots \left| F^{(K)}(s_n) \right|^{a_K}}$$

For every $m \in \mathbb{N}$ we have

$$\frac{(\log x)^m}{x} \longrightarrow 0 \quad \text{as } x \to \infty.$$

This fact, (5.6), (5.7), (5.8) and (5.9) imply that the numbers

$$\frac{|s_n|^d |F^{(\kappa)}(s_n)|^{d_{\kappa}} \cdots |F^{(K-1)}(s_n)|^{d_{K-1}} |F^{(K)}(s_n)|^{a_K}}{|s_n|^d |F^{(\kappa)}(s_n)|^{d_{\kappa}} \cdots |F^{(K)}(s_n)|^{d_K}} \quad (a_K \in \mathbb{N}_0, a_K < d_K),$$

$$\dots, \frac{\left| s_{n} \right|^{d} \left| F^{(\kappa)}(s_{n}) \right|^{a_{\kappa}} \cdots \left| F^{(K)}(s_{n}) \right|^{a_{K}}}{\left| s_{n} \right|^{d} \left| F^{(\kappa)}(s_{n}) \right|^{d_{\kappa}} \cdots \left| F^{(K)}(s_{n}) \right|^{d_{K}}} \quad (a_{\kappa}, \dots, a_{K} \in \mathbb{N}_{0}, a_{\kappa} < d_{\kappa}),$$

$$\frac{\left| s_{n} \right|^{a} \left| F(s_{n}) \right|^{a_{0}} \cdots \left| F^{(K)}(s_{n}) \right|^{a_{K}}}{\left| s_{n} \right|^{d} \left| F^{(\kappa)}(s_{n}) \right|^{d_{\kappa}} \cdots \left| F^{(K)}(s_{n}) \right|^{d_{K}}} \quad (a, a_{0}, \dots, a_{K} \in \mathbb{N}_{0}, a < d)$$

go to 0 as $n \to \infty$, and that

$$|s_n|^d |F^{(\kappa)}(s_n)|^{d_{\kappa}} \cdots |F^{(K)}(s_n)|^{d_K} \longrightarrow \infty$$
 as $n \to \infty$.

Therefore, we have

$$\left| P(s_n, F(s_n), \dots, F^{(K)}(s_n)) \right| \longrightarrow \infty \quad \text{as } n \to \infty.$$

Thus (5.1) holds in Case 1.

Similarly we can verify (5.1) in the following remaining cases:

Case 2: $d \neq 0$ and $d_k = 0$ for all $0 \leq k \leq K$,

Case 3: d = 0 and $d_k \neq 0$ for some $0 \leq k \leq K$,

Case 4: d = 0 and $d_k = 0$ for all $0 \le k \le K$.

We have completed the proof of Theorem 2.

Acknowledgments. The author would like to express his sincere gratitude to the organizers of this conference.

References

- [1] Amou, M. and Katsurada, M., Differential transcendence of a class of generalized Dirichlet series, *Illinois. J. Math.*, **45** (2001), 939–948.
- [2] Cassels, J., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics. No. 45. Reprinted, 1965.
- [3] Cox, D., Little, J. and O'Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, 1992
- [4] Laurinčikas, A., Limit Theorems for the Riemann Zeta-Function, Kluwer, 1996.
- [5] Garunkštis, R. and Laurinčikas, A., On one Hilbert's problem for the Lerch zeta-function, *Publ. Inst. Math.*, **65** (1999), 63–68.
- [6] Kaczorowski, J. and Kulas, M., On the non-trivial zeros off the critical line for *L*-functions from the extended Selberg class, *Monatsh. Math.*, **150** (2007), 217–232.
- [7] Karatsuba, A. and Voronin, S., The Riemann Zeta-Function, Walter de Gruyter, 1992.
- [8] Laurinčikas, A. and Garunkštis, R., *The Lerch zeta-function*, Kluwer Academic Publishers, 2002.
- [9] Nagoshi, H., Values of general Dirichlet series and simultaneous Diophantine approximation, *Lith. Math. J.*, **50** (2010), 227–238.
- [10] Nagoshi, H., Independence of L-functions and their derivatives, in preparation.

- [11] Nagoshi, H., Difference-differential independence of the Riemann-zeta function, in preparation.
- [12] Pańkowski, Ł., Some remarks on the generalized strong recurrence for *L*-functions, *New directions in value-distribution theory of zeta and L-functions*, pp. 305–315, Ber. Math., Shaker Verlag, 2009.
- [13] Pańkowski, Ł., Hybrid joint universality theorem for Dirichlet L-functions, *Acta Arith.*, 141 (2010), 59–72.
- [14] Rudin, W., Real and Complex Analysis, Third Edition, McGraw-Hill, 1987.
- [15] Steuding, J., Value-Distribution of L-functions, Lecture Notes in Mathematics 1877, Springer-Verlag, 2007.
- [16] Voronin, S., On the distribution of nonzero values of the Riemann zeta-function, *Trudy Mat. Inst. Steklov.*, **128** (1972), 131–150; Proc. Steklov Inst. Math. **128** (1972), 153–175.
- [17] Voronin, S., On differential independence of ζ -functions, Sov. Math., Dokl., 14 (1973), 607–609.
- [18] Voronin, S., The functional independence of Dirichlet L-functions, $Acta\ Arith.$, **27** (1975), 493–503. (Russian)