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On algebraic solutions to Painlevé VI

By

Katsunori IWASAKI *

Abstract

We announce some results which might bring a new insight into the classication of

algebraic solutions to the sixth Painlevé equation. They consist of the rationality of parameters,

trigonometric Diophantine conditions, and what the author calls the Tetrahedral Theorem

regarding the absence of algebraic solutions in certain situations. The method is based on

fruitful interactions between the moduli theoretical formulation of Painlevé VI and dynamics
on character varieties via the Riemann‐Hilbert correspondence.

§1. Introduction

All algebraic solutions to the Gauss hypergeometric equation were classied by H.A.

Schwarz [29] in 1873. After him this classiaction has been known as Schwarz�s list. On

the other hand the sixth Painlevé equation is known as a nonlinear generalization of

the Gauss equation. So we are naturally led to the problem of classifying all glgebraic
solutions to Painlevé VI. This problem is still open (as of this writing) and there is a

vast literature on this theme including [1, 2, 4, 5, 7, 10, 11, 12, 13, 14, 20, 21, 24, 31].
The attempt at solving this problem could be entitled Towards a nonlinear Schwarz�s

list as P. Boalch employs these words as the title of his survey [6], in which the current

states of the subject are nicely presented. The aim of this article is to announce some

results which might bring a new insight into this subject.
The above‐mentioned problem for Painlevé VI is closely related to a problem from

topology, that is, to classifying all finite orbits of the mapping class group action on

certain character varieties, where the Painlevé‐equation side and the character‐variety
side are connected by the so‐called Riemann‐Hilbert correspondence. Our philosophy
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is that working on both sides together, going back and forth between them, should be

more fruitful than working on only one side of them. The mixture of methods from both

sides should go much farther than either side could go by itself. The main results of

this article are the rationality of parameters (5), trigonometric Diophantine conditions

(6), and what the author calls the Tetrahedral Theorem (10) which is concerned with

the absence of algebraic solutions in certain situations.

The contents of this article are based on the following talks by the author: (1)
a series of talks at IRMAR, l�Université de Rennes, March, 2008. The author thanks

S. Cantat and F. Loray for stimulating discussions; (2) a talk at the Conference on

Exact WKB Analysis and Microlocal Analysis in RIMS, Kyoto, May, 2008. This article

is a contribution to its Proceedings; (3) a talk at the International Conference \backslash \backslash From

Painlevé to Okamoto� in The University of Tokyo, June, 2008. A full account of this

announcement will be given in [18].

Note. After this article had been submitted to the Editor, a preprint [22] giv‐

ing a complete classication of algebraic solutions was posted in the \mathrm{e}‐Print ArXiv by
O. Lisovyy and Y. Tykhyy. Their approach is quite straightforward. First, they use

trigonometric Diophantine conditions to show that all monodromy data that can lead to

finite orbits necessarily belong to an explicitly dened finite set (with two exceptions),
and then all possibilities are checked by computers. Hearing of their work, the author

puts this note here instead of revising the Introduction to a large extent.

§2. Dynamics on Character Varieties

Let X be a real orientable closed surface with a finite number of punctures. By de‐

nition a relative SL_{2}() ‐character variety of X is the moduli space of Jordan equivalence
classes of representations into SL_{2}() of the fundamental group $\pi$_{1}(X) with prescribed
local representations around the punctures. Hereafter a relative \mathrm{S}\mathrm{L}() ‐character va‐

riety is simply referred to as a character variety. It is acted on by the mapping class

group of X in a natural manner.

In this article we are interested in the basic case where X is the quadruply‐

punctured sphere. In this case the character varieties are realized as the four‐parameter

family of complex affine cubic surfaces S( $\theta$)=\{x=(x_{1}, x_{2}, x_{3})\in \mathbb{C}_{x}^{3} : f(x,  $\theta$)=0\}
parametrized by  $\theta$= (; $\theta$_{2}, $\theta$_{3}, $\theta$_{4})\in $\Theta$:=\mathbb{C}_{ $\theta$}^{4} ,

where f(x,  $\theta$) is dened by

f(x,  $\theta$):=x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-$\theta$_{1}x_{1}-$\theta$_{2}x_{2}-$\theta$_{3}x_{3}+$\theta$_{4}.

The surface S( $\theta$) is \mathrm{a}(2,2,2) ‐surface, that is, the deninig function f(x,  $\theta$) is a quadratic

polynomial in each variable x_{i}(i=1,2,3) . Thus the line through a point x\in S( $\theta$)
parallel to the x_{i} ‐axis passes through a unique second point x'=$\sigma$_{i}(x)\in S( $\theta$) . This
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\mathrm{x} ‐axis

Figure 1. Involutions on the (2, 2, 2)‐surface S( $\theta$)

induces an involutive automorphism $\sigma$_{i} : S( $\theta$)\rightarrow S( $\theta$) for each i=1
, 2, 3 (see Figure 1).

Let G be the group generated by these three involutions. Then it turns out that the

generators have no other relations than the trivial ones $\sigma$_{1}^{2}=$\sigma$_{2}^{2}=$\sigma$_{3}^{2}=1 . Namely,

G:=\langle$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}\rangle=\langle$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}|$\sigma$_{1}^{2}=$\sigma$_{2}^{2}=$\sigma$_{3}^{2}=1\rangle(\sim S( $\theta$) .

Each element  $\sigma$\in G can be written in a unique way as a word  $\sigma$=$\sigma$_{i_{1}}$\sigma$_{i_{2}}\cdots$\sigma$_{i_{n}} in the

alphabet \{$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}\} such that the consecutive indices i_{ $\nu$} and i_{ $\nu$+1} are all distinct. Let

G(2) denote the subgroup of all even words in G . It is an index‐two normal subgroup
of G . In the present case the mapping class group action is realized as the group action

G(2)\mathrm{c}\sim S( $\theta$) . Now we are interested in the following problem.

Problem 1. Classify all finite orbits of the action G(2)\mathrm{c}\sim S( $\theta$) .

Let V=\{ $\theta$\in $\Theta$ :  $\Delta$( $\theta$)=0\} be the discriminant locus of the family of cubics S( $\theta$)
parametrized by  $\theta$\in $\Theta$ ,

where  $\Delta$( $\theta$) is the discriminant of f(x,  $\theta$) as a polynomial of x.

For any  $\theta$\in V the surface S( $\theta$) has at most four simple singulatities. Let

(2.1)  $\varphi$:\overline{S}( $\theta$)\rightarrow S( $\theta$)

be an algebraic minimal desingularization. Then the action G\mathrm{c}\sim S( $\theta$) lifts to the smooth

surface \overline{S}( $\theta$) in a unique way and Problem 1 is rened into the following problem.

Problem 2. Classify all finite orbits of the lifted action G(2)\mathrm{c}\sim\overline{S}( $\theta$) .

It is easy to see that the singular points of S( $\theta$) are exactly the fixed points of the

action G(2)\mathrm{c}\sim S( $\theta$) so that the exceptional set \mathcal{E}( $\theta$)\subset\overline{S}( $\theta$) is invariant under the lifted

action G(2)\mathrm{c}\sim\overline{S}( $\theta$) . Problem 2 is finer than Problem 1 to the extent that Problem 2

demands to classify finite orbits on the exceptional set \mathcal{E}( $\theta$) . But this extra task is not

so heavy as will be explained in §4. So one can safely say that the two problems are

approximately the same.
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§3. The Sixth Painlevé Equation

The sixth Painlevé equation \mathrm{P}() is a Hamiltonian system with a complex time

variable z\in Z :=\mathbb{P}^{1}-\{0, 1, \infty\} and unknown functions q=q(z) and p=p(z) ,

\displaystyle \frac{dq}{dz}=\frac{\partial H( $\kappa$)}{\partial p}, \frac{dp}{dz}=-\frac{\partial H( $\kappa$)}{\partial q},
depending on complex parameters  $\kappa$ in the 4‐dimensional affine space

\mathcal{K}:=\{ $\kappa$=($\kappa$_{0}, $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4})\in \mathbb{C}_{ $\kappa$}^{5}:2$\kappa$_{0}+$\kappa$_{1}+$\kappa$_{2}+$\kappa$_{3}+$\kappa$_{4}=1\},

where the Hamiltonian H( $\kappa$)=H(q, p, z; $\kappa$) is given by

z(z-1)H( $\kappa$)=(q_{0}q_{z}q_{1})p^{2}-\{$\kappa$_{1}q_{1}q_{z}+($\kappa$_{2}-1)q_{0}q_{1}+$\kappa$_{3}q_{0}q_{z}\}p+$\kappa$_{0}($\kappa$_{0}+$\kappa$_{4})q_{z}

with q_{ $\nu$}:=q-v for v\in\{0, z, 1\} . It is known that \mathrm{P}() has the Painlevé property in Z,
that is, any meromorphic solution germ to \mathrm{P}() at a base point z\in Z admits a global

analytic continuation along any path in Z emanating from z as a meromorphic function.

In fact, this property is a natural consequence of our solution to the Riemann‐Hilbert

problem based on a moduli theoretical formulation of the sixth Painlevé equation (see
[15, 16]). For the Painlevé equation we are interested in the following problem.

Problem 3. Classify all algebraic solutions to \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) .

For the current states of the problem we refer to the nice survey article [6]. We

also consider a closely related problem (Problem 4 below, which turns out to be an

equivalent problem). Fix a base point z\in Z and let \mathcal{M}_{z}() be the set of all meromorphic
solution germs to \mathrm{P}() at the point z . Thanks to the Painlevé property, any germ

Q\in \mathcal{M}_{z}() can be continued analytically along any loop  $\gamma$\in$\pi$_{1}(Z, z) into a second

germ $\gamma$_{*}Q\in \mathcal{M}_{z}( $\kappa$) . This denes an automorphism $\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\mathcal{O} and hence a group

action $\pi$_{1}(Z, z)\mathrm{c}\sim \mathcal{M}_{z} called the nonlinear monodromy action.

Problem 4. Classify all finite orbits of the action $\pi$_{1}(Z, z)\mathrm{c}\sim \mathcal{M}_{z}() .

Since any algebraic solution to \mathrm{P}() has only finitely many local branches at the

base point z which are permuted by the $\pi$_{1}(Z, z) ‐action, there is the natural inclusion:

{germs at z of algebraic solutions to \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) }
(3.1)

\mapsto {finite $\pi$_{1}(Z, z) ‐orbits on \mathcal{M}_{z} ()}

One may be worried about the difference of the two sets. In fact there is no difference.

Theorem 3.1 ([17]). The inclusion (3.1) is surjective and hence Problems 3 and

4 are equivalent.
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Figure 2. The Riemann‐Hilbert correspondence in the parameter level

There is a small gap in an argument of [17], which is to be filled in [18].

§4. Riemann‐Hilbert correspondence

In order to connect Problem 2 with Problem 3 (or equivalently with Problem 4),
we review the Riemann‐Hilbert correspondence [15, 16, 17]. It exists in the parameter

level and in the moduli level.

Firstly, the parameter space \mathcal{K} is acted on by the affine Weyl group W(D_{4}^{(1)}) of type

D_{4}^{(1)} and the Riemann‐Hilbert correspondence in the parameter level is a holomorphic

map rh: \mathcal{K}\rightarrow $\Theta$ that is a branched  W(D_{4}^{(1)}) ‐covering ramifying along Wal1 (D_{4}^{(1)}) and

mapping it onto the discriminant locus  V\subset $\Theta$ of the family of cubic surfaces, where

Wal1 (D_{4}^{(1)}) is the union of all reecting hyperplanes for the reection group W(D_{4}^{(1)})
(see Figure 2). Secondly, developing a suitable moduli theory [15, 16] allows us to

realize the set \mathcal{M}_{z}( $\kappa$) as the moduli space of (certain) stable parabolic connections and

thereby to provide it with the structure of a smooth quasi‐projective rational surface.

The Riemann‐Hilbert correspondence (in the moduli level),

(4.1) \mathrm{R}\mathrm{H}_{z, $\kappa$} : \mathcal{M}_{z}( $\kappa$)\rightarrow S( $\theta$) ,  Q\mapsto $\rho$ ,
with  $\theta$=\mathrm{r}\mathrm{h}( $\kappa$) ,

is dened to be the holomorphic map sending each connection Q to its monodromy

representation  $\rho$ up to Jordan equivalence. A basic fact for the map (4.1) is the following.

Theorem 4.1 ([15, 16 The Riemann‐Hi lbert correspondence (4.1) is a proper

surjection that yields an analytic minimal resolution of simple singularities.

By the minimality of the resolution, the Riemann‐Hilbert correspondence (4.1)
uniquely lifts to a biholomorphism \overline{\mathrm{R}\mathrm{H}}_{z, $\kappa$} : \mathcal{M}_{z}( $\kappa$)\rightarrow\overline{S}( $\theta$) such that the diagram

\mathcal{M}_{z}( $\kappa$)\rightarrow^{\overline {}\mathrm{R}\mathrm{H}_{z,, $\kappa$}}\overline{S}( $\theta$)
\Vert \downarrow $\varphi$

\mathcal{M}_{z}( $\kappa$)\rightarrow^{\mathrm{R}\mathrm{H}_{z,, $\kappa$}}S( $\theta$)
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is commutative. The lifted Riemann‐Hilbert correspondence \overline{\mathrm{R}\mathrm{H}}_{z, $\kappa$} gives \mathrm{a} (strict) con‐

jugacy between the nonlinear monodromy action $\pi$_{1}(Z, z)\mathrm{c}\sim \mathcal{M}_{z}( $\kappa$) and the mapping
class group action G(2)\mathrm{c}\sim\overline{S}( $\theta$) . In these circumstances the exceptional set \mathcal{E}_{z}( $\kappa$)\subset
\mathcal{M}_{z}( $\kappa$) of the resolution (4.1) just corresponds to the exceptional set \mathcal{E}( $\theta$)\subset\overline{S}( $\theta$) of the

resolution (2.1). We remark that \mathcal{E}_{z}( $\kappa$) parametrizes the so‐called Riccati solutions to

\mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) , namely, those solutions which can be written in terms of the Riccati equations
associated with Gauss hypergeometric equations (see [15]).

The lifted Riemann‐Hilbert correspondence and Theorem 3.1 yield the diagram:

{germs at z of algebraic solutions to \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) } = {finite $\pi$_{1}(Z, z) ‐orbits on \mathcal{M}_{z} ()}

bijectionI \overline{\mathrm{R}\mathrm{H}}_{z, $\kappa$}
{finite G(2) ‐orbits on \overline{S}( $\theta$) }

In summary, Problem 1 is almost equivalent to Problem 2, while Problems 2, 3 and 4

are all equivalent. The difference of Problem 2 from Problem 1 amounts to classifying
all Riccati algebraic solutions to \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) ,

which in turn can be reduced to classifying all

algebraic solutions to the Gauss hypergeometric equation, the classical problem settled

by H.A. Schwarz [29].

§5. Rationality of Parameters

An algebraic solution to \mathrm{P}() is said to be of degree d if it has exactly d local

branches (germs) at a base point z\in Z . On the other hand a finite G(2) ‐orbit in \overline{S}( $\theta$) is

said to be of degree d if it has exactly d elements. Note that these two concepts of degree
are consistent under the lifted Riemann‐Hilbert correspondence \overline{\mathrm{R}\mathrm{H}}_{z, $\kappa$} : \mathcal{M}_{z}( $\kappa$)\rightarrow\overline{S}( $\theta$)
with  $\theta$=\mathrm{r}\mathrm{h}( $\kappa$) . Naturally one may guess that those parameters  $\kappa$\in \mathcal{K} for which \mathrm{P}()
admits at least one algebraic solutions of degree d\geq d_{0} should have a very

\backslash 

sparse�

distribution, for some (perhaps reasonably large) integer d_{0} . Actually, with the choice

of d_{0}=7 ,
this guess is true in the following sense.

Theorem 5.1. We have the following rationality conditions.

(1) If \mathrm{P}_{\mathrm{V}\mathrm{I}}() admits an algebraic solution of degree d\geq 7 ,
then $\kappa$_{0}, $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3} and $\kappa$_{4}

must be rational numbers.

(2) If \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) admits an algebraic solution of degree d\geq 1 without univalent local

branches at any fixed singular point z=0 , 1, \infty
,

then  d$\kappa$_{0}, d$\kappa$_{1}, d$\kappa$_{2}, d$\kappa$_{3} and

d$\kappa$_{4} must be integers.

Since \mathbb{Q}\subset \mathbb{R} , assertion (1) of Theorem 5.1 allows us to concentrate our attention

on the real part \mathcal{K}_{\mathbb{R}} of the complex affine space \mathcal{K} ,
as far as algebraic solutions of degree

d\geq 7 are concerned.
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Example 5.2. In order to illustrate assertion (2) of Theorem 5.1, we look at the
\backslash Klein solution� constructed by Boalch [4] based on the Klein complex reection group

of order 336 in SL_{3}

\left\{\begin{array}{l}
z=\frac{(7s^{2}-7s+4)^{2}}{s^{3}(4s^{2}-7s+7)^{2}},\\
q=\frac{(s+1)(7s^{2}-7s+4)}{2s(s^{2}-s+1)(4s^{2}-7s+7)},\\
p=-\frac{2s(s+1)(s-2)(2s-1)(s^{2}-s+1)(4s^{2}-7s+7)}{21(s-1)^{2}(4s^{2}-s+4)(7s^{2}-7s+4)},
\end{array}\right.
for which d=7 and  $\kappa$= (1/7,1/7,1/7,1/7,2/7). This solution has ramication indices

3, 2, 2 (a partition of d=7 ) at each of the three fixed singular points z=0 , 1, \infty.

Namely, it has one local branch of valency 3 and two local branches of valency 2 (and
hence no univalent local branch) at each fixed singular point. Observe that d$\kappa$_{i}(i=
0 , 1, 2, 3, 4) are integers.

Two remarks are in order regarding Theorem 5.1.

Remark 5.3. For i=1
, 2, item (i) corresponds to assertion (i) of Theorem 5:1.

(1) One may ask why condition d\geq 7 is imposed and how the assertion is derived. \mathrm{A}

brief answer to these questions will be given in §7 (especially in Lemma 7.1 and the

discussions thereafter). One may also ask what happens if d\leq 6 . It is known that

there exist three exceptional classes of non‐Riccati algebraic solutions to \mathrm{P}()
for which  $\kappa$ depends continuously on some complex parameters. All of them are

simple solutions of degree  d\leq 4 . Except for these solutions, it seems that assertion

(1) remains true for all non‐Riccati algebraic solutions of degree d\leq 6 , although a

further check is needed to swear its truth (see also Remark 6.2).

(2) Assertion (2) is not necessarily true if the solution under consideration has a uni‐

valent local branch at a fixed singular point. This can be seen by the \backslash \backslash 

generic�
icosahedral solution of Boalch [5],

\left\{\begin{array}{l}
z=\frac{27s^{5}(s^{2}+1)^{2}(3s-4)^{3}}{4(2s-1)^{3}(9s^{2}+4)^{2}},\\
q=\frac{3s(3s-4)(s^{2}+1)(3s^{2}-2s+4)}{2(2s-1)^{2}(9s^{2}+4)},\\
p=-\frac{(2s-1)^{2}(9s^{2}+4)(9s^{2}+3s+10)}{90s(3s-4)(s^{2}+1)(3s^{2}-3s+2)(3s^{2}+2s+2)},
\end{array}\right.
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for which d=12 and  $\kappa$= (1/5,11/60,17/60,7/60,1/60). This solution has ram‐

ication indices (partitions of d=12 ) :5 , 3, 2, 2 at z=0, \infty ; and 3, 3, 2, 2, 1,
1 at  z=1 . So it has two univalent local branches at z=1 . Observe that d$\kappa$_{i}

(i=0,1,2,3,4) are not integers. We remark that assertion (2) is valid for any

d\geq 1 (not only for d\geq 7).

§6. Trigonometric Diophantine Conditions

The rationality result in Theorem 5.1 is stated in the Painlevé‐equation side.

Switching to the character‐variety side, we present another result showing that the

coordinates of any finite orbit of degree d\geq 7 are tied down by very tight conditions,

namely, by certain trigonometric Diophantine conditions. In this section we work on

S( $\theta$) downstairs rather than \overline{S}( $\theta$) upstairs so that the degree means the number of points
in the finite G(2) ‐orbit on S( $\theta$) under consideration.

Theorem 6.1. Given any  $\theta$=($\theta$_{1}, $\theta$_{2}, $\theta$_{3}, $\theta$_{4})\in \mathbb{C}^{4} , let \mathcal{O}\subset S( $\theta$) be a (possibly
innite) G(2) ‐orbit of degree d\geq 7^{l}?D Then the orbit \mathcal{O} is finite if and only if

(6.1) \mathcal{O}\subset S( $\theta$)\cap(2\cos $\pi$ \mathbb{Q})^{3}

If this is the case then $\theta$_{1}, $\theta$_{2}, $\theta$_{3} and $\theta$_{4} must be real cyclotomic integers such that

-8<$\theta$_{1}, $\theta$_{2}, $\theta$_{3}<8, -28<$\theta$_{4}<28.

As a corollary, if \mathcal{O}\subset S( $\theta$) is a finite orbit of degree d\geq 7 ,
then  $\theta$ must be real and

the orbit \mathcal{O} must lie in the real part S( $\theta$)_{\mathbb{R}} of the complex surface S( $\theta$) . Thus it is also

important to investigate the real dynamics on the real cubic surface S( $\theta$)_{\mathbb{R}} with  $\theta$\in \mathbb{R}^{4}.

Remark 6.2. All finite orbits of degree d\leq 4 has been classied by Cantat

and Loray [9]. During the author�s visit to Rennes in March 2008, having heard of

the author�s results for degree d\geq 7 ,
F. Loray carried out computer experiments to

determine all finite orbits of degrees 5 and 6. These orbits correspond to some algebraic
solutions by Theorem 3.1 and actually it seems that they correspond to already known

algebraic solutions (a further careful check is needed).

Remark 6.3. It follows from (6.1) in Theorem 6.1 that enumerating all finite

orbits of degree d\geq 7 on our character varieties can be embedded into the problem of

solving the trigonometric Diophantine equation

(6.2) \displaystyle \sum_{k=1}^{8}\cos $\pi \xi$_{k}=0,  $\xi$=($\xi$_{1}, \ldots, $\xi$_{8})\in \mathbb{Q}^{8}
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Figure 3. The 27 lines viewed from the tritangent lines at innity

Similar but more tractable trigonometric Diophantine equations have appeared in many

places (see e.g. [27, 28] and the references therein). Although it is harder than those,

equation (6.2) still seems to be a tractable problem in computer‐assisted mathematics.

However, even if one succeeds in enumerating all solutions to equation (6.2), there

remains the extrajob of identifying which solutions are relevant to our original problem.
In any case the author prefers more insightful geometric approaches.

The proof of Theorem 6.1 relies largely on the direct manipulations of the dynamics
on the character variety, but it also depends heavily on Theorem 5.1, which in turn is

obtained by the combination of some main discussions on the Painlevé‐equation side

and some auxiliary discussions on the character‐variety side. Behind this complicated
circle of ideas, there exists the geometry of cubic surfaces, especially the conguration
of lines on a cubic surface. In the next section we give a brief account of this, leaving a

full explanation in [18].

§7. Lines on a Cubic Surface

Compactify the affine cubic surface S( $\theta$) by the standard embedding  S( $\theta$)\mapsto\overline{S}( $\theta$)\subset
\mathbb{P}^{3} . Then \overline{S}( $\theta$) is obtained from S( $\theta$) by adding the tritangent lines at innity, L=

L_{1}\cup L_{2}\cup L_{3} ,
as in Figure 3. For simplicity we assume that  $\theta$=\mathrm{r}\mathrm{h}() with  $\kappa$\in

\mathcal{K}-\mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) . Then the projective cubic surface \overline{S}( $\theta$) is smooth and it contains
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twenty‐seven lines, whose conguration is depicted in Figure 3. The lines at innity,

L_{1}, L_{2}, L_{3} ,
are three among them. The remaining twenty‐four lines are divided into

three groups, each consisting of eight lines, according to the three lines at innity.

Namely, for each i=1
, 2, 3, the line L_{i} meets exactly eight lines, say, L_{ij}^{ $\epsilon$} as in Figure 3,

where j=1 , 2, 3, 4 and  $\epsilon$=\pm . This group of eight lines are divided into four intersecting

pairs \{L_{ij}^{+}, L_{ij}^{-}\}_{j=1}^{4} . Any other pair from the same group has no intersections.

Assume that a finite G(2) ‐orbit \mathcal{O}\subset S( $\theta$) be given. To it we can associate an

\backslash 

ON/OFF� data (a, b, c)\in\{0 ,
1 \}^{} as follows. As for a=(a_{1}, a_{2}, a_{3}, a_{4})\in\{0, 1\}^{4} , put

a_{j}:=\left\{\begin{array}{ll}
1 (\mathrm{O}\mathrm{N}); & \mathrm{i}\mathrm{f} \mathcal{O} \mathrm{p}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t} L_{1j}^{+}\cap L_{1j}^{-},\\
0 (\mathrm{O}\mathrm{F}\mathrm{F}); & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e};
\end{array}\right.
for j=1 , 2, 3, 4. In a similar manner we can dene b=(b_{1}, b_{2}, b_{3}, b_{4})\in\{0, 1\}^{4} and

c= (c_{1}, c_{2}, C3, c_{4})\in\{0, 1\}^{4} by replacing L_{1j}^{\pm} with L_{2j}^{\pm} and L_{3j}^{\pm} repectively. Then certain

arguments that are too involved to be included here lead to the matrix

M(a, b, c):=\left(\begin{array}{llll}
d_{1} & a_{3}-a_{4} & c_{1}-c_{2} & b_{1}-b_{2}\\
a_{3}-a_{4} & d_{2} & b_{3}-b_{4} & c_{3}-c_{4}\\
c_{1}-c_{2} & b_{3}-b_{4} & d_{3} & a_{1}-a_{2}\\
b_{1}-b_{2} & c_{3}-c_{4} & a_{1}-a_{2} & d_{4}
\end{array}\right),
where d_{i}(i=1,2,3,4) are nonnegative integers dened by

\left\{\begin{array}{l}
d_{1}:=a_{3}+a_{4}+b_{1}+b_{2}+c_{1}+c_{2},\\
d_{2}:=a_{3}+a_{4}+b_{3}+b_{4}+c_{3}+c_{4},\\
d_{3}:=a_{1}+a_{2}+b_{3}+b_{4}+c_{1}+c_{2},\\
d_{4}:=a_{1}+a_{2}+b_{1}+b_{2}+c_{3}+c_{4}.
\end{array}\right.
It turns out that the column vector  $\kappa$={}^{t}($\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4}) must satisfy a linear equation

(7.1) [dI_{4}-M(a, b, c)] $\kappa$=\mathrm{a} certain integer vector;

where d is the order of the orbit \mathcal{O} and I_{4} is the identity matrix of rank 4.

Lemma 7.1. For any (a, b, c)\in\{0 ,
1 \}^{}, M(a, b, c) has no eigenvalues \geq 7.

This is veried by a computer check exhausting all 2^{12}=4096 possibilities for the

data (a, b, c) . It is also observed that actually some of 0 , 1, 2, 3, 4, 5, 6 are eigenvalues of

the matrix M(a, b, c) . The author is indebted to A. Maruyama and T. Uehara for the

job of these verications. We are now able to give the following.

Sketch of the proof of Theorem 5.1. If d\geq 7 then Lemma 7.1 implies that

dI_{4}-M(a, b, c) is invertible in rational numbers since it is an integer matrix, so that
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1_{\bullet} \bullet^{2}
\bullet

..  0
\bullet\emptyset

3 \bullet_{4} 3^{\mathrm{O}} \mathring{4}
A_{1}^{\oplus 4} A_{3}

I=\{0, 1, 2, 3\} I=\{1, 2, 3, 4\} I=\{0, 1, 2\}

Figure 4. Some D_{4}^{(1)} ‐strata and their abstract Dynkin types

equation (7.1) can be settled to conclude that  $\kappa$ is a vector with rational entries. This

proves assertion (1). Let us proceed to assertion (2). Put  z_{1}=0, z_{2}=1 and Z3=\infty.

It is shown in [17] that for each i=1
, 2, 3 the line L_{i} at innity is attached to the fixed

singular point z_{i} and the univalent solution germs at z_{i} are in one‐to‐one correspondence
with those intersection points L_{ij}^{+}\cap L_{ij}^{-}, j\in\{1 , 2, 3, 4 \} ,

which lie in the affine part S( $\theta$) of

\overline{S}( $\theta$) . Thus if the algebraic solution under consideration has no univalent local branches

at any fixed singular point, then we must have (a, b, c)=(0,0,0) and M(a, b, c)=O.
Then equation (7.1) implies that  d $\kappa$ must be an integer vector, from which assertion

(2) readily follows. Note that this argument is valid for an arbitrary integer  d\geq 1. \square 

This section ends with three remarks. Firstly, even if d\leq 6 some useful information

about  $\kappa$ can be extracted from equation (7.1). Secondly, if  $\kappa$\in \mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) then the

line conguration is degenerate and the situation becomes more complicated than the

case  $\kappa$\in \mathcal{K}-\mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) discussed above, but basically a similar argument is feasible.

Finally we refer to the original paper [18] for the most important thing: why and how

equation (7.1) occurs.

§8. Stratications of Parameters

We dene a stratication of \mathcal{K} in terms the proper subdiagrams of the Dynkin

diagram D_{4}^{(1)} . To this end we index the nodes of the Dynkin diagram D_{4}^{(1)} by the

numbers 0 , 1, 2, 3, 4, where 0 represents the central node (see Figure 4). Let \mathcal{I} be the

set of all proper subsets of \{0 , 1, 2, 3, 4 \} including the empty set \emptyset . For each  I\in \mathcal{I} , put

(8.1) \left\{\begin{array}{l}
\overline{\mathcal{K}}_{I}= \mathrm{t}\mathrm{h}\mathrm{e} W(D_{4}^{(1)})- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{t} \{ $\kappa$\in \mathcal{K} : $\kappa$_{i}=0(i\in I)\},\\
\mathcal{K}_{I}=\overline{\mathcal{K}}_{I}- \cup \overline{\mathcal{K}}_{J},\\
|J|=|I|+1\\
D_{I}= \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{D}\mathrm{y}\mathrm{n}\mathrm{k}\mathrm{i}\mathrm{n} \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m} \mathrm{o}\mathrm{f} D_{4}^{(1)} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} \mathrm{h}\mathrm{a}\mathrm{s} \mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s} \bullet \mathrm{e}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{y} \mathrm{i}\mathrm{n} I.
\end{array}\right.
It turns out that for any pair (I; I')\in \mathcal{I}\times \mathcal{I} , either \mathcal{K}_{I}=\mathcal{K}_{I'} or \mathcal{K}_{I}\cap \mathcal{K}_{I'}=\emptyset holds so

that the partition \{\mathcal{K}_{I}\}_{I\in \mathcal{I}} denes a stratication of \mathcal{K} ,
called the D_{4}^{(1)} ‐stratication.
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\emptyset\rightarrow A_{1}\rightarrow A_{1}^{\oplus 2}\rightarrow A_{1}^{\oplus 3}\rightarrow A_{1}^{\oplus 4}

\downarrow \downarrow \downarrow
 A_{2}\rightarrow A_{3} \rightarrow D_{4}

Figure 5. Adjacency relations among the F_{4}^{(1)} ‐strata

For  I=\emptyset one has the big open stratum \mathcal{K}_{\emptyset}=\mathcal{K}-\mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) and other examples of

strata are given in Figure 4.

The automorphism group of Dynkin diagram D_{4}^{(1)} is the symmetric group S_{4} of

degree 4 acting by permuting the nodes 1, 2, 3, 4 while fixing the central node 0.

The group W(D_{4}^{(1)}) extended by S_{4} is the affine Weyl group W(F_{4}^{(1)}) of type F_{4}^{(1)}.
A coaser stratication of \mathcal{K} can be dened in the same way as in the case of D_{4}^{(1)_{-}}
stratication by replacing the group W(D_{4}^{(1)}) with W(F_{4}^{(1)}) in (8.1). It is called the

F_{4}^{(1)} ‐stratication. Note that the F_{4}^{(1)} ‐stratication encodes only the abstract Dynkin

type of the subdiagram D_{I} ,
while the D_{4}^{(1)} ‐stratication encodes not only the abstract

Dynkin type of D_{I} but also the inclusion patern D_{I}\mapsto D_{4}^{(1)} ,
a kind of marking. Thus the

F_{4}^{(1)} ‐strata can be indexed by the abstract Dynkin subdiagrams of D_{4}^{(1)} . The adjacency
relations among them are given in Figure 5, where *\rightarrow** indicates that the stratum

**\mathrm{i}\mathrm{s} in the closure \mathrm{o}\mathrm{f}*.

§9. On Various Strata

Theorems 5.1 and 6.1 are results that can be stated without refering to the strati‐

fication. Besides them, there are such results that differ stratum by stratum. A factor

that might cause such a difference is the topology (or perhaps the shape) of the real

character variety S( $\theta$)_{\mathbb{R}} (see [3]). On one hand the topology changes as the stratum

varies and on the other hand the dynamics of the mapping class group action on S( $\theta$)_{\mathbb{R}}
is a priori dened by the space S( $\theta$)_{\mathbb{R}} itself, so that the topology or the shape of the

space should have a strong inuence on the dynamics.
We focus our attention on the F_{4}^{(1)} ‐strata of positive codimensions. A careful

inspection shows that it is natural to divide those strata into two sequences (Figure 5):

(S1) A_{1}^{\oplus 2}\rightarrow A_{1}^{\oplus 3}\rightarrow A_{1}^{\oplus 4} , (S2) A_{1}\rightarrow A_{2}\rightarrow A_{3}\rightarrow D_{4}.

In this section we are concerned with the strata belonging to the former sequence (S1).

Example 9.1 (Stratum of type A_{1}^{\oplus 4} ). This is the locus where the classically
well‐known Picard solutions exist (see [25] ) ?\mathrm{D} The corresponding character variety S( $\theta$)
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dense four ends tend to in nity

Figure 6. Real Cayley cubic S( $\theta$)_{\mathbb{R}} with four A_{1} ‐singularities

is the Cayley cubic, with parameters  $\theta$=(0,0,0, -4) . The Picard solutions can be set‐

tled by quadrature in terms of the Legendre family of elliptic curves. However the way in

which they are integrated is irreducible in the sense of Nishioka [26] and Umemura [30],
but reducible in the sense of Casale [8] and Malgrange [23] (see Cantat and Loray [9] ) ?\mathrm{D}

This world is amenable to torus structures in two ways. Firstly an elliptic curve is a

(real) torus and secondly the Cayley cubic enjoys \mathrm{a} (complex) orbifold torus structure?C

S( $\theta$)\cong(\mathbb{C}^{\times})^{2}/ ( \mathrm{a}\mathrm{n} involution), where the four A_{1} ‐singularities (all real) just come from

the four fixed points of the involution. On this stratum there are countably many al‐

gebraic solutions, which correspond to the finite‐order points of elliptic curves?D The

finite orbits on the Cayley cubic are dense in the unique bounded connected component

of the real Cayley cubic S( $\theta$)_{\mathbb{R}} with the four singular points removed (see Figure 6).

Example 9.2 (Stratum of type A_{1}^{\oplus 3} ). This is the locus discussed by Dubrovin

and Mazzocco [12], although they made use of a different parametrization of the charac‐

ter variety. On this stratum they showed that there are exactly five algebraic solutions

up to some equivalence.

Example 9.3 (Stratum of type A_{1}^{\oplus 2} ). This stratum is not well understood yet.
We content ourselves with giving an example, the orbit in Figure 7. It is a finite G‐orbit

(also a G(2)‐orbit) of degree 6 with parameters  $\theta$=(2\sqrt{2},2\sqrt{2},3,4)\in $\Theta$ ,
which is the

rh‐image of  $\kappa$=(1/4,0,0,1/12,5/12)\in \mathcal{K} , certainly a point of type A_{1}^{\oplus 2}

§10. Tetrahedral Theorem

The strata belonging to the sequence (S2) admit a unied treatment.
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$\sigma$_{1}, $\sigma$_{2}

C)

(\sqrt{2}, \sqrt{2},0)

$\sigma$_{3\mathrm{I}}
(0, \sqrt{2},2)\underline{$\sigma$_{3}}(0, \sqrt{2},1)\underline{$\sigma$_{1}}(\sqrt{2}, \sqrt{2},1)\underline{$\sigma$_{2}}(\sqrt{2},0,1)\underline{$\sigma$_{3}}(\sqrt{2},0,2)

C) C) C) C)

$\sigma$_{1}, $\sigma$_{2} $\sigma$_{2} $\sigma$_{1} $\sigma$_{1}, $\sigma$_{2}

Figure 7. A finite orbit of degree 6 on the stratum of type A_{1}^{\oplus 2}

(1)‐strata along sequence (S2) skeletons of tetrahedron

one stratum of abstract type \mathrm{A} one 3‐cell

four strata of abstract type \mathrm{A} four faces

six strata of abstract type \mathrm{A} six edges

four strata of abstract type \mathrm{D} four vertices

Table 1. A parallelism in adjacency relations

Theorem 10.1. On any F_{4}^{(1)} ‐stratum belonging to the sequence (S2), there is

no non‐Riccati algebraic solutions of degree d\geq 7 without univalent local branches at

any fixed singular point.

This theorem can be used to classify all algebraic solutions on the strata belonging
to the sequence (S2). We may refer to Theorem 10.1 as the Tetrahedral Theorem for

the following reasons.

Remark 10.2 (Parallelism). There is a parallelism as in Table 1 between the ad‐

jacency relations for the D_{4}^{(1)} ‐strata along the sequence (S2) and those for the skeletons

of the (regular) tetrahedron. This parallelism is not by chance. Behind it there exists an

interesting story starting with the algebraic geometry of Painlevé VI and ending up with

some elementary geometry of a regular tetrahedron of edge length \sqrt{2} . Indeed, in the

course of establishing Theorem 10.1 we come across the regular tetrahedron in Figure
8 (right), which lies in the 3‐dimensional space with coordinates (m_{0}/d, m_{1}/d, m_{\infty}/d) ,
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(0; 1; 1)

(1; 0; 1)

(1; 1; 0)

(0;0;0)

\mathrm{P}_{3}

All edges are of length \sqrt{2}

Figure 8. Tetrahedron for the Tetrahedral Theorem

where d is the degree of the algebraic solution under consideration and (m_{0}, m_{1}, m_{\infty}) is

a triplet of positive integers encoding certain information of how the algebraic solution

branches at the fixed singular points z=0 , 1, \infty . A full account can be found in [18].

We explain what kind of elementary geometry comes up. Let  T=\mathrm{P}_{1}\mathrm{P}_{2}\mathrm{P}_{3}\mathrm{P}_{4}\subset \mathbb{R}^{3}
be a regular tetrahedron with edge length \sqrt{2} as in Figure 8 (left);  C=\mathrm{Q}\mathrm{P}_{1}\mathrm{P}_{2}\mathrm{P}_{3}\mathrm{P}_{4}\subset
\mathbb{R}^{4} the cone over the base T with side lengths \overline{\mathrm{Q}\mathrm{P}}_{i}=r_{i} for i=1

, 2, 3, 4, as in Figure

9; and let \mathrm{R} be the orthogonal projection of the vertex \mathrm{Q} down to the 3‐space \mathbb{R}^{3} that

contains the tetrahedron T . Moreover let \vec{\mathrm{R}} and \vec{\mathrm{P}_{i}} denote the position vectors of the

points \mathrm{R} and \mathrm{P}_{i} respectively. Write

\vec{\mathrm{R}}=$\alpha$_{1}\mathrm{P}_{1}+$\alpha$_{2}\mathrm{P}_{2}+$\alpha$_{3}\mathrm{P}_{3}+$\alpha$_{4}\mathrm{P}_{4}\rightarrow\rightarrow\rightarrow\rightarrow,
in terms of the barycentric coordinates  $\alpha$=($\alpha$_{1}, $\alpha$_{2}, $\alpha$_{3}, $\alpha$_{4})\in \mathbb{R}^{4} where $\alpha$_{1}+$\alpha$_{2}+$\alpha$_{3}+

$\alpha$_{4}=1 . In the Painlevé situation, T is the tetrahedron of Figure 8 (right) and the

vertices \mathrm{P}_{i}(i=1,2,3,4) are just those of the latter tetrahedron. A basic fact we need

is the following lemma.

Lemma 10.3. If the side lengths r_{i}(i=1,2,3,4) are chosen as

(10.1) \left\{\begin{array}{l}
r_{1}^{2}=($\kappa$_{1}-1)^{2}+$\kappa$_{2}^{2}+$\kappa$_{3}^{2}+$\kappa$_{4}^{2},\\
r_{2}^{2}=$\kappa$_{1}^{2}+($\kappa$_{2}-1)^{2}+$\kappa$_{3}^{2}+$\kappa$_{4}^{2},\\
r_{3}^{2}=$\kappa$_{1}^{2}+$\kappa$_{2}^{2}+($\kappa$_{3}-1)^{2}+$\kappa$_{4}^{2},\\
r_{4}^{2}=$\kappa$_{1}^{2}+$\kappa$_{2}^{2}+$\kappa$_{3}^{2}+($\kappa$_{4}-1)^{2},
\end{array}\right.
with  $\kappa$= (; $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4})\in \mathcal{K}_{\mathbb{R}} , then

(10.2) \displaystyle \overline{\mathrm{Q}\mathrm{R}}^{2}=$\kappa$_{0}^{2}, $\alpha$_{i}=$\kappa$_{i}+\frac{$\kappa$_{0}}{2} (i=1,2,3,4) .
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\mathrm{Q}

Figure 9. 4‐dimensional cone C over the tetrahedron T

It is difficult to explain in short words why the choice (10.1) is natural in our

situation and we refer to [18] for a detailed explanation. Anyway, in the course of

establishing Theorem 10.1 we encounter a sort of territory problem, where the territory
of the vertex \mathrm{P}_{i} is the 3‐dimensional open ball B_{i}:=B(\mathrm{P}_{i}, r_{i}) of radius r_{i} with center

at the point \mathrm{P}_{i} . To explain what this problem is all about, we begin by stating a key
observation in the following lemma.

Lemma 10.4. If \mathrm{P}_{\mathrm{V}\mathrm{I}}() with  $\kappa$\in \mathcal{K}_{\mathbb{R}} admits a non‐Riccati algebraic solution

without univalent local branches at any fixed singular point, then the balls B_{i}(i=
1

, 2, 3, 4) must have at least one points in common.

As the contraposition of this lemma, if the four balls have no points in common

then there is no algebraic solution with the prescribed property. Now a natural question
is when they have points in common and when not. Let us restrict our attention to the

case where the point \mathrm{R} lies in the interior of T
,
that is, where the barycentric coordinates

 $\alpha$=($\alpha$_{1}, $\alpha$_{2}, $\alpha$_{3}, $\alpha$_{4}) satisfy the inequalities

(10.3) $\alpha$_{i}>0 (i=1,2,3,4) .

In this case, if the balls B_{i}(i=1,2,3,4) have at least one points in common, then \mathrm{R}

must be such a point in common. With this fact we are able to give the following.

Sketch of the proof of Theorem 10.1. The proof is by contradiction. Assume

that \mathrm{P}() has a non‐Riccati algebraic solution of degree d\geq 7 without univalent local

branches at any fixed singular point. Then we must have  $\kappa$\in \mathcal{K}_{\mathbb{R}} from Theorem 5.1.
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After applying a suitable Bäcklund transformation we may assume that  $\kappa$ lies in the

(closed) fundamental  W(D_{4}^{(1)}) ‐alcove \{ $\kappa$\in \mathcal{K}_{\mathbb{R}} : $\kappa$_{i}\geq 0(i=0,1,2,3,4 Now assume

that  $\kappa$ lies on the stratum of type  A_{1} . Then there is a unique index i_{0}\in\{0 , 1, 2, 3, 4 \}
such that $\kappa$_{i_{0}}=0 and $\kappa$_{i}>0 for the remaining indices i . After applying a further

Bäcklund transformation we may assume that i_{0}=0 , namely, that $\kappa$_{0}=0 and $\kappa$_{i}>0

for i=1
, 2, 3, 4. So it follows from formula (10.2) that

(10.4) \overline{\mathrm{Q}\mathrm{R}}=0, $\alpha$_{i}=$\kappa$_{i}>0 (i=1,2,3,4) .

The former condition in (10.4) means that \mathrm{R}=\mathrm{Q} and hence \overline{\mathrm{R}\mathrm{P}}_{i}=\overline{\mathrm{Q}\mathrm{P}}_{i}=r_{i} so that

\mathrm{R} is a point of the boundary sphere \partial B_{i} . Since B_{i} is an open ball, \mathrm{R} does not belong
to B_{i} . On the other hand the latter condition in (10.4) means that condition (10.3) is

satised so that \mathrm{R} must belong to B_{i} ,
a contradiction. Similar arguments are feasible

on the other strata of the sequence (S2). \square 

§11. The Big Open

On the big open \mathcal{K}_{\emptyset}=\mathcal{K}-\mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) we are still distant from the complete

classication, but we are already able to conne all finite orbits into a rather thin

subset of the real character variety S( $\theta$)_{\mathbb{R}} (see [18]). In dealing with this stratum it is

necessary to distinguish the two subsets Wal1 (D_{4}^{(1)}) and Wal1 (F_{4}^{(1)}) of the parameter

space \mathcal{K} , where the former is the union of all reecting hyperplanes for the reection

group W(D_{4}^{(1)}) and the latter is its counterpart for the group W(F_{4}^{(1)}) . Note that

there is the strict inclusion Wal1 (D_{4}^{(1)})\subset \mathrm{W}\mathrm{a}\mathrm{l}1(F_{4}^{(1)}) . In the parameter level almost all

algebraic solutions on this stratum seem to exist on the set Wal1 (F_{4}^{(1)})-\mathrm{W}\mathrm{a}\mathrm{l}1(D_{4}^{(1)}) .

In fact, Boalch�s \backslash \backslash 

generic� icosahedral solution [5] (see also item (2) of Remark 5.3) is

the only instance outside Wal1 (F_{4}^{(1)}) known so far (as of September 10, 2008).
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