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Unitary matrices and random permutations:
conjecture and degenerated Laplacian

By

Yoichiro TAKAHASHI*

Abstract

We propose a conjecture that a unitary matrix U of size n determines a probability p on
a symmetric group S, in such a manner that |det U(A, B)|* = > o(a)=p P(0) for any subsets
A and B of the index set. As a preliminary study we introduce a degenerated Laplacian on S,
and prove some of its properties, mainly for n = 3 and n = 4.

§1. Introduction

In [4] we studied the ergodic properties of translation invariant fermion(or deter-
minantal) point processes on Z. In particular, we gave upper and lower estimates of
the metric entropy in term of the spectrum of the associated convolution operator. The
method of the proof strongly suggested a conjecture stated below. It will presumably
be a key to further study of fermion point processes and their Palm probabilities. Also,
some people may speculate that it might be a clue to understand the probabilistic
interpretation of the wave function in quantum mechanics in terms of random homeo-
morphisms( or, hopefully, random diffeomorphisms).

First of all, we introduce some notations. Let U = (ujk)?,kzl be a unitary matrix
of size n. For subsets A and B of the index set A = {1,2,...,n} we write

U(A, B) = (tab, )1<j<t, 1<k<m

iftA={a1 <---<aq}and B={b <---<by,}. For simplicity of description we set
detU(A,B) =0 unless 1 <l =m <n and det U(},0) =1 for m = 0.
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Conjecture. For a given unitary matriz U = (ujk)?,kzl there exists a probability
p on the symmetric group Sy, such that

|detU(A,B)]> = > p(o)
c(A)=B

for any subsets A and B of A = {1,2,...,n} with same cardinality |A| = |B].

Remark. The probability measure p, if exists, is not uniquely determined by na-
ture except for n = 2 and for certain special cases such as U is the unit matriz. See
Appendizx.

If the subsets A and B are restricted to singletons, then the conjecture is true.
Indeed, the matrix QQ = (ij)?,kzl with gjr = |ujx|? is doubly stochastic, i.e., both Q
and its transposed QT are stochastic matrices: > w ik = > qkj = 1 for all j. For the
doubly stochastic matrix the following theorem is well-known :

Theorem 1.1. IfQ = (‘ij)?,kzl 18 doubly stochastic, then there exists a proba-
bility p on the symmetric group S, such that

ik = Z p(o).

o(j)=k

In the other words,

Q=) p(o)E(0)

ogES,

where E (o) stands for the doubly stochastic matriz associated with permutation o:

1 if o(j)=k

0 otherwise.

E(0)jr = 1(0(j) = k) = {

Here notice that E(o)E(7) = E(10), 0,7 €S,.

A probabilistic interpretation of Theorem 1.1 is that a symmetric finite Markov
chain can always be lifted to an i.i.d.(independent identically distributed) sequence
of random permutations. The idea is extended to more general cases. For instance, a
diffusion process on a manifold can be lifted to a stochastic flow of diffeomorphisms under
certain mild conditions. In the diffusion case the joint distribution of the sample paths
starting at several points are known to be completely governed by the joint distribution
at two points or by the two point correlation (cf. H.Kunita [1]).

Also the theorem above implies the following.
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Corollary 1.2.  Write fork=1,2,....n
A, ={ACA: |Al =k}
and
(1.1) q(A,B) = |det U(A, B)|?, A, B € Ay

Then for each k = 1,2,...,n the matriz (q(A, B))a,Ben, s doubly stochastic and so
there exists a probability measure p*) on the symmetric group S(Ay) on Ay such that

9(A,B)= Y ()

2eS(Ax)

Unfortunately, it seems (at least to the author) to be very difficult to reduce p*)
on S(Ag) to pon S, = S(A). In below we would like to discuss some nature of the
above conjecture.

In the subsequent sections we need some notations.

e A={1,2,...,n}.

e C(S,) stands for the space of functions on S,, with inner product

(12) <f7 g> = Z f(U)Tg)a A C(Sn)

O'ESn

e D, stands for the space of functions on the set {(A, B); A, B C A |A| = |B|} which
satisfy the condition that there exists a constant cg4 such that

Z »(A,B) = Z ¢(B,A) =cy for any A C A.

BCA BCA
Obviously, the space D,, is spanned by doubly stochastic matrices ¢(A, B) indexed
by the subsets A and B of A. We define an inner product on D,, by

(1.3) (0.0) = > (A BW(AB), ¢ €D,

A,BEA

§2. Consistency conditions

If Conjecture is true, then, the function ¢(A, B), A, B C A should satisfy certain
conditions required by the probability expression in p. For instance, ¢(A4, B) must be a
doubly stochastic matrix as we already used in Corollary 1.2. The shortest proof may

be as follows.
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Consider the k-hold exterior product A*U. Then, it is a unitary operator on A¥C5»
since

(AR (NFUY = AR(UrTU) = 1.
Moreover,
detU(A, B) = (A*U)ep, ea)

where e 4’s stand for the canonical basis, namely,
€A =¢€q Neg, N+ Neg,, A={ay <---<ar} etc

Hence, ¢(A, B) = |det U(A, B)|? is a doubly stochastic matrix.
In this section we focus on the following:

Consistency conditions:
(i) For any subset A and B of A = {1,2,...,n} with |A| < |B|,

2: ‘KATB): E: ‘KArB)

B: BCB A: ADA
(i) For any subset A and B of A = {1,2,...,n} with |A| > |B| ,
Y 6(AB)= > ¢4B).

A: ACA B: BOB

Indeed, Conjecture requires that

Y. aAB)= ) Y, plo)= > o)

B: BCB B: BCB o: 0(A)=B o: o(A)CB
= > > pe)= > adB).
A: ADA o: 6(A)=B A: ADA

Hence, (i) must hold. Similarly, (ii) must hold.

It may not be so obvious that q(A, B) = |det U(A, B)|? satisfies these conditions,
such as

> al{i, i} Ak 1) = (i, k) + a(j, k).

l: l#k
One can prove the condition in such a simple case, for instance, by using the relation
lunv|? = |lul|?||v]|* = |{u, v)|* among the norms of 2-vectors u and v, the norms of their
exterior products u A v and their inner-product (u,v). A general proof in this direction
may be possible but our verification will be done by introducing the following operator.
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(2.1)

Definition 2.1.  Define an operator S : C(S,,) — D,, by

Sf(AvB): Z f(O'), fEC(Sn)

c€Sy,0(A)=B

The well-definedness of S : C(S,,) — D, follows if we observe that

Y SFABY=>" > flo)=> flo)=>_ > flo)=> Sf(A.B)
B’ o A’

B’ ¢: 0(A)=B' A" o0: 0(A")=B

for any A, B C A. In other words, Sf € D,, with

Csf = Zf(a)

The system of equations we want to solve can be written as

(2.2)

p=>0 and Sp=gq.

Here we can omit the normalization condition for p since it is automatic.

Firstly, our consistency conditions hold on the range of S.

Lemma 2.2 (consistency lemma). Let ¢ € D, and assume that ¢ = Sf for

some f € C(Sy). Then the consistency conditions hold for ¢ in place of q.

Proof. We only show the condition (i) because the proof of (i) is similar. Take

f €C(S,) so that ¢ = Sf. Then,

by

SoaB= S o= S fo

BCB BCBo€Sn,0(A)=B o€8n,0(A)CB
=Y > flo)=)_ é(ADB)
ADAc€S,,0(A)=B ADA

Next we show that (A, B) = |det U(A, B)|? lies in the range of S.
We need a few lemmas .

Lemma 2.3. For a square matriz X = (J}ij)?,jzl define a function fx € C(Sy)

(2.3) fx(o) = sgn(o) H Tio(i)-

Then, for any subsets A and B of the index set A

(2.4) Sfx(A, B) = det X (A, B) det X (A°, B°).
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Proof. Firstly we prove the assertion when A = B. We identify o; € S(A) with
01 ®idac € Sy.

Sfx(A; A)

= > fx(o)

€Sy, 0(A)=A

= > sgn(o) (H f”@cr(z‘)) (H l’wu‘))

ceS(A),c(A)=A i€EA

= Z sgn(alaz) (H xi,a(i)) (H xio(t‘))

01€S(A),02€S(A°) 1I€EA

= Z sgn(o1) H Ti,o (i) Z sgn(os) H Tio(i)

01€5(A) €A o2 ES(A®) 7
= det X 44 det X gc 4ec.

Now we proceed to the proof of the general case. If |A| # |B| then the both hand
sides vanish so that the equality is trivial.
If |A| = |B| we take a permutation 7 such that 7(A) = B and write

X7 = (2ir()) = UE(7),
where E(7) is the matrix representing the action of 7, as before:
B(r)y; = 1[r(i) = j].
Then,
Sfx(A,B)=Sfx-(A,A) =det X" (A, A)det X7 (A, A°) = det X (A, B) det X (A€, B).
O

Recall generalized Cramer’s cofactor formula for an invertible matrix .

Lemma 2.4. If X is invertible, then for any subsets A and B
(2.5) det X (B¢, A°) = (A, B)(det X)(det X ~1(A, B))
where e(A, B) = e(A)e(B) and €(A) = £1 is defined by the relation

eA = S(A)GA N €ege.
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Proof. The above formula does not seem to be found in standard textbooks so
that we will give a proof here.

On one hand, recall the Laplace expansion of determinant by minor determinants :

> e(A, B)det X(A, B)det X(C°, B°) = §(A,C) det X

for any A,
B: |B|=k
> det X(A, B)det X(A°,C°) = §(B,C)det X  for any B
A: |A|=k
Indeed,

det X = ((A"X)en,en) = (e(A)(A"X)(ea A eac,en)
= <€(A)(/\kX)€A A (/\n_kX)eAc, en)

=e(4) > ((A*X)ea,en)en A (A" FX)eae,en)
B: |B|=k

=e(A)e(B) > ((A"X)ea,ep) (A" *X)eae, epe)
B: |B|=k

On the other hand, the relation (A¥X)(A¥(X 1)) = (AF(X71))(A*X) = I yields

> e(A,B)det X(A, B)det X '(A°,C°) = §(A,C),
B: |B|=k

> &(A,B)det X 1(C° A°) det X (A, B) = §(B,C).
A: |A|=k

Indeed,
(A, C) = ((/\kX)(/\kX_l)ec, eA)

= 3 (WX Neo,en) (A X)es, ea)
B: |B|=k

= ) det(X ')(B,C)det X(A,B).
B: |B|=k

Comparing these, we obtain the desired formula since (det X (A, B))a,Bea, is an
invertible matrix for each k.

O

Now we can prove

Theorem 2.5. LetU = (Uz‘j)?,j:l be a unitary matrixz. Then, for any subsets A
and B of the index set A

(2.6) g(A, B) = |det Uap|? = (det U)Sfu(A, B).

Consequently, q(-,-) € D,, and so satisfies consistency conditions.
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Proof. If U is a unitary matrix, then, it follows from above lemmas that
Sfu(A,B) =detU(A, B)det U(A®, B€)
= det U(A, B)(detU)det U~ 1(B, A) = det U(A, B)(det U)det U (A, B)
= (det U)|det U(A, B)|?

O
§3. Degenerate Laplacian on S,
Lemma 3.1.  The adjoint operator S* : D,, — C(Sy,) of S is given by
(3.1) §*¢(0) = Y d(A0(4)), ¢ €Dy
ACA
Proof. Let f € C(S,) and ¢ € D,,. Then,
(Sf.e)= > SFABSAB)= Y >, f(0)dAB)
A,BEA A,BEA 0€S,,,0(A)=B
=> flo) > d(A,a(A)).
AEA o€S,
O

Remark. If we denote ¢°(A, B) = ¢(A°, B®), then S*¢° = S*¢.

Once one has a pair of adjoint operators, it might be a routine work to study the
”Laplacian”.

Definition 3.2. Let
(3.2) T=S5"S.
We call T' the degenerate Laplacian on S,, (although T is nondegenerate for n = 2).

To understand the nature of the operator T' we consider the decomposition of a
permutation ¢ into cyclic permutations ~;’s:

oc=Y1%2.-VY, V=>1.

Definition 3.3. Given a o € S, let v; be the number of k-cycles in the decom-

position of ¢ into cyclic permutations for £k = 1,2,...,n. Then we write
(3.3) o€ (1)"(2)=3)" - (n)™,
(3.4) vp(o) = v, k=1,2,...,n

(3.5) v(o) = Z v (o)



UNITARY MATRICES AND RANDOM PERMUTATIONS: CONJECTURE AND DEGENERATED LAPLACIAN 453

As usual, if n is fixed, we employ conventional notations such as
(1) = ()" 2) = (1)"2(2), (2)2 = ()" 422, ete.
Lemma 3.4.  Fach vy satisfies
(3.6) ve(o™ ) = vp(o) and vp(77toT) = i (o)
for any o,7 € S,,. As a consequence, v satisfies
(3.7) v(ie™ =v(o) and v(r7roT) = v(0)

Since the values of v(o) and v (o) are determined by the conjugate class (), we
sometimes write v(o) as v(«) and v (o) as vi(a).

Proof. The assertions about ¢! are obvious. The rest assertions are immediately
proved by induction on v(o) if one observes that for each transposition (ij)
(a) if 4 and j are contained in a common cycle, then both of the right and left actions of

(i7) cut the cycle into two cycles and the lengths of resultant cycles are same in those
two cases.

(b) If 7 and j are contained in distinct cycles, then both of the right and left action of
(i7) join the two cycles into one cycle. O

Theorem 3.5.  Let f € C(S,,). Then,

(3.8) Tfo)= > 2" D f(r),

TESn

Proof. Let f € C(Sy). Then,

S*Sfo) =Y Sf(Ao(A) = > f(r)

ACA ACA \1€8,: T(A)=c(A)
= > o= >, flop)
T€SH \ACA: 7(A)=0(A) pESH \ACA: p(A)=A
=" flop) >, 1
pESH ACA: p(A)=A

Now let us compute the number »_ , 4. p(A)=a L. If v(p) = k, then, by definition,
there is a partition A; U---U A, of A = {1,2,...,n} such that p is cyclic on each A;. If
A is invariant under p, then A must be a (posssibly, empty) union of these A;’s. Thus,

> 1=2v),

ACA,peS(A)
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Consequently,
§'Sf(0) =y 2P flop) = 3 207 ().
pPESH TES,
O
Remark . In [ST1] , for a real number a(not a cycle class) we introduced the

a-determinant deto(X) of a matriz X = (xi;)7 ;-1 by

n
deto(X) = Z (@) Hajw(i).
oeS, 3=1
If o = —1, then
(=1)"?) = sgn(o)

and det_y is the usual determinant and describes the correlation functions of fermion(or
determinantal) point processes. On the other hand, if = 1, then dety is the permanent
and describes the correlation functions of boson(or permanental) point processes.

If a = 2, then dety gives the correlation functions of “super-boson” point processes
which are closely related with the (infinite dimensional) x-square processes (which is
nothing but the square of real-valued Gaussian processes).

In [2,3] we proposed a conjecture on the sufficient condition for the existence of
a-determinantal point processes which follows from(but is not equivalent to) the non-
negative definiteness of the quadratic form:

Qa(f) = (Taf, )

where
Taf(o)= Y a7 Df(r).
o,TES,

Our conjecture is related to the case where a = 1/2. In the above we showed that
Quy2(f) = 2"(S*Sf, f) > 0. It gives a proof of the nonnegative definiteness while we
proved it by a probabilistic construction based on Gaussian processes in [3].

Finally, we should notice that a-determinants are different from so-called q-determinants
which are defined using the inversion number

Wo) = {(i,7) : i <j, oi > 0aj}|

in place of v(o) except for a« = q = £1. For q-determinants the positive definiteness is
easily proved because d(o,7) = 1(o77 1) is a distance on S,,.

The degenerate Laplacian T' can be decomposed into the sum of mutually commut-

ing nonnegative definite operators in two manners.
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Definition 3.6. For a cycle class () write

(3.9) T f(o)= Y flop).
pE(a)
Theorem 3.7.  The operators T'®) are nonnegative definite and satisfy
(3.10) T (sgn f) = sgn(a)T ™ f
and
(3.11) T=> 27l
(@)
(3.12) TOT®E = 7T for any (), (B).

Proof. The nonnegative definiteness follows from 7" = S§*S. The first equation is
obvious. The second equation follows from

TTE £ () Z 7Y f(op) Z Z f(opr)

pe(a) pE(a) TE(B)
=Y > flopmptp)= > > flow'p) =TT f(0)
pE(a) TE(B) pE(a) ©'€P

Now we proceed to a second decomposition.

Definition 3.8. For each m =1,2,...,n, let
(3.13) Smf(A, B) = 1(|A] = |B| = m)Sf(A, B).
(3.14) T =S, Sm.

By definition, it is immediate to see

(3.15) Sno(o)= > é(AcA).

A: |Al=m

Lemma 3.9.  Let k(p) be a number defined by

km(p) = D 1(pA=A).

[Al=m
Then, k., ’s are given by vi’s as

(3.16) Ko = Z H(:;)
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In particular,
/ﬁ‘,m(O'_l) = km(0), /ﬁ‘,m(TO'T_l) = Km(0)

for any o, 7 € §5,,.

Moreover,
(3.17) Tkm =n! foranym =0,1,2,...,n
(3.18) D k(o) =27,

m=0

Proof. If pA = A, then A must consist of cycles in p. Let |A] = m and A consist of
my, of k-cycles for each k. Then we obtain the desired expression. The identities might
not seem so obvious but are immediately seen from our definitions by combinatorial
argument. A key is the following:

(3.19) D> k™ = ﬁ 14 2"

Now we can proceed to the following:

Theorem 3.10.

(3.20) T = zn: Tom,

(3.21) T, Ty = TiT if m ;éz

(3.22) Tn f(o) = Z km(p) f Z Kom (0 T(a)f (o).
P ()

In particular,

7T, = T, T for any (o) and m.

Proof. The first two assertions are obvious from the definition. The expression of
T, is obtained in the following manner.

Tnflo)= Y Sf(AcA)= > > [

|Al=m |Al=m T: TA=cA
= > Y flop)=>_ flop) Y lpA=A) me
|[Al=m p: pA=A P |A|l=m
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Remark. The operator ST turns out to be injective on the space D,,. In other
words, if ¢(i,7), 1,7 =1,2,...,n satisfies

> 6(i,5) =Y 6(j,i) =c for any i
j=1 j=1

for a constant ¢ and if

n

Sip(o) = ZQS(Z’,J@') =0 for any o,

i=1
then,
c=0 and ¢ =0.

The injectivity problem of the operator S}, is left open for m > 2.
The following proof of the above remark might be interesting in itself.

Proof. Set
Then, it follows from S7¢(e) = > 1, ¢(4,4) = 0 that

STé((ig)) = fij + f5: =0, Sio((ijk)) = fi; + fix + fri =0

Thus, f;j, i # j form a cocycle on the complete graph K,,: the summation of f;; along
each cyclic path vanishes. Hence, one can find g; such that f;; = g; — g;. Moreover, g;
can be chosen so that . g; = 0.

This means that

Summing up these equations in j, one finds ¢(i,7) + ¢g; = ¢ and so
¢(i,j) = c—g; for any i,j.

Now, summing them up in ¢, one finds
1
g; = (1 — —)c for any j.
n

Hence,
c

o(i, j) = o
Consequently,
¢ = Sio(e) =0
and so g; = 0 and
¢(i,7) =0 for any i, j.
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Example 3.11. For p € S,,, the solution to
Stal0) =wm(op), o €S,
is given by ¢(i,j) = 1(i = pj). In particular, 7 = p if

vi(oT) =1v1(op), o€ Sy

Now our equation to be solved is written as
(3.23) p>0 and Sp=Sfy, fu=detUfy.

In other words, our conjecture is reduced to the following;:

Problem Does there exist a nonnegative solution p such that
p— fu €kerS

for a given unitary matriz U.

The problem is still open. We only show a partial result on the dimension of
ker S = kerT.

Proposition 3.12.

(3.24) dimker7 = 4 0 for n=2
1 for n=3.
and
(3.25) dimkerT > n for n > 4.
Proof.

For n = 2 we have v(e) = 2 and v(12) = 1 and so

- 4 2
21/(07' 1) o — )
( ) ,TES?2 (2 4>

For n = 3 there appears a parameter ¢ in Example 4.2 as will be stated in Appendix
except for the cases where min; ¢;; = 0 or min;-; gjr = 0. It suggests that

dimker S = dimker $*S = 1.
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Indeed, if f € ker S, then,

fle)+ fij) =0,  f(ij) + f(ijk) =0
Hence it follows
flg)=—f(e),  [flijk) = f(e).
In other words, f(o) = f(e)sgn(o).
In general,
sgn € ker S.

For n > 4 consider the square matrix
X=(11----1x)

for a given vector x where 1 stands for the vector all of whose entries are 1 and 1 ® 1
means the square matrix all of whose components are 1. Then, it is obvious that
det X(A,B) = 0 if |[A| = |B| > 3. If |A| = |B| = 2, then either det X(A,B) = 0 or
det X (A°, B®) = 0 even when n = 4. Hence, fx € ker S for any z.

Here we omit the proof of the inequality dimker 7' < 4 for n = 4.

We conclude the paper by the following :
For n = 3 the characteristic equation of the degenerated Laplacian T is given by

det(\I —T) = A\ — 6)*(\ — 24).
For n = 4 the characteristic equation of the degenerated Laplacian T is given by

det( A —T) = MO\ = 12)*(\ — 24)°(\ — 120).

§4. Appendix

If n = 2,3 our Conjecture is reduced to Theorem 0 (which is beautifully proved
by using the Krein-Milman theorem on the extremal point representation for compact
convex sets. Consult with Phelps’ ”"Lecture on Choquet’s theorem,” Lecture Notes
in Mathematics , Springer). Nevertheless, we give a direct proof here for the further

consideration.

Example 4.1 (Case n =2). The system of equations itself gives the (unique)
solution probability p:

(4.1) q11 = q22 = ple), q12 = q21 = p(12).
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Example 4.2 (Case n =3). For any unitary matrix U there exists a solution
probability p. The solution is not necessarily unique.

More precisely, there exists a solution probability p with p(e) = t if and only if
t >0 and

4.2 min q;; — min 2 <t < min @;;.
(4.2) z'=1,2,3qZZ jk=1,2,3; j;ékqjk_ _i=1,2,3qZZ

Then the solution p is uniquely determined by ¢ and is given by

p(12) = qu1 —t, p(23) = qa2 — t, p(31) = q22 — 1;
(4.3) p(123) = qi2 — @33 +t = q23 — q11 +t = q31 — q22 + ¢,
p(132) = qo1 — @33+t =q32 —qu1 +t = 13 — q22 + t.

In particular, the solution p is unique if U is diagonal (i.e., if minj; ¢j, = 0) or if U is
off-diagonal (i.e., min; ¢; = 0).

Proof. Let H = {e,(123),(132)} = (1) U (3) and
My = %(I + 7O,
Then the equation to be solved
3p+TPp = Siq
can be written as
3p—3Mpyp = S7q— 1.
Now it is immediate to see that the double stochasticity of ¢; ; implies

12 — 933 = @23 — Q11 = 31 — Q22 =: dq,

g21 — 433 = Q32 — q11 = q13 — Q22 =: d2

It then follows

3
Siqle) =1 = qii—1=—(di +da)
=1

S1q(ij) =1 =qij + qji + qee — 1 = Bqrr — 1) + (dy +d2) if {i,5,k} = {1,2,3},
S1q(123) — 1= qi2 + q23 + q31 — 1 = —(d1 + da) + 3dj,

S1q(132) — 1= qi3 + q32 + qo1 — 1 = —(d1 + da) + 3do,

MpSiq=1.
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Consequently, if p(e) = ¢, then,

p(123) = dy +t, p(132) =dy + 1,
p(12) = g3z —t, p(23) =qi1 —t, p(3l) =qo2 — 1

and the nonnegative constant ¢ should satisfy the condition

—min{d;,ds} <t < min gy;.
7

to guarantee p > 0.

Finally, a direct computation shows that

—min{d;,ds} = IMin ¢;i — EI%I Uik

and that the condition on ¢ defines a nonempty closed interval, although the parameter

t is uniquely determined if U is diagonal (i.e., if min;, ¢jr = 0) or if U is off-diagonal

(i.e.
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