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On the number of the turning points of the second
kind of the Noumi-Yamada systems with a large
parameter

By

TAKASHI AOKI*, NAOFUMI HONDA** and YOKO UMETA***
)

§1. Introduction

The exact WKB analysis is a powerful method in studying both linear and non-
linear differential equations which contain a large parameter in an appropriate way. The
Noumi-Yamada system NY; (I = 2, 3, ...) is one of important non-linear systems for
which the exact WKB analysis works very well. Many important results (for example,
see Y. Takei [4]) have been established, while some fundamental problems for the Stokes
geometry still remain unsolved.

We were expected, as such a problem for the Noumi-Yamada systems, to show
the existence of a 0-parameter formal solution of NY;, or it is much better, to give a
formula for the number of those solutions. Recently T. Aoki and N. Honda in [2] gave
a complete answer for this problem. They have obtained, moreover, a formula for the
number of turning points of the first kind of NY;. Note that a turning point of NY;
consists of that of the first kind and that of the second kind, and the latter also plays
an essential role in the Stokes geometry. In this paper, we present a formula for the
number of turning points of the second kind of NY;.

We emphasize that our formulas have not only their own theoretical interest but
also practical meanings. In fact, when we calculate the concrete Stokes geometry nu-
merically, these formulas confirm us that all the turning points are really obtained. This
confirmation is inevitable because lack of an ordinary turning point generally makes a
configuration of the Stokes geometry incomplete.

Received December 11, 2008. Revised November 15, 2009.
2000 Mathematics Subject Classification(s): 2000 Mathematics Subject Classification(s):
Supported by Grant-in-Aid for Scientific Research, No.18540197 and No.20234567
*Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan.
**Department of Mathematics, Hokkaido University, Faculty of Science, 060-0810, Japan.
***Department of Mathematics, Hokkaido University, Faculty of Science, 060-0810, Japan.

(© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 TAKASHI AOKI, NAOFUMI HONDA AND YOKO UMETA

Now we give a short description of our formulas whose detail forms are given in
the last section: We first recall the explicit forms of the Noumi-Yamada systems NY;
(I =2,3,...), which is a system of non-linear differential equations of [ + 1 unknown
functions ug(t), ..., w(t) of the variable t with a large parameter 7. The form of NY;
depends on the parity of I. The system NY5,, can be written in the form

_1du; ,
(11) n 1d_t]:uj(uj+1_uj+2+"'_uj+2m)+aj7 J=0,1,..., 2m,

1 with constant coefficients satisfying

where a;°s are polynomials of 1~
(1.2) ap+art-+amm=n",

and the unknown functions u ;s satisfy the following normalization condition
(1.3) ug +uyp + - + Uy, = t.

The system NYa,,11 can be written in the form

1 1 ‘
uj Hj + _77_1 - aeven) + -a4t, g = 0,2,...,2m,

t du;
(1.4) ?7‘15% _ % 12
uj Hj+§n—1—aodd> + 5t j=1,3,...,2m+1,
where we set
Hj = Z Uj42r—1Uj425 — Z Uj4+2s5Uj4+2g+15
1<r<s<m 1<s<qg<m

(1.5)
Qeven = Q0 + Q2 + -+ + Qompyy,  Qodd = 1 + Q3 + -+ + Qomt1,

1

and a;’s are polynomials of ™" with constant coefficients satisfying

(1.6) g+ ay -t agmer =00,

and the unknown functions u;'s satisfy the following normalization conditions

t t
(1.7) U0+U2+"'+U2m=§, U1+U3+"'+U2m+1:§~

In both cases the indices of «j's and u;’s are considered to be elements of Z/(l + 1)Z.

Then the main part of our theorem is summarized as follows (see also Theorems
4.1 and 4.2 in the last section):
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Theorem 1.1.  For a generic parameter «, the number of turning points of the
second kind of NY; is exactly given by

2
2m(2m + 1) ( ;:) — 3m2?m. if 1 = 2m,
(1.8)

2m + 1
(4m2+6m+6)< mm+ >—3(m+1)22m+1, if l =2m + 1.

§2. Preparations

§2.1. The Stokes geometry of NY,

We briefly recall several definitions related to the Stokes geometry for a non-linear

equation. Let us first consider a formal solution @ = (g, 41, ..., @) of NY; which is a

1

formal power series of n~" in the form

(2.1) at) =a QW) +aV Ot +aP O+,

where 4() = (ﬁ(()j), ﬁgj), ce ﬁl(j)), j=20,1,... . The formal solution @ is often called

a O-parameter solution of N'Y;. We can easily see that the leading term 4(%) (¢) satisfies
the following algebraic equations of the variables u = (ug, uy, ..., u):

e If [ is even, then 4(%)(¢) satisfies the normalization condition (1.3) and
(22) f] :Uj(uj+1—Uj+2+"'—Uj+2m)+Oéj =0, J=0,1,...,2m.
e If [ is odd, then 4(%)(¢) satisfies the normalization conditions (1.7) and

1
w; (Il; — Qeven) + §Oéjt =0, 7=0,2,...,2m,
(2.3) fi= .
uj(Hj—aodd)+§ajt:0, 7=1,3,...,2m+ 1.

Here we abbreviated ﬁEO) to u; and «; o (the leading term of «;) to «;.

Let C; x CIH! be an affine complex space with a system of coordinates

(t; wo, u1, ..., w), and let Z be the ideal defined by f;'s and the normalization condi-
tions :

O(Ctxcijrl(fov fi, ooy Jis Usotal — 1), [ : even,
(2.4) T =

t

t
O(Ctx(cij'l(an fla D) fla Ueven — 57 Uodd — 5),1 : Odd,
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where O ci+1 denotes the sheaf of holomorphic functions on C; X CLH and

l m m
(25) Utotal = 2 Uk, Ueven = 2 U2k, Uodd = § U2k +1-
k=0 k=0 k=0

We define the O, ci+1-module N by

O(C 1+1

2. = —Xbu

(2:6) w = Dt

and we set V = Supp(N) € C; x CiHL e,

(2 7) V= {(tv U)ECtXC,lu_'_l;fO:O,...,fl:O, UtOtal:i}, ; l:even7
' {(ta u) € (Ct X Cij_l; fO =0,..., fl =0, Ueven = 7, Uodd = _}7 [ :odd.

2 2

Let (ANY); denote the linearized equation of NY; along a 0-parameter solution
a(t), that is, by replacing u with @(t) + Aw in (1.1) (resp. (1.4)), we take its linear part
with respect to the variable Au as the system (ANY); if [ is even (resp. odd). Then
the linear system (ANY'); can be written in the form

(2.8) %Au =nC(t, n)ou, C(t,n) =Y 1 Cr(t) = Co(t) +n 'Ci(t) +---
k=0

Here Ck(t, n) is an (I + 1) x (I + 1) matrix whose entries are possibly multi-valued
holomorphic functions of the variable t. Let J, be the Jacobian matrix of functions

(fos fus --+» fi) with respect to the variables u;'s:
ofi
(29) Ju(f07f177fl):<8 )
/LL] 1=0,--- ,1,7=0,--- ,I.

It is easy to see that the leading matrix Cy coincides with the restriction Jy |y of J,, to

V.

Let A(X, u) denote the characteristic polynomial of the leading matrix Cp:
(210) A()\, u) = det(Co - )\Il_|_1) = det(Ju(fo, fl; ceey fl) - )\Il—|—1)~

Definition 2.1.  We say that v = (t*, u*) € V is a turning point if the discrim-
inant of the characteristic polynomial A(A, u) vanishes at v.

It has been proved, in the paper [4], that A(A, ) has the following notable form

Meven(A, w), l: even,
(A2 — a2, ) Aoaa( N, u), 1:odd,

even

(2.11) A\, u) =
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where Agven and Aoqq are even functions of A. Hence the equation Aeven()\, u) =0
(resp. Aoaa(\, u) = 0) has m-pairs (A (u), A7 (u)) of roots with A\ (u) = —\; (u)
(t=1,..., m). At a turning point v = (t*, u*) € V, as the discriminant of Aeven()\ w)
(resp. Aoaa(),u)) vanishes, we can observe that one of the following situations occurs:

(i) For some index i, two roots )\:r and A\; merge at v. This is equivalent to saying
that the condition Aeven(O, u*) =0 (resp. Aodd (0, u*) = 0) holds at v.

(ii) There exist mutually distinct indices i and j for which \;” = )\;r and A;” = A, hold
at v.

Therefore we have two kinds of turning points for non-linear equations. We call the
former one a turning point of the first kind, and the latter one a turning point of the
second kind. The following definition was introduced by Y.Takei [4].

Definition 2.2.

(i) A point v

= (t*, u*) € V is said to be a turning point of the first kind if v satisfies
even(O u ):

(resp. odd(O u*) =0).

(ii) A turning point other than the first kind is said to be of the second kind.

§2.2. The algebraic variety V associated with NY;

In this subsection, we study the algebraic variety V associated with NY; that was
introduced in the previous subsection. This variety will be deeply investigated by T.Aoki
and N.Honda in [2], and we review some results in the paper that are needed later.

Let C; x Clgl be an affine complex space with a system of coordinates
(t; &0, &1,y -+, &) We define the (I + 1)-polynomials g and &otar by

1
(212)  gr=gE@n - tar k=011 Gam=& &+ +é

Here the indices of §;’s are considered to be elements of Z/(1+1)Z. Let Z; ¢ (resp. NMp¢)
denote

O(CtX(CH'l
(213) O(CtX(Cé-H (907 g1, ---5 gi, gtotal - t) resp. T; )

and we set V¢ = Supp (N ¢), i.e

(2.14) Vie={90=0, ..., 91 =0, &ota1 = t} C C, x C™.
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We also define the analytic map ¥ : C; x (Cl;rl — C; x CIH1 by

, (. ot & §k + &kt &+ &o
(2.15) q/(t,go,gl,...,gl)_(t, . TT)
and the pull-back ¥*(h) of a function h on C; x CLF! by

(2.16) UH(h)(t, &) = h(U(t, &), h € O, ycitr-

Note that ¥ gives an isomorphism if [ is even, while it is not an isomorphism if [ is odd.
Therefore we need to restrict U to a smaller space so that ¥ gives an isomorphism. Let
Ut (resp. Uy e) be the open set

(2.17) ((t, u) € Cy x CLHL ¢ £ 0} (resp. {(t,€) €C, x CH st £ 0}> .

Note that, since t = 0 is a singular point of NY5,,11, we always exclude t = 0 if we

consider the odd case. We set
t t

(2.18) Wiw = {(t, u) € Upu; Ueven = 57 Uodd = 5}7
(2.19) Wie ={(t, §) € Urg; &otal —t =0, 7(§) — 40eyen = 0},
where
(2.20) = D &~ Y &G
0<k<m 0<k<m

Then, if [ is odd, the morphism ¥ gives an isomorphism between W, and W; .. We
refer the readers to [2] for details. As a consequence, we have the following theorems
that play an important role in studying our problem. Let 7 : C; X Cl;rl — C; denote
the canonical projection.

Theorem 2.3 ([2]).  We have the following equivalence:

(i) If | = 2m, the analytic set V is isomorphic to Vi¢. The morphism U* gives an
isomorphism of m~*O¢,-module between W~IN and Ny ¢

(ii) Ifl =2m+ 1, the analytic set V N Uy, is isomorphic to Vi e NUyse. The morphism
U* gives an isomorphism of 7' Og,-module between ¥~ 'Nw, . and Ny ¢|w, .

Theorem 2.4 ([4]).  The pull-back of the characteristic polynomial A(X\, u) has
the following form:

(i) If I = 2m, we have in C; X (Cf;rl :

(2.21) T(A)A, &) = 5(AT(N, ) +A7(N, 9)),

DN | —

(222) A= [ 0+€), Ava= [ (-4

0<i<2m 0<i<2m
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(i) Ifl =2m+ 1, we have in Wy :

(V2 = 0dven)

even

(2:23) TR O =S

(A+()‘7 5) - A_()‘a 5)),

& _ &
@20)  A0vo= ] (A+7), A= ] ()\— 7).
0<i<2m+1 0<i<2m+1

§2.3. The discriminant 15(5) on the ¢-plane

It follows from Theorems 2.3 and 2.4 that we can reduce the algebraic equations
on the space C; x C.! to those on the space C; x (Cl;rl. In what follows, we consider
the problems in the latter (¢, £) coordinates space, and we introduce a function C'(}, &)
on C; x (Cl;rl that corresponds to the characteristic polynomial on the original space as

follows:
%(AJF()\, &+ A (A 5)), l: even,
(2.25) C\ €) =
1 _
m(A_'_()‘) 5) —A ()‘7 g))a [:odd.

Since the set of zero points of the discriminant of C'(\, £) contains turning points of the
first and the second kind, to obtain the number of those of the second kind correctly,
we need to consider C(V/X, €) instead of C(), £). We set

( IT “+a)r+ 1 (ﬁ—&)), I =2m,

(1
2vA 0<i<2m 0<i<2m

»

(2.26) C(A, &) =

1 ( [T D) - 1] (\/X—t&)>,l:2m+1.

2
L 22v/A 0<i<2m+1 0<i<2m+1

Note that, as we always consider the problem on V' (where t = oo holds), we may
regard C as a function of the variables A and £.

Let ﬁ(ﬁ) be the discriminant of C (A, £). We first study several properties of the
discriminant D(€).

Lemma 2.5.  The discriminant 15(5) is a homogeneous polynomial of & with
degree 4m(m — 1) (resp. 2m(m — 1)) if L =2m + 1 (resp. | = 2m).
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Proof. We first consider the odd case, that is, [ = 2m + 1 is odd. We have

(2.27)
C(\ &)= t%{tsl)\m F 33N T SN TR e 2GS N S )
= A" ot S3A T A 2 S AN TR e 2880 A
+ Stotal 152m+1
Here
(2.28) Sokt1 = > Giv ** Ginnyrr £ = Stotal-

0§i1<”'<i2k+1§2m+1
Hence C'(), €) can be written in the form
(229)  C(A O =2" +a(OA" T +aa(ON" P+ + azm—2()A + azm(§),

where ay(§) is a homogeneous polynomial of £ with degree 2k. Let ~;(£) be a root of
the algebraic equation C'(\, &) = 0. We easily obtain ~;(c£) = ¢*y;(€) for any ¢ € C.
Therefore we find

(2.30)  D(ct) = [J(n(e&) = 75(c€))* = [[ (i) = 73(6))* = "D D(e).
i<j i<j
The proof has been completed for the odd case. Similarly we can prove the lemma for
the even case. O
Noticing that, for an odd [ = 2m + 1, we have
1

(2.31) C(*N, &) =21 —= (VA+&) - (VA=&)),
2\/X(0§igm+l ogigmﬂ )
we set
(42
e3)  aho=SGrd o ([ A+~ I A-)
0<i<2m+1 0<i<2m-+1

The function G(A, &) is often used in subsequent arguments.

§2.4. The compactification Z; of V

Let Pijf be a projective space with a system of homogeneous coordinates
(t, &o, - ., &3 m) where we identify C; X (Cl;rl with {n # 0}. We set

1
gk:Z(gl%—kl_SI%)—l_aana k‘ZO, ]-7"'7l7

Stotal = 8o + &1+ + &

(2.33)
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We always assume that the indices of £;°s are considered to be elements of Z/(l + 1)Z.
Let V},g C IP’iEQ be the analytic subset defined by

(234) ‘v/t,ﬁ = {90 = 07 g1 = 07 e gL = 07 étotal = t}
We denote by H; ¢ C IP’E? the hyperplane &iota1 —t = 0. Note that we have Vt,g C Hype.
We also consider the projective space IP’l;'l with a system of homogeneous coordi-

nates (§o, &1, - .-, &; 1) where we identify (Cf;rl with {n # 0}. Let Z¢ C IP’?FI denote
the analytic subset defined by

(235) Zgz{gozoa 91:0,,gl:0}

For any fixed £ € C, we define the hyperplane H; by

(2.36) Hy = {(&; m) € P | Guotar = 0},

and, in particular, we set

(2.37)  Ho=A{(&;n) € P! [€iota =0} and  Hoo = {(&;m) € PLT [ =0},

Since the morphism

. i+l [+2
v PEY — Hye C P

(238) (5, 77) — (gtotala & 77)

is an isomorphism, we get V; ¢ ~ Z¢ (resp. Vi¢\{t = 0} ~ Z¢\Hy) if [ is even (resp.
odd). Our geometric situation in Pif; can be easily reduced to that in IP?I by this
morphism. Hence, in what follows, we consider the problems in IP?I. In particular, as
the discriminant D(§) of C(, &) is a homogeneous polynomial of £, we can regard D(§)
as a divisor on IP’l;'l.

Now we briefly recall some properties of the analytic subset Z¢ C IP?’l that will be
needed later. Let P be a parameter space defined by

(2.39) P={(ao, a1, ..., 1) € C*ag + a1 + -+ ar = 0}

For any natural number [, we set

(2.40) El'={(ag, ..., ) € P;a(i; 0)a(i; 1)---ali; I — 1) = 0},
and

l _ l l _ l
(2.41) Elyw= U E. EL = n FE,

0<i<li 0<i<l
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where
(2.42) ai; k) =a; + a1+ -+ gk, 4, k>0
The following Lemma 2.6 will be proved in [2].

Lemma 2.6.  We have
(i) Z¢ is a (not necessarily irreducible) complex analytic subset with dim(Z¢) = 1.

(ii) If « € P\E!

cap’

then H; and Z¢ properly intersect for any t € CuU{oo}.

(iii) If « € P\E}!

cups then Zg is connected and smooth.

Taking Lemma 2.6 into account, we obtain Lemma 2.7 whose proof will be given in
Section 4.

Lemma 2.7. Ifa € P\E.,,, then {D(€) =0} N Z¢ is a finite set.

up’

Thanks to the above lemmas, we can apply the Bézout theorem [3] to our situation
if « € P\E.,,,
points, however, contain many irrelevant ones which come from the compactification of

and we can obtain the number of zero points of ﬁ(ﬁ) in Z¢. Those

Cs x C?’l. As a matter of fact, to obtain a formula for the number of turning points of
the second kind, we should exclude those points contained in H., (resp. Hoo U Hp) if [
is even (resp. odd).

§3. Irrelevant zero points of D) Ze

In this section, we obtain the number of zero points of ﬁ| 7 in Hoo U Hy (for an
odd ) or in Hy (for an even l) that are considered to be irrelevant for our formulas.
We first study the odd case. Suppose that [ is an odd integer. We need to know, in this
case, a precise estimate of the each number of the zero points contained in the following
locally closed analytic subsets in IP’éH:

(ZeNHoo)\Ho,  ZeNHooNHy and (Ze\Huo) N Ho.

Note that, to give the similar formula for the even case, we need to calculate the number
of zero points only in (Z¢ N Hy) \ Hp because t = 0 is not a singular point of NYa,,
and because, as we show below, Z; N Ho, N Hy is empty if [ is even.

Before we are going to study zero points of 15| Zes W€ need some preparations.
We first recall the definition of intersection multiplicity number. Let X be a complex
manifold, and let M; and My be coherent Ox-modules. We set W1 = Supp(M;) and
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Wy = Supp(Mz), and we suppose dim,(W;NWs) = 0 for any point p € W1 NW,. Then
we define an intersection multiplicity number of My and My at p € Wi, N Wy by

(3.1) mult, (M, Ma) = 3 (~1)F dime (Tor’éx (M4, Mz)p) .
k>0
Note that, by virtue of the fact that dim,(W; N W3) = 0, the Ox p-module
Tor’fgx (My, My), is a finite dimensional C-vector space. For any analytic subsets Y
and Y5 which have a perfect intersection at p, we set

Ox OX)

2 It, (Y1, Y2) = mult, | =—, =—
32 il (v, Y2) =, (2, 22

where Zy, denotes the defining ideal of Y; (i = 1, 2). In the same way, for an analytic
subset Y with dim(Y) = 1 and a divisor D in X that is not identically zero on any
irreducible component of Y, we also set

(3.3) mult, (Y, D) = mult, (OX Ox ) ,

Iy’ (fp)

where fp is a local defining function of D near p. Moreover, if Y is smooth near p with
a local coordinate(s) (where the point p corresponds to s = 0), then we have

(3.4) mult, (Y, D) = vis—o}(fD(8))

Here fp(s) is the restriction of a local defining function fp of D to Y that is regarded
as a holomorphic function on Y, and v{,_0}(g(s)) denotes the order of a zero point of a
holomorphic function g(s) at s = 0. Thus the intersection multiplicity number defined
above is a natural extension of the classical one.

Let [ be an integer greater than 1, i.e., I =2m orl =2m + 1 for m > 1. We can
easily see that, by putting n = 0 into (2.35), any point p € Z¢ N Hy can be expressed
as

(3.5) p:(ao,al,...,al;O)EIPl;rl, oo=1, o;==41, i=1,...,1

Then we set

L (p) = #{i; 0y = 1},
l_(p) = #{i; 0y = —1},

where #G denotes the number of elements in a set G, and we define the number I(p)
by

(3.7) (p) = min {i_(p), L4 (p)}.

(3.6)
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Note that a point in Z¢ N Hoo N Hy is characterized, in terms of I4 (p), as
(3.8) peEZeNHxNHy < l1(p) =1_(p).

Therefore, if [ is even, then Z¢ N Hoo N Hy is empty because Iy (p) +1_(p) = [+ 1 holds.

Let p be a point in Zg N Hy. Then we can take

(39) (17 517 527 ey £l7 77) € ]P)?_l

as a system of local coordinates of IP’?I in a neighborhood U, of p. Now let us recall
the definition of C(A, &) given in (2.26), and let \;(§) (i = 1, ..., m) be a root of
C(\, €) =0 where we fix £ = 1. Then A\;(€) is a multi-valued holomorphic function on
U, and we can easily see

(3.10) Dly, = [Tni©) =26 for&=(1, &, .., &),

The following lemma is the most fundamental result for a root of C'(\, £) = 0 at

§=p.

Lemma 3.1.  Let p be a point in Z¢ N Hoo. We assume p ¢ Hy (note that this
assumption is always satisfied if | is even as we have already mentioned it). Then we
have

(i) Ifl(p) > 1, then I(p)-roots of the equation C'(X, p) = 0 coincide and the other roots

are simple.

(ii) If either l(p) =0 orl(p) =1, all the roots of C’(A, p) = 0 are simple.

Proof. Since the proof for the even case is the same as that for the odd case, we
give the proof only for the odd case. By the assumption p ¢ Hy, we may consider the
equation G(A, p) = 0 instead of C’(A, p) = 0 where G(\, §) was defined by (2.32).

Assume the point p is given by coordinates (3.5). Then, as p ¢ Hy implies og +
o1+---+0;#0, we have G(0, p) =0¢...0; X (0g+01+-+-+0;) #0. Hence A =0 is
not a root of G(A, p) =0, and we also suppose A # 0 in what follows.

Set d = 2m + 2 — 2[(p), which is always positive by the assumption. Then G(A, p)

is written in the form

(3.11) G\, p) = %O‘_ DOV +1) = (VA=D1 i Up) =1-(p),
| ’ _%(A = D'PHVA+ D = (VA=) 1(p) = L (p).
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To show the claim of the lemma, it suffices to investigate a common root of G(A, p) =0

oG
and a(/\, p) = 0. We set

(3.12) g(\) VA+1)4 = VA=1)%, b)) =(—1)®),

_ 1 {

2V
Since g(A) = 0 and h(\) = 0 do not have any common root, if a common root Ag exists,
then )\ satisfies either Case 1 or Case 2 below:

Ooh

Case 1. h(X\g) =0 and ﬁ()\o) =0.
99
Case 2. g(A\g) =0 and a()\o) =0.

It is clear that Case 1 occurs if and only if [(p) > 1. In this situation, A(A\) = 0 and
oh

(A) = 0 share exactly (I(p) — 1)-common roots. While we can easily observe that

I\
ase 2 never occurs. Indeed, as we have
dg 1 d d—1 d—1
(3.13) 00 = =500 + T {(VA+ 1) = (VA- 1)1,

Case 2 is equivalent to

(3.14) (VX + D" = (V-1 =0, (Va+1)% = (V-1 =0.

Since

(3.15) g —yd =37t gyl =0

have a unique solution (z,y) = (0, 0), such a Ay never exists. This completes the
proof. O

§3.1. Zero points in (Z¢ N Hy)\Hoo
In this subsection 3.1 and in the following subsection 3.2, we assume that [ is an
odd integer: [ = 2m + 1.
Let p be a point in (Zg N Hyp)\Hoo.-

Theorem 3.2.  Assume a € P\E., . Then we have

up”
(3.16) mult,(Ze, D) > 2mult,(Ze, Ho)(m — 1)2.

For a generic parameter o, we obtain

(3.17) mult,(Ze, D) = 2(m — 1)2.
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Proof. Let p = (&, &1, - - -

We denote by £(s) (resp. &total(s)) the restriction of € (resp. &iotal) to Z¢ which can be
regarded as a holomorphic function of the variable s. By (ii) in Lemma 2.6, there exist
a positive integer 7 and a non-zero constant ¢, for which &;ota1($) has an expansion at

s = 0 in the form

(3.18)

Then we obtain

(3.19)

where S;(&) denotes the j-th symmetric polynomial of the variable &, i.e.,

= Z §ir iy

(3.20)

Since we have

(3.21)

the Newton polygon of C'(\; £(s)) is contained in the region described in Fig. 3.1 below.
Then a root A;(s) of C(); £(s)) = 0 has a Puiseux expansion at s = 0 as

(3.22)

TAkASHI AOKI, NAOFUMI HONDA AND YOKO UMETA

yama1; 1) € (ZeNHp) \ Hoo. It follows from Lemma 2.6
that Z¢ is a smooth variety. Let (s) be a local coordinate system of Z¢ near the point p.

Erotal(s) = crs™ + cTHsTH 4.

CE(9) = A"+ Giotar(8)?F 7 Sop1 (E(5)) A F,
k=1

S;(8)

@2m - 1)r

Ai(s)

0<iy <---<i; <2m+1

Vis—o} (€t (8)S2k41(€(s))) > (2k — 1),

s: order

1<j<2m+2.

1<k<m,

Newton polygon

Here d;s satisfy the conditions

(3.23)

3T o)
Tl e
X A : order
m—2m—1 m
Figure. 3.1
=5t 4o ¢ 70, d;eQp, 1<i<m.
1<d; <dy <--- <dp,
d1+"'+dk2(2k‘—1)7', 1<k <m.
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Noticing
(3.24)
D(E() = T =A)* = IOx=X)° IO =X)L (et = A),
we have
vis=oy(D(E(s))) = 2((m — 1)dy + (m — 2)dy + -+ + 1)
(3.25) =2(di+ (dy+d2) + -+ (di + -+ dpm—1))

2
>2(1+3+---+2m—3)r =27(m — 1)

Hence we have obtained the estimate (3.16).

We shall prove that (3.17) holds for a generic parameter. To prove this, it is enough
to show that the conditions (i), (ii) and (iii) below are satisfied for a generic parameter.

(i) S2m+1(£(0)) # 0,
(if) S3(£(0)) # 0,

(iii) The algebraic equation of the variable X
(3.26) S3(§(0)X™ ™ + S5(€(0)X™ 2 + -+ + Sam41(£(0)) = 0

has mutually distinct (m — 1)-roots.

Since we have

2m—+1
(3.27) Som+1(§) = D o &k Comar = 2" e (g0, -y Gi-1, Evotar)
k=0
where J¢ denotes the Jacobian matrix of functions (go, ..., gi—1, &otal) With respect to

the variables ;s and since Z¢ is smooth, i.e., J¢ # 0 on Z¢, the condition (i) is clearly

satisfied for a parameter o ¢ Eéup.

Let us show that the conditions (ii) and (iii) are also satisfied for a generic parame-
ter. For this purpose, we prepare a few lemmas. Let T" denote the closed analytic subset
defined by

(3.28) T = {(5, @) P X Pigo=0,91=0, ..., g1 =0, &oal = 0}.

We set

(3.29) T=T\(Howx P) CP{ x P



16 TAkASHI AOKI, NAOFUMI HONDA AND YOKO UMETA

and

(3.30) B = U {(@0, .., 1) € P; 01f1+ 0282+ -+ 18 = 0},
1+o01+02++0;=0,0,==%1

where 3; denotes
(331) Bz :4a(0, Z—l) :4(050—|-051+"'+Oéi_1), 1 S’LSZ

Note that EM is a closed analytic subset with dim(E™M-Y) = 1—1. Let 7 : P x P — P
denote the canonical projection.

Lemma 3.3.  For any o ¢ EM! we have

(3.32) (TN (Ho x P)) N7 Y a) = ¢.

Proof. First, as we already observed at the beginning of this section, a point
p € TN (Hy x P) has the coordinates

(3.33) (1,01, ..., 0, 0; )

for some v and 0; = +1 with 1401 +---4+0; = 0, and Z¢ near p is described by a local
coordinate(s) in the following way:

(3.34) n=s, o=1, &=o0/1-pis2, 1<i<L

Note that &otal(s) has also an expansion with respect to s in the form

(3.35) Erotal(8) = —%(0151 o oB)s% — 3(015% o d oy f)st -

Now suppose that (3.32) were false. Then we can find sequences s(*) € C\{0} and
a®) € P (k=1,2,...) that satisfy

( ék), - Sl(k); s(k); oz(k)) € Z¢x P k—> (1, 01, ..., 0; 0; )
—00

where Sl(k) are given by

(3.36) W =1, €W o f1- P (sh)2, 1<i<l
Taking (3.35) and (3.36) into account, we have for any k=1, 2, ...
(3.37)

0= (s5(m))* { (015§k) 4t alﬁl(k)> 4 % (01( Wz oy Ul(ﬂl(k))2> (st ... } .
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Hence, by letting k — oo, we obtain 0161 + 0282 + -+ 4+ 078, = 0. This contradicts to
the assumption « ¢ EW: The proof has been completed. O

Let us consider an algebraic equation of the variable X with coefficients ag, . .., am_1
(3.38) apX™ X% 4 a1 =0,
and let Dy,_1(ag, ..., am—1) be a polynomial of ag, ..., a,—1 defined by
(3.39) Dy, —1(ag, .-, Gm—1) = amm—1 X the discriminant of (3.38) .

Note that, since D,,—1(S3(£), S5(€), ..., Sam+1(§)) is a homogeneous polynomial of &,
we can regard it as a divisor on P§m+2 x P. Let F' denote the analytic set defined by

(3.40) F={(& n; @) €T; Dp1(95(£), S5(£), -+, Samy1(£)) =0} C P2 x P,

Then we have

Lemma 3.4. dim(F N (©§m+2 x P)) =2m.

1
Proof. We may assume n = 1. Since o; = —Z(ﬁfﬂ —&3),i=0,1, ..., holds on
T N (C?™*2 x P), we obtain an isomorphism
(3.41)

Fn (©§m+2 X P) = {5 € (sz—i—z; gtotal = 07 Dm—l(S3(£)7 55(5)7 R S2m+1(£)) = 0}
The morphism p : (C?mJr2 — C2m+2 defined by
(3.42) wi = Si(€),  i=1,2,...,2m+2

is clearly proper, surjective and has a finite fiber. Let K be an analytic subset in C27"+2
defined by

(343) K = {(wl, w2, ..., w2m+2); w1 = 0, Dm_l(wg, Wy, « .y w2m+1) = O}

Then, as dim(K) = 2m and p has a finite fiber, we have dim(p~!(K)) = 2m. Hence we
have the result. (]

We back to the proof for Theorem 3.2. If o ¢ 7w(F), then

Dm—l(S3(£)v 85(5)7 R SQm—i—l(S)) 7& 0

holds for any point £ in (Z¢ N Hp) \ Hoo, that is, the conditions (ii) and (iii) are satisfied
for such a parameter. Hence, to finish the proof, it suffices to show

(3.44) dim(7(F)) < 2m.
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This fact can be proved in the following way: By Lemma 3.3 we have
(3.45) (T N (Ho x P)) c EWL,

Since 7l : T — P is a proper map with a finite fiber and dim(E(l)’l) < 2m, we have
dim(T N (Hs x P)) < 2m. In particular, noticing FF C T, we get

(3.46) dim(F N (Hy x P)) < 2m.
Then, as dim(7(F")) is less than or equal to dim(F’), (3.44) follows from Lemma 3.4 and

(3.46). This completes the proof. O

§3.2. Zero points in Z: N Hy N Hy

Throughout this subsection we suppose that [ = 2m + 1 is odd. Let p be a point
in Zg N Hoo N Hy.

Theorem 3.5.  Assume a € P\E., . Then we have

up

(3.47) mult,(Ze, D) > 6m(m — 1) 4 2(2m? — 4m + 1 + d(p))d(p),

where d(p) = 5 mult,(Z¢, Ho) — 1. For a generic parameter oo we obtain

N

(3.48) mult,(Ze, D) = 6m(m — 1).

Proof. Since Z¢ is smooth by the assumption, Z¢ is described by a local coordinate
system as follows.

(349) n=s:, 50:17 i:O-i\/l_ﬁiszp 1<i<I

Here 3; was given in (3.31). Since v{s—o}(&total(s)) = 2d(p) + 2 holds by the definition
of an intersection multiplicity number (see (3.4)), the expansion of &;ota1($) at s = 0 can
be written in the form

(3.50) Erotal(s) = kg2t2d(p) + /{184+2d(17) +. Kk # 0.

Let us recall the definition of G(A, &) given in (2.32) and we consider its expansion at
A=1

(351) G(X, &) = 51(A=1)"+S3()A=1)" "+ + Sopm1(E)(A— 1) + Samp1(£).
Lemma 3.6. We have

(3.52)  vis—0}(Sor+1(€(s))) > max{2(k + 1), 2(1 +d(p))}, k=0,1,2, ..., m.
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The proof for Lemma 3.6 will be given at the end of the subsection. Let us
continue the proof for Theorem 3.5. Note that the above lemma particularly implies
V{s=0} (Sops1(€(s))) > 2 for any k=0, 1, ..., m, and thus, the function

~

(3.59) GO\ ) = GO 65)

is holomorphic at s = 0. Then, by the lemma, we can easily observe that the Newton
polygon of G (), s) is contained in the region described in the Fig.3.2 below:

s : order
2m
Newton polygon
2d(P) | N .
! . A : order
m — d(p) m
Figure.3.2

Hence a root A;(s) of the equation G(), s) = 0 has a Puiseux expansion at s = 0 in the
form

(354) 5\71(8) =1+ C’isdi T, G 7£ 07 dz S Q—H 1< .] < m.

Here d;’s satisfy the conditions

(3.55) 0<d; <dy<--- < dp,
and
(3.56) dy+dy+-+dj >0, if j <d(p),

di+do+---+d;j >2(5 —d(p)), if 7 > d(p) + 1.

Let A;(s) (resp. j\j(S)) denote a root of C(A, £(s)) = 0 (resp. G(\, s) = 0). Then, by
noticing A;(s) = 325\j (s), we have

DEs) = [ (i—xN)?

0<i<j<m

m(m—1) A~ ~
(357) — SS(l—I—d(P))iz H (/\z o )\j)Qgij (S)
0<i<j<m

_ S4(1+d(p))m(m—1) H ((;\Z — 1) — (/\J — 1))2gij(3)7

0<i<gj<m
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where g;;(s) is a multi-valued holomorphic function in a neighborhood of s = 0. This
concludes the estimate (3.47). In fact, we have

(358)
ooy (D))
>4(1+d(p))ym(m —1)+2((m —1)dy + (m —2)da + -+ + dp—1)
=4(14+dp))m(m—1)+2(di +(d1 +d2) + -+ (di +do+ - +dpm—1))
>4(1+dp)m(m—-1)+4(1+24+---+m—1—d(p))
= 4(1 +d(p))m(m — 1) + 2(m — d(p))(m — d(p) — 1)
=6m(m — 1) + (4m? — 8m + 2 4 2d(p))d(p)

Next we prove (3.48) for a generic parameter. We may assume
p=(1,...,1,-1,..., =1, 0) € Z¢ N Ho N Hy,

because the proof for any point in Z¢ N Ho, N Hy goes in the same way as that for p.
We take o ¢ EM! as a parameter where E(M)-! was defined by (3.30). Since d(p) = 0
follows from the condition a ¢ EM! we have

(3.59) v{s—op(D(£(5))) = 6m(m — 1),

and hence, a Puiseux expansion of a root \;(s) of C(A, £(s)) = 0 can be written in the
form

(3.60) Ni(8) =& a1 +cs*+---), 1<i<m.

Here the coefficient ¢; satisfies the algebraic equation of the variable X:
(3.61)

bo(B)X™ +bi(B)X" !+ -+ b1 (B)X + 0 (8) =0, () = _52§+2—<11c(f1(>8))

s=0

Note that, in virtue of o ¢ EM: we have

bo(8) = gtof;l (5)
s=0

£ 0.

For the coefficient by (5), we have the following lemma whose proof is given after we
finish the proof for the theorem.

Lemma 3.7. Assumep=(1,...,1,—1,..., —1;0) € ZeNHsx N Hy. Then we
have

(3.62) br_1(B) = (—2)’“( > Biy -+ Biy, — > Biy /Blk)

m—+1<iq <ig- - <ip<2m-+1 1<ty <ig--<ip<m
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for any 1 < k < m+ 1. In particular, by(B), ..., by (B) are algebraically independent

as a polynomial of variables (81, B2, - ., Pom+1)-

If the equation (3.61) has mutually distinct m-roots, then equalities in (3.58) hold,
and from which (3.48) follows. Hence it suffices to show that (3.61) has mutually distinct
roots for a generic parameter.

Let Dy, (b, ..., bnm) denote the discriminant of the equation (3.61). Since
bo(B), ..., b (B) are algebraically independent, D,,(bo(B), ..., by(B)) is a non-zero
polynomial of the variables (51, ..., Bamy1). Set

(3.63) F=EWLU{Dy(bo(B), - .-, bm(B)) = 0}.

Then we have dim(F) < dim(P) = 2m + 1 and (3.48) are satisfied if « ¢ F. This
completes the proof. O

Now we give the proofs of Lemmas 3.6 and 3.7 in the rest of this subsection. We first
give the proof for Lemma 3.6.

Proof of Lemma 3.6. We set

(3.64) B = (Bo, B) = (Bo, Bu, - - -+ Boms1)

and
2m+41 2m—+1

(3.65)  g(\, s; B) = % ( [T (VX+on/T+5s) — I] (VA-onv1 +ﬁks)>
k=0 k=0

Note that for 8 = (0, B) we have

g()‘a 32; B) = G()‘a 5(8))

(3.66) - R
= S1(&(s)) (A = 1)™ + S3(E())(A = )™+ -+ + Samp1 (£(5)),

where S’gk_l(é)’s are given in (3.51). To prove the lemma, we may assume p =
(1, ..., 1,—-1,..., —1;0), i.e

(367) 0-0:"':0-m:13‘nd0-m+1:"'202m+1:—1.

Then g(A, s; B) becomes

o059 = = (T (A viems) T (- Vi)

(3.68)

1 (A= viF) T1 (e i) ).

=0 k=m+1

x>
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In this situation, we first show
(3.69) V{szo}(§2k+1(5(8))) > 2(1+d(p)).

Set B = (8, 8") with 8’ = (B, ..., Bm) and B” = (Bms1, -- -+ Bame1)- We can easily
observe the following properties (i) and (ii):

(i) g(A, s; B) is symmetric with respect to an exchange of the variables in {B'} (resp.
{B"}), that is, we have for 0 < i < j <m

g(/\a S, BO?"'aﬁia"'aﬁja "'7/8m7 BH)
:g(/\7 S; /807"'76_77 "'7/8i7 "'7/8m7 B//)v
and form+1<i<j<2m+1

g()‘7 S 3/7 Bm-l—la ) Bi) ) Bj) trey ﬁQm—i—l)
:g()H S 3/7 ﬁm-l—l; Bj) ey ﬁi) ey BQm—l—l)'

(3.70)

(3.71)

(ii) g(A,s; ) is anti-symmetric with respect to exchange of B and B":

(372) g()‘a 83 6/7 BH) = _g()‘v 83 B//a B/)
We set for non-negative integers ki and ko:
5 8k1+kzg B
(k1,k2) (3) — .
(373) g e (B) - 8)\k188k2 (17 07 ﬁ)

Note that g(*1*#2)(3) has the same properties (i) and (ii) above and it is a polynomial
of B with degree k.
Set

(374) ’Vk=ﬁ§+ﬁf+---+57km ’A}/kzﬁfn+1+6z+2+“‘+ﬂgm+1, k:1,2,....

Then the property (i) of g*:%2)(3) implies that g(*:%2)(3) is also a function of the

variables v1, ..., 7k, and 41, ..., Yx,, that is, there exists a polynomial ¢y, 1, of the
variables 1, ..., vk, and 41, ..., Yk, which satisfies
(375) g(kl’kz)(B) = 90’*31,k2(717 e 7’7k27’3/17 e 7’3%2)'

It follows from the property (i) of g(¥1:#2)(B) that g, &, also satisfies
(376) ¢k1,k2(717 ceey ’szaﬁ/lv cee ’Aykz) - _Sokl,k2(:ylv ceey ’?kza A R 7’62)'
Especially, by taking 4; = v; (1 < j < ko) in (3.76), we have

(377) Sokl,kz(’yla <oy Vkay V1, 77’62)20
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On the other hand, since the expansion of &;ota1(s) at s = 0 is in the form

1 . )
(3.78)  &iotat(s) = (1 + 01+ -+ 02my1) — Z 27 (18] ++ + Comi1Bdms1)s%,
>0

the equalities
(3.79) i = Vi, for 1 <j<1+d(p)and 3 = (0, B)

follow from the definition of d(p) (see also (3.50)). As a consequence of (3.77) and
(3.79), we get
(3.80)

9" (B) = Gy e (V0r -+ Vb Y05 -+ W) = 0, ko <1+ d(p), 5= (0, B).

This completes the proof for (3.69).

Finally we show

(3-81) Vis=0} (S241(£(5))) > 2(k + 1).

This is equivalent to saying that

(3.82) ki +ky <m+1= gkuk) () = 0.

We set

383) oMo = [ # I . oso= 1] 1II £~
0<i<m m+1<i:<2m-+1 0<i<m m+1<i<2m-+1

(3.84) fr=(VA+V1+8is), fi = A= V1+5:s).
Then (3.82) follows from the fact:

(3.85) ki + ko <m+1=9Fk)g, (1,0) =0,
which can be easily shown. Indeed, we have

(3.86)
8(k1’k2)g+()‘7 S)
= Z Z ( )( ) H 8(ﬁ1i,mzi)fi-|— H a(mj,rwj)fj—
|11 |=k1 k2| =k2 R2 ) o<i<m m+1<j<2m+1

where k1 (resp. k2) denotes a multi-indices (K10, K11, - -, K12m+1) (resp. (Koo, Ko1,
oy K22ma+1)). It follows from |k1| + |k2| = k1 + k2 < m + 1 that there exist indices
0<i<mand m+1<j<2m+4 1 which satisfy

(387) R1; = R9; = 0 and R1j = Rg; = 0.
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For such indices we have
a(mi, n2i)fi—i—(1, O)a(mlj, ﬁzj)fj—(l, 0) — a(mu, KZi)fi_(]_’ 0)8(m1j»m2j)f;‘(1, 0) = 0.

This entails (3.85). The proof has been completed.

Now we give the proof for Lemma 3.7 where we continue to use the same notations
as those in the proof for Lemma 3.6.

Proof of Lemma 3.7. Taking (3.66) into account, we have

1 gmtlg -
(m+1—Fk)k! ONMFT1I-EkHgk (1,0;8), 1<k<m+1,

(3.88) bi—1(8) =

where we set 8 = (0, B). Then, by the same argument as in the proof for Lemma 3.6,

we have
oimti=kklg. (1,0)
m 2m—+1
= (H ff) (1,0) x [ om=mm TT f7 ] (1,0)
i=0 j=m+1
(3.89) = 2mTRHL s (m 1 — k)
1% 1 m+1-k
X Z BirBiy -+ B X (— 5) X (g)m
m+1<i1 <ip<---<ip<2m+1
= (_2)k(m+1_k)!k! Z Bilﬂiz sz
m+1<iy <ip<-- <3 <2m+1
We also get
(3.90)  9HITRR g (1,0) = (=2)F(m +1 — k)!K! > Bi Biy -+ Bi.-

0<i1 <ig<--<ip<m

Hence we have obtained (3.62). The last assertion in Lemma 3.7 follows from the easy
fact that the morphism

(C2m+1 — Cm—i—l
(3.91)
B:(ﬁla -"762771—1—1) = (bo(ﬁ)v s bm(ﬁ))

is surjective. The proof has been completed.

§3.3. Zero points in (Z N Hy)\Hp

In this subsection, the index [ denotes either 2m or 2m + 1. Let p be a point in
(Zg N Hoo) \ Hy with l(p) > 1.
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Theorem 3.8.  Assume a € P\E. . Then we have

up

N

(392) multp(Zg, D) > 4 x l(p)CQ.

The equality holds for a generic parameter a.

Proof. We shall prove the odd case. Since a € P\E!
pressed by a system of local coordinates

(393) n=s, 50:17 éi:O-i\/ 1_51'827 1§Z§l7

where 8; was given in (3.31). Now let us recall the definition of G(A, &) given in (2.32).
Note that we may consider G(\, €) instead of C'(\, £) outside t = 0. Hence, as p ¢ Hy,
it suffices to consider the discriminant of G(), £(s)) instead of that of C/()\, £(s)). We
set for non-negative integers ki and ko:

up» the manifold Ze is ex-

oM TG, &(s))

(3.94) Gk () 5) = DGHRE
Taking Lemma 3.1 into account, we have

(3.95) ki + ko < I(p) = GE1k2) (1, 0) =0,
and

(3.96) GUP:0 (1, 0) £ 0.

By the Weierstrass preparation theorem, there is a unique representation of G (X, £(s))
locally near (1, £(0)) as

(3.97) G\, £(5)) = b\, 8) (A = DI ay(s)(A — D)1 o gy (5)),

where b(), s) is a polynomial which does not vanish at (1, 0) and the coefficient a;(s)
is a holomorphic function of s with degree 2j. We denote the roots of G(A, £(s)) =0
by

(3.98) AL(8)s -y M) (8), Aipy+1s -+ 5 Am(S),

where roots \;’s satisfy the conditions

(3.99) MO) = =XpO0) =1, XNO0)#1, I(p)+1<i<m.

Since the first I(p)-roots of G(A, £(s)) = 0 have Puiseux expansions of the form

(3.100) Ai(s) =1+0;s" +--, 0; 40, 2<d; €Qp, 1<i<lI(p),
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we have
D(&(s)) = 11 (Ni(s) = Aj(s))? 11 (Ni(s) = Aj(s))?
i<j4,Ai (0)=X; (0) i<j,Ai (0)#X; (0)
(3.101) = I @@= I ) =X
1<i<j<I(p) 1<4,X: (0)#X\; (0)
= s T gij(s) 11 (Ni(s) = A;(s))?,
1<i<j<I(p) i<j,Ai (0)#A;(0)

where g;;(s) is a multi-valued holomorphic function in a neighborhood of s = 0. This
concludes

(3.102) Vis=0} (D(£(5))) > 4 X 4 Cs.
Hence we have the first assertion.
Finally we prove that the equality in (3.92) holds for a generic parameter, which

can be shown by the same argument as that for Theorem 3.5. In fact, for a Puiseux
expansion of a root A;(s) of G(A, £(s)) = 0 in the form

(3.103) Ni(s) =140 +---, 1<7<I(p),

its coefficient 0; satisfies the algebraic equation of the variable X:

(3.104) x(p) _I_bl(B)Xl(p)—l +b2(ﬁ)Xl(p)_2—|—-"‘I’bl(p)(ﬁ) =0, b(B)= a;(;f) .

where ai(s)'s are given in (3.97). Then we have the following lemma by the similar
argument as in the proof for Lemma 3.7.

Lemma 3.9. Assumep= (1, —-1,..., =1, 1,...... , 1;0) € (ZeNHoo)\Ho with

l(p) =1_(p). Then we have
(—2)k22(m+1-L(p))
(3.105) bi(B) = D) | .Z. Biy -+ Bis
1<y <ig-<ip <U(p)

for any 1 <k <I(p). In particular by(B), ..., byp)(B) are algebraically independent as
a polynomial of variables (B1, ..., Bip))-

Therefore the rest of the proof is the same as that for Theorem 3.5. O

8§4. Formulas for the number of the turning points of the second kind

In the last section, we give formulas for the number of the turning points of the
second kind. We first prove Lemma 2.7 that makes sure of proper intersections between
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Ze and D(§).

Proof of Lemma 2.7. Assume o € P\E., . Since Z¢ is connected by (iii) in Lemma

cup”
2.6, to prove the assertion of Lemma 2.7, it is enough to show that the discriminant D
is not zero at some point p € Z¢.

For example, we take a point p = (§; 1) = (1,1, ..., 1; 0) € ZeNH, i.e., l(p) = 0.
Then roots of the equation C (A, §) = 0 are all simple by Lemma 3.1. Then, as (3.10)
holds, we have D(p) # 0. Hence we obtain the assertion. O

Let NT; denote the number of the turning points of the second kind of NY; defined

peG
where
D = I+1 .
(4.2) G — (Zen{D=0})NnC™, [ :even,

((Ze\Ho)n{D =0}) nC{*, 1:odd.

8§4.1. A formula for NYs,, 11

We assume that [ = 2m + 1 is odd.

Theorem 4.1.  Assume o € P\ECQQZ)H. Then we have the estimate

m-+1

(4.3) NT; < 2((2m2—|—3m+3) (2 .

)—3(m—|—1)22m>—2 > (dp)-1dp),

pEZ§ﬂHOOﬂH0

1
where d(p) = 3 mult,(Ze, Ho) — 1. There exists, in particular, a hypersurface E in P
such that

(4.4) NT, = 2 ((2m2 +3m+3) <2mm+ 1> —3(m+ 1)22m)
holds for o ¢ E.

Proof. Note that the degree of Z¢ is 22 *1. It follows from Lemma 2.5 that
the discriminant ﬁ(f) of 1*C (A €)lw, ¢ is a homogeneous polynomial of { with degree
4m(m — 1) where the morphism ¢ was defined by (2.38). By the Bézout theorem [3], we
have

(4.5) > multy(Ze, D) = 4m(m — 1) x 22"+,
pEZ§
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Now we calculate the total number of the irrelevant zero points of ﬁ| Ze-

Case 1. The number of zero points of D(€) in (Zg N Hyo )\ Ho.
We have the following estimate that follows from Theorem 3.8:
(4.6)

Z multp(Zg, ﬁ) > Z 4 x l(p)Cg
PE(ZeNHoo)\Ho,l(p)>1 PE(ZeNHoo)\Ho,l(p)>1
=4 ) k0 X 2m42Ck
2<k<m
=4m+1)2m+1) > 2mCs
0<k<m—2

=2(m+1)(2m + 1){2*™ —2 X 9,,Crn1 — 2mC}.

Case 2. The number of zero points of D(€) in Ze N Hoy N Ho.
Since a point p € Z¢ N Hoo N Hy is given by coordinates (3.5), we can easily see
that the number of the elements in Z¢ N Hoo N Hy i 2/n+1C,. Hence, by Theorem 3.5,

we have

(4.7) > multy(Ze, D) > 6m(m — )apms1Cim
p€Z§nHooﬂH0

+ ) (4m® —8m+2+2d(p))d(p),
PEZeNHooNHo

(4.8) d(p) = %multp(Zg, Hy) — 1.

Case 3. The number of zero points of D(€) in (Ze N Hy)\Hoo.

Set 7(p) = mult,(Z¢, Hy) for a point p € (Z¢NHp)\ Hso. Since Z¢ and Hy properly
intersect by the second statement in Theorem 2.6, we can apply the Bézout theorem [3]
to a pair (Zg¢, Hp) and we obtain

(4.9) > muly(Ze, Ho) =2
p€Z§nHo

Hence we get
Yoo =2 = > (2+2d(p)

= 22m—|—1 — 22m+10m -2 Z d(p)
pEZ§ﬂHOOﬂH0

(4.10)
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Then it follows from Theorem 3.5 and (4.10) that we have the estimate

> mult,(Z¢, D) > > 27(p)(m — 1)2

pe(ZﬁmHO)\Hoo pe(ZgﬂHo)\Hoo
=2m—-1° > 7(p)
(4.11) pE(ZeNHo)\Hoo
=2(m—1)% (2*"T! — 25,110y

—4m-17° > dp).

pEZ§ﬂHOOﬂH0

Summing up, we have
(4.12)
NT; < 4m(m —1)2*™ —2(m + 1)(2m + 1)(22™ — 22,,Cn—1 — 2mCin)

—6m(m = Domi1Crm — > (4m® —8m + 2+ 2d(p))d(p)
p€Z§ﬂHmﬂHo

—2(m —1)? (22" = 2941C) + (4m* — 8m + 4) Z d(p)

p€Z€ﬂHmﬂH0

=2((3m* 4+ 5m + 4)2,,Crn—1 + (M® + 2m + 3)2,,Cpy — 3(m + 1)2°™)
-2 > (dp)-Ddp)

p€Z€nHoonH0

- 2((2m2 4 3m 4 3)am1Con — 3(m + 1)22m) 2 S (dp) - 1)dp).
PEZeNH oo NHy

Therefore we have obtained the first assertion and we can easily see that the second
assertion follows from Theorems 3.2, 3.5 and 3.8. O

§4.2. A formula for NY5,,

We assume that | = 2m is even.

Theorem 4.2.  Assume oo € P\EZl. Then we have the estimate

(4.13) NT, < (2m(2m 1) (27:) - 3m22m).

There exists, in particular, a hypersurface E in P such that the equality in (4.11) holds
fora ¢ E.

Proof. Note that, in this case, the degree of Z¢ is 22 and that of the discriminant
D(€) is 2m(m — 1) by Lemma 2.5. Hence we have

(4.14) > multy(Ze, D) = 2m(m — 1) x 2°™.
pEZ§
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Let us calculate the number of the irrelevant zero points of 15|Z§. For the even

case, the following estimate follows from Theorem 3.8,

Z multp(Zg, ﬁ) > Z 4 x l(p)Cg

PEZ:NHoo,l(p)>1 PEZ:NHoo,l(p)>1

=4 > kCy X 2m1Ch
(4.15) 2<k<m
=4m(2m + 1) Z 2m—1Ck
0<k<m-—2
=4m(2m + 1)(22™ 2 — 5, _1Cr1).

Therefore we have

NT; < 2m(m — 1)2*™ —4m(2m + 1)(2*" 2 — 9, 1Cp_1)
(4.16) =4m(2m + 1)om 1Cpm_1 — 3m2*™
=2m(2m + 1)2, Gy — 3M22™.

We have obtained the first assertion and we can easily see that the second assertion
holds by Theorem 3.8. U
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