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Isolated periodic solutions to Painlevé VI equation

By

Katsunori IWASAKI * and Takato UEHARA**

Abstract

In [5] we solved the problem of counting the number of isolated periodic solutions to the

sixth Painlevé equation along a given loop for the generic parameters. In this article we show

how to settle it for the nongeneric parameters, using the general theory of area‐preserving
surface dynamics developed in [6], which is applied to the birational map on a desingularized
cubic surface obtained from the monodromy map of th Painlevé equation through the Riemann‐

Hilbert correspondence.

§1. Introduction

This article aims to outline a solution to the problem of counting the number of

isolated periodic solutions to the sixth Painlevé equation along a given loop. In [5]
we were able to solve this problem for the generic parameters by using the classical

Lefschetz fixed point formula. However, it was left open for the nongeneric parameters

because there may be periodic solutions parametrized by a curve and this fact prevents

us from applying the classical Lefschetz formula. Even the Atiyah‐Bott formula, which

allows the presence of periodic curves, does not work in the current situation because the

monodromy map of the Painlevé equation is area‐perserving. Against this background,
S. Saito�s fixed point formula [7] is very appropriate for our purpose. Actually, based

on his formula, we have developed a general theory of area‐preserving surface dynamics
in [6]. Now our problem can be settled completely by applying this theory to the

birational map on a desingularized cubic surface obtained from the monodromy map of

the Painlevé equation through the Riemann‐Hilbert correspondence.
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singularities

rst exponent

second exponent

difference

Table 1. Riemann scheme: $\kappa$_{i} is the difference of the second exponent from the first.

§2. Main Result

The sixth Painlevé equation \mathrm{P}() is the following Hamiltonian system of differ‐

ential equations with an independent variable z\in Z :=\mathbb{P}^{1}\backslash \{0, 1, \infty\} and unknown

functions (q,p)=(q(z),p(z)) :

\displaystyle \frac{dq}{dz}=\frac{\partial H( $\kappa$)}{\partial p}, \frac{dp}{dz}=-\frac{\partial H( $\kappa$)}{\partial q},
where  $\kappa$\in \mathcal{K}:=\{ $\kappa$= (; $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4})\in \mathbb{C}^{5} : 2$\kappa$_{0}+$\kappa$_{1}+$\kappa$_{2}+$\kappa$_{3}+$\kappa$_{4}=1\} is complex

parameters and the Hamiltonian H( $\kappa$)=H(q,p, z; $\kappa$) is given by

z(z-1)H( $\kappa$)=(q_{0}q_{1}q_{z})p^{2}-\{$\kappa$_{1}q_{1}q_{z}+($\kappa$_{2}-1)q_{0}q_{1}+$\kappa$_{3}q_{0}q_{z}\}p+$\kappa$_{0}($\kappa$_{0}+$\kappa$_{4})q_{z},

with q_{ $\nu$}:=q-v for v\in\{0, 1, z\} . Let \mathcal{M}_{z}() be the set of all meromorphic solution

germs to \mathrm{P}() at a base point z\in Z . In [2, 3, 4] the set \mathcal{M}_{z}() is realized as the moduli

space of certain stable parabolic connections and thereby provided with the structure

of a smooth quasi‐projective rational surface. Here a stable parabolic connection is a

rank 2 vector bundle with a Fuchsian connection and a parabolic structure, having the

Riemann scheme as in Table 1 and satisfying a sort of stability condition in geometric
invariant theory. The parameter $\kappa$_{i} is the difference of the second exponent from the

first one at the regular singular point t_{i} (so $\lambda$_{i} is uniquely determined from $\kappa$_{i} ). It is

known that \mathcal{M}_{z}() is isomorphic to the space obtained from an 8‐point blow‐up of the

Hirzebruch surface of degree 2 by removing its unique effective anti‐canonical divisor.

Next, we review the concept of Riemann‐Hilbert correspondence. Each stable

parabolic connection restricts to a flat connection on \mathbb{P}^{1}\backslash \{0, 1, z, \infty\} and induces the

Jordan equivalence class of its monodromy representation. In our case, the moduli

space of monodromy representations is isomorphic to an affine cubic surface S( $\theta$) which

depends on complex parameters  $\theta$\in $\Theta$:=\mathbb{C}^{4} (see (4.1) for its explicit form) and the

Riemann‐Hilbert correspondence is formulated as a holomorphic map

(2.1) \mathrm{R}\mathrm{H}_{z, $\kappa$} : \mathcal{M}_{z}( $\kappa$)\rightarrow S() ;  $\theta$=\mathrm{r}\mathrm{h}( $\kappa$) ,
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Figure 1. Three basic loops in Z :=\mathbb{P}^{1}\backslash \{0, 1, \infty\}

where rh : \mathcal{K}\rightarrow $\Theta$ is a holomorphic map between the parameter spaces, called the

Riemann‐Hilbert correspondence in the parameter level. The cubic surface  S( $\theta$) admits

at most four simple singularities and the Riemann‐Hilbert correspondence (2.1) is a

proper surjective map that is an analytic minimal resolution of singularities, whose

exceptional set \mathcal{E}_{z}( $\kappa$) parametrizes the so‐called Riccati solutions to \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) .

Due to the Painlevé property, any solution germ Q\in \mathcal{M}_{z}( $\kappa$) can be continued

analytically along any loop  $\gamma$\in$\pi$_{1}(Z, z) . Associating to each Q the result of its analytic
continuation $\gamma$_{*}Q ,

we can dene an automorphism

$\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\rightarrow\simeq \mathcal{M}_{z}( $\kappa$) , Q\mapsto$\gamma$_{*}Q,

called the (nonlinear) monodromy map of \mathrm{P}() along  $\gamma$ . Then an element of \mathcal{M}_{z}( $\kappa$) is

said to be a periodic solution of period n\in \mathbb{N} along  $\gamma$ if it is a periodic point of period
 n of the monodromy map $\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\rightarrow \mathcal{M}_{z}() .

Denition 2.1. A loop  $\gamma$\in$\pi$_{1}(Z, z) is said to be elementary if  $\gamma$ is conjugate
to the loop  $\gamma$_{i}^{m} for some index i\in\{1 , 2, 3 \} and some integer m\in \mathbb{Z} ,

where $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3}\in

$\pi$_{1}(Z, z) are loops as in Figure 1. Otherwise,  $\gamma$ is said to be non‐elementary.

If the loop  $\gamma$ is elementary, then the map  $\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\rightarrow \mathcal{M}_{z}() preserves a fibration

and exhibits a very simple dynamical behavior; this case is not so interesting whatever.

Thus from now on we assume that  $\gamma$ is non‐elementary. Then it turns out that any

periodic point in \mathcal{M}_{z}( $\kappa$)\backslash \mathcal{E}_{z}() is isolated, but an irreducible component of \mathcal{E}_{z}() can

be a periodic curve of the map $\gamma$_{*} . So it is natural to introduce the set

\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$; $\kappa$):=\{Q\in \mathcal{M}_{z}( $\kappa$)\backslash \mathcal{E}_{z}( $\kappa$):$\gamma$_{*}^{n}Q=Q\}
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and call it the set of isolated periodic solutions of period n along  $\gamma$ . Then the problem
is to estimate its cardinality \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$) counted with multiplicity and our main theorem

is stated in the following manner.

Theorem 2.2. Assume that the loop  $\gamma$\in$\pi$_{1}(Z, z) is non‐elementary. Then the

set \mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$; $\kappa$) is finite for every n\in \mathbb{N} and there exists a quadratic unit  $\lambda$( $\gamma$) , called the

first dynamical degree of  $\gamma$ , such that  $\lambda$( $\gamma$)\geq 3+2\sqrt{2} and

|\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$; $\kappa$)- $\lambda$( $\gamma$)^{n}|\leq O(1) , (n\rightarrow\infty) ,

where there exists an algorithm to calculate  $\lambda$( $\gamma$) explicitly fr om the reduced word of a

minimal representative of the conjugacy class of  $\gamma$ . In particular, \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$; $\kappa$) grows

exponentially with the exponential growth rate  $\lambda$( $\gamma$) .

The algorithm mentioned in Theorem 2.2 is just the same as is given in [5].

§3. Saito�s Formula and Isolated Periodic Points

As is mentioned in Introduction, Saito�s fixed point formula is a powerful tool for

counting the number of isolated periodic points of area‐preserving surface maps with

periodic curves. In this section, we recall a birational version of Saito�s formula briey
and give an estimate of the number of isolated periodic points, derived from this formula.

One can consult the paper [6] for a full discussion. Let X be a smooth projective surface

and f : X\rightarrow X be a birational map. Then f has the indeterminacy set I(f) ,
so that

we need to dene the notions of fixed point and fixed curve more precisely. In general,
fixed point formulas guarantee that for a map f : X\rightarrow X on a compact manifold X,
the Lefschetz number

L(f) :=\displaystyle \sum_{i=0}^{\dim X}(-1)^{i}\mathrm{T}\mathrm{r}[f^{*}:H^{i}(X, \mathbb{Z})\rightarrow H^{i}(X, \mathbb{Z})]
is the sum of the multiplicities of intersection between the graph $\Gamma$_{f}\subset X\times X of f and

the diagonal  $\Delta$\subset X\times X . Note that the graph $\Gamma$_{f^{-1}} of f^{-1} is the reection of $\Gamma$_{f} in

the diagonal  $\Delta$ . In particular, we have  $\Gamma$_{f}\cap $\Delta$=$\Gamma$_{f-1}\cap $\Delta$ and may express an element

of  $\Gamma$_{f}\cap $\Delta$ as the form (f^{-1}(x), x)\in X\times X with x\in X\backslash I(f^{-1}) . So we assume the

separation condition

(3.1) I(f)\cap I(f^{-1})=\emptyset,

and adopt the following denitions of fixed point and fixed curve for a birational map

f:X\mathcal{O}.



Isolated periodic solutions To PainlevÉ VI equation 73

Denition 3.1. A point x\in X is called a fixed point if x belongs to the set

(3.2) X_{0}(f):=X_{0}^{\mathrm{o}}(f)\cup X_{0}^{\mathrm{o}}(f^{-1}) ,

where X_{0}^{\mathrm{o}}(f) is the set of all points x\in X\backslash I(f) fixed by f . Moreover let X_{1}(f) be the

set of all irreducible curves C in X such that C\backslash I(f) is fixed pointwise by f . An element

C of X_{1}(f) is called a fixed curve. It is easy to see that the denition is symmetric,

namely, X_{1}(f)=X_{1}(f^{-1}) .

In order to state Saito�s fixed point formula, we need to dene suitably local indices

v_{x}(f) and v_{C}(f) at the fixed points x\in X_{0}(f) and at the fixed curves C\in X_{1}(f) ,
and

to divide the set X_{1}(f) into two disjoint subset:

(3.3) X_{1}(f)=X_{I}(f)\square  X_{II}(f) ,

where X_{I}(f) and X_{II}(f) are the sets of fixed curves of type I and of type II respectively.
These denitions are given in the paper [6] (see also [7]). Now a birational version of

Saito�s fixed point formula is described as follows.

Theorem 3.2 ([7]). Let f:X\rightarrow X be a nontrivial birational map on a smooth

projective surfa ce X. If the map f satises the separation condition (3. 1), then the

Lefschetz number of f is expressed as

(3.4) L(f)=\displaystyle \sum_{x\in X_{0}(f)}v_{x}(f)+\sum_{C\in X_{I}(f)}$\chi$_{C}\cdot v_{C}(f)+\sum_{C\in X_{II}(f)}$\tau$_{C}\cdot v_{C}(f) ,

where  $\chi$ c is the Euler characteristic of the normalization of C\in X_{I}(f) and $\tau$_{C} is the

self‐ intersection number of C\in X_{II}(f) .

We can estimate the number of isolated periodic points of a birational surface map

f : X\mathcal{O} by applying the fixed point formula (3.4). Before stating this estimate, we

introduce the two concepts of first dynamical degree and algebraic stability.

Denition 3.3. Let f:X\rightarrow X be a birational map.

1. The first dynamical degree  $\lambda$(f) is dened by

 $\lambda$(f):=\displaystyle \lim_{n\rightarrow\infty}\Vert(f^{n})^{*}|_{H^{1,1}(X)}\Vert^{1/n}\geq 1,
where || || is an operator norm on \mathrm{E}\mathrm{n}\mathrm{d}H^{1,1}(X) . It is known that the limit exists,

 $\lambda$(f) is independent of the choice of the norm || || and invariant under birational

conjugation.
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2. The map f is said to be algebraically stable (AS for short) if the condition (f^{n})^{*}=
(f^{*})^{n} : H^{1,1}(X)\rightarrow H^{1,1}(X) holds for any n\in \mathbb{N} . It is known that f is AS if and

only if

(3.5)  f^{-m}I(f)\cap f^{n}I(f^{-1})=\emptyset for every  m, n\geq 0.

Note that if f is AS, then  $\lambda$(f) can be easily calculated as the spectral radius of

f^{*}|_{H^{1,1}(X)}.

Let \mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}(f) be the set of isolated periodic points of f with (not necessarily primi‐

tive) period n
,

and \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}(f) be its cardinality counted with multiplicity, namely, it is

given by

(3.6) \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}(f)= \displaystyle \sum  v_{x} (fn).
x\in \mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}(f)

Then we have the following theorem.

Theorem 3.4 ([6]). Let X be a smooth projective surfa ce and f : X\rightarrow X be an

AS birational map that satises the fo llowing three conditions.

(1) The first dynamical degree of f is greater than one:  $\lambda$(f)>1.

(2) The birational map f preserves a nontrivial meromorphic 2‐form  $\omega$.

(3) The pole divisor ( $\omega$)_{\infty} of  $\omega$ does not contain a periodic curve of type  I.

Then f has at most finitely many irreducible periodic curves and must have innitely

many isolated periodic points. Moreover the number of isolated periodic points of period
n

,
counted with multiplicity, is estimated as

|\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}(f)- $\lambda$(f)^{n}|\leq\left\{\begin{array}{ll}
O(1) & (X\sim no Abelian surfa ce);\\
4 $\lambda$(f)^{n/2}+O(1) & (X\sim an Abelian surfa ce);
\end{array}\right.
where X\sim Y indicates that X is birationally equivalent to Y and O(1) is a bounded

function of n\in \mathbb{N}.

In our situation the fixed point formula (3.4) is applied to the iterates f^{n} of a map

f ,
so that the separation condition (3.1) should be replaced by its iterated version:

 I(f^{n})\cap I(f^{-n})=\emptyset for every  n\in \mathbb{N}.

It is easy to see that this condition follows from the AS condition (3.5).
Theorem 3.4 is a consequence of Theorem 3.2 and the following four ingredients.

1. For a fixed curve C\in X_{II}(f) of type II, the indices v_{C}(f^{n}) are independent of n\in \mathbb{N}.

Similalrly, for a fixed point x\in X_{0}(f) through which at least one fixed curve of

type II passes, the indices v_{x}(f^{n}) are independent of n\in \mathbb{N}.
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2. If  $\lambda$(f)>1 ,
then f has at most  $\rho$(X)+1 periodic curves of type II with mutually

distinct primitive periods, where  $\rho$(X) is the Picard number of X.

3. Assume that f preserves some nontrivial meromorphic 2‐form  $\omega$
,

and  C\in X_{1}(f) is

a fixed curve such that  $\omega$ has no pole of order  v_{C}(f) along C . Then C is of type II.

4. Assume that f is a AS birational map with  $\lambda$(f)>1 . Then the following estimate

holds:

|L(f^{n})- $\lambda$(f)^{n}|\leq\left\{\begin{array}{ll}
O(1) & (X\sim \mathrm{n}\mathrm{o} \mathrm{A}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{n} \mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e});\\
4  $\lambda$(f)^{n/2}+O(1) & (X\sim \mathrm{a}\mathrm{n} \mathrm{A}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{n} \mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}):
\end{array}\right.
§4. Dynamics on Cubic Surface

In this section we sketch the proof of Theorem 2.2. The main idea is to turn

our attention from the monodromy map $\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\mathcal{O} to the birational map on the

desingularized cubic surface and to apply Theorem 3.4 to the latter map.

The target of the Riemann‐Hilbert correspondence (2.1) is the affine cubic surface

(4.1) S( $\theta$)=\{x=(x_{1}, x_{2}, x_{3})\in \mathbb{C}^{3}:f(x,  $\theta$)=0\},

where the cubic polynomial f(x,  $\theta$) of x with a parameter  $\theta$= (; $\theta$_{2}, $\theta$_{3}, $\theta$_{4})\in $\Theta$:=\mathbb{C}^{4}
is given by

f(x,  $\theta$)=x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-$\theta$_{1}x_{1}-$\theta$_{2}x_{2}-$\theta$_{3}x_{3}+$\theta$_{4}.

Since S( $\theta$) is \mathrm{a}(2,2,2) ‐surface, namely, the dening equation f(x,  $\theta$) of S( $\theta$) is quadratic
in each variable x_{i} ,

for any point x=(x_{i}, x_{j}, x_{k})\in S( $\theta$) ,
there is a unique second point

x'=(x_{i}', x_{j}, x_{k})\in S( $\theta$) ,
which induces an involution

(4.2) $\sigma$_{i}:S( $\theta$)\rightarrow S( $\theta$) , x\mapsto x'

The biregular map $\sigma$_{i} preserves a natural area form on S( $\theta$) up to sign. More precisely,
we have

(4.3) $\sigma$_{i}^{*}$\omega$_{ $\theta$}=-$\omega$_{ $\theta$},

where $\omega$_{ $\theta$}:=dx_{1}\wedge dx_{2}\wedge dx_{3}/df(x,  $\theta$) is the Poincaré residue for S( $\theta$) ,
which is well‐

dened outside the singularities of S( $\theta$) .

Let G be the group generated by three involutions $\sigma$_{1}, $\sigma$_{2} and $\sigma$_{3} ,
and G(2) be

the index‐two subgroup of G generated by three elements $\sigma$_{1}$\sigma$_{2}, $\sigma$_{2}$\sigma$_{3} and $\sigma$_{3}$\sigma$_{1} . It is

known that G is the universal Coxeter group of rank 3 (see [5], Theorem 4), and is of
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Figure 2. Tritangent lines at innity on \overline{S}( $\theta$)

finite index in the group of polynomial automorphisms of S( $\theta$) (see [1]). Each element

 $\sigma$\in G(2) plays an important role because any nonlinear monodromy $\gamma$_{*} : \mathcal{M}_{z}( $\kappa$)\mathcal{O}
is conjugate to some biregular map  $\sigma$ :  S( $\theta$)\mathcal{O} with  $\sigma$\in G(2) . More precisely, the

monodromy ($\gamma$_{i})_{*}:\mathcal{M}_{z}( $\kappa$)\mathcal{O} along a generator $\gamma$_{i} of  $\pi$(Z, z) is semi‐conjugate to the

map $\sigma$_{i}$\sigma$_{i+1}:S( $\theta$)\mathcal{O} via the Riemann‐Hilbert correspondence (2.1). This fact leads to

the isomorphism of groups

(4.4) $\pi$_{1}(Z, z)\rightarrow G(2) .

We would like to apply Saito�s fixed point formula to a more tractable map  $\sigma$

than a monodromy  $\gamma$_{*} . However, the fact that S( $\theta$) is neither compact nor smooth

prevents us from doing so directly. Therefore we carry out two procedures, that is, \mathrm{a}

compactication \overline{S}( $\theta$) of S( $\theta$) and a desingularization \overline{S}( $\theta$) of \overline{S}( $\theta$) . First, we compactify
the affine cubic surface S( $\theta$) by a standard embedding

S( $\theta$)\mapsto\overline{S}( $\theta$)\subset \mathbb{P}^{3}, x=(x_{1}, x_{2}, x_{3})\mapsto[1:x_{1}: x_{2}:x_{3}].

The intersection of \overline{S}( $\theta$) with the plane at innity is the union L of three lines

L_{i}=\{[X_{0}:X_{1}:X_{2}:X_{3}]\in \mathbb{P}^{3}:X_{0}=X_{i}=0\} (i=1,2,3) .

The set L=L_{1}\cup L_{2}\cup L_{3} is independent of the parameters, called the tritangent lines at

innity, and the intersection point of L_{j} and L_{k} is denoted by p_{i} for \{i, j, k\}=\{1 , 2, 3 \}
as in Figure 2. Note that the surface \overline{S}( $\theta$) is smooth in a neighborhood of L for any

 $\theta$\in $\Theta$ (see [5], Lemma 2), and thus the type of singularities of \overline{S}( $\theta$) coincides with that

of S( $\theta$) . In particular, the singularities of \overline{S}( $\theta$) are simple.
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Next we consider an algebraic minimal resolution of singularities

(4.5)  $\pi$:\overline{S}( $\theta$)\rightarrow\overline{S}( $\theta$)

with the exceptional set \mathcal{E}( $\theta$) . In the case where \overline{S}( $\theta$) is smooth, put  $\pi$:=\mathrm{i}\mathrm{d}:\overline{S}( $\theta$) :=

\overline{S}( $\theta$)\mathcal{O} for convenience. Each element  $\sigma$\in G uniquely extends to a birational map on

\overline{S}( $\theta$) and this birational map lifts to one on \overline{S}( $\theta$) . We shall use the same notation  $\sigma$

for the biregular map on  S( $\theta$) and the induced birational maps on \overline{S}( $\theta$) and \overline{S}( $\theta$) . Note

that the birational map  $\sigma$ : \overline{S}( $\theta$)\mathcal{O} restricts to an automorphism of \overline{S}( $\theta$)\backslash L.
Recall that the Riemann‐Hilbert correspondence (2.1) is an analytic minimal res‐

olution of simple singularities. Since a minimal desingularization is unique up to iso‐

morphism, \mathrm{R}\mathrm{H}_{z, $\kappa$} lifts to an isomorphism \overline{\mathrm{R}\mathrm{H}}_{z, $\kappa$} : \mathcal{M}_{z}( $\kappa$)\rightarrow\overline{S}( $\theta$)\backslash L\mathrm{s}endin \underline{\mathrm{g}\mathcal{E}_{z}}( $\kappa$)
to \mathcal{E}( $\theta$) and the map $\gamma$_{*}:\mathcal{M}_{z}( $\kappa$)\mathcal{O} is strictly conjugate to  $\sigma$ : \overline{S}( $\theta$)\backslash L\mathcal{O} via \mathrm{R}\mathrm{H}_{z, $\kappa$},
where  $\sigma$ is determined by the isomorphism (4.4). Moreover it is seen that there exists

an element  $\tau$\in G such that $\sigma$' :=$\tau$^{-1} $\sigma \tau$\in G(2) and $\sigma$' : \overline{S}( $\theta$)\mathcal{O} is AS. Then  $\gamma$\in $\pi$(Z, z)
is non‐elementary if and only if the corresponding element $\sigma$' can not be expressed as

$\sigma$'=($\sigma$_{i}$\sigma$_{j})^{l} for some \{i, j, k\}=\{1 , 2, 3 \} and l\in \mathbb{N} . Such an element $\sigma$'\in G(2) is said to

be non‐elementary, too. Let \mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$) be the set of periodic points of  $\sigma$ : \overline{S}( $\theta$)\backslash L\mathcal{O} outside

the exceptional set \mathcal{E}( $\theta$) with (not necessarily primitive) period n . Since $\sigma$' : \overline{S}( $\theta$)\backslash L\mathcal{O}
is strictly conjugate to  $\sigma$ : \overline{S}( $\theta$)\backslash L\mathcal{O} ,

we have \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\gamma$)=\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$)=\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}($\sigma$') .

Therefore our main theorem is reduced to the following theorem.

Theorem 4.1. Assume that  $\sigma$\in G(2) is a non‐elementary AS element. Then

\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$) is a finite set for each n and the cardinality of \mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$) counted with multiplicity
is estimated as

(4.6) |\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$)- $\lambda$( $\sigma$)^{n}|\leq O(1) , (n\rightarrow\infty) ,

where the first dynamical degree  $\lambda$( $\sigma$) is a quadratic unit greater than or equal to 3+2\sqrt{2}
and there exists an algorithm to calculate  $\lambda$( $\sigma$) .

We will prove this theorem by applying Theorem 3.4. To this end, we need to check

the three conditions in Theorem 3.4. The following are the main ideas on how to check

each condition.

(1) Since  $\sigma$ is AS,  $\lambda$( $\sigma$) is calculated as the spectral radius of $\sigma$^{*}:H^{1,1}(\overline{S}( $\theta$))\mathcal{O} . The

cohomology group admits the direct sum decomposition H^{1,1}(\overline{S}( $\theta$))=V\oplus V^{\perp} ,
where

V is the subspace spanned by the lines L_{1}, L_{2}, L_{3} at innity and V^{\perp} is the orthogonal

complement to it with respect to the intersection form. Then it is seen that $\sigma$^{*} preserves

the subspaces V and V^{\perp} ,
and the operator $\sigma$^{*}|_{V}\perp is unitary. In particular, the spectral

radius of $\sigma$^{*}|_{V}\perp is equal to one, and thus the spectral radius of $\sigma$^{*} : H^{1,1}(\overline{S}( $\theta$))\mathcal{O}
coincides with that of $\sigma$^{*}|_{V} . The action $\sigma$^{*} on the subspace V is same whether \overline{S}( $\theta$)
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is smooth or not, and is described in the paper [5]. The description elaborated in [5]
yields the result that  $\lambda$( $\sigma$) is a quadratic unit greater than or equal to 3+2\sqrt{2} and the

algorithm to calculate  $\lambda$( $\sigma$) .

(2) The area form $\omega$_{ $\theta$} on S( $\theta$) induces a meromorphic 2‐form \overline{ $\omega$}_{ $\theta$} on \overline{S}( $\theta$) ,
whose pole

divisor (\overline{ $\omega$}_{ $\theta$})_{\infty} is L_{1}+L_{2}+L_{3} . It follows from the relation (4.3) that the birational map

 $\sigma$ : \overline{S}( $\theta$)\mathcal{O} preserves the meromorphic 2‐form \overline{ $\omega$}_{ $\theta$}.

(3) The third condition is a consequence of the fact that the periodic curves of  $\sigma$ : \overline{S}( $\theta$)\mathcal{O}
are contained in the exceptional set \mathcal{E}( $\theta$) of  $\pi$ : \overline{S}( $\theta$)\rightarrow\overline{S}( $\theta$) . In particular, no irreducible

component of the pole divisor (\overline{ $\omega$}_{ $\theta$})_{\infty}=L_{1}+L_{2}+L_{3} is a periodic curve of  $\sigma$.

Therefore all the conditions of Theorem 3.4 are satised. Since \overline{S}( $\theta$) is birationally

equivalent to no Abelian surface, we have an estimate

|\#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}( $\sigma$)- $\lambda$( $\sigma$)^{n}|\leq O(1) .

On the other hand, the cardinality \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{\mathrm{o}}( $\sigma$) is obtained from \#\mathrm{P}\mathrm{e}\mathrm{r}_{n}^{i}() by subtracting
the indices at the isolated fixed points of $\sigma$^{n} on the tritangent lines L and the exceptional
set \mathcal{E}( $\theta$) . For any m\in \mathbb{N}, $\sigma$^{m} restricted to L has two fixed points p_{i} and p_{j} for some

\{i, j, k\}=\{1 , 2, 3 \} , independent of m
,

in the sense of Denition 3.1 and the local indices

v_{p_{i}}($\sigma$^{m}) and v_{p_{j}}($\sigma$^{m}) turn out to be equal to one. Moreover, since the singularities
of \overline{S}( $\theta$) are simple, the exceptional set \mathcal{E}( $\theta$) is the union of finitely many irreducible

components isomorphic to the projective line \mathbb{P}^{1} . The map  $\sigma$ restricted to \mathcal{E}( $\theta$) is an

automorphism and has finitely many isolated periodic points. It is known that the local

indices at an isolated periodic point with period m are bounded under iterations of $\sigma$^{m}

(see [6], Theorem 7.5 and [8]). Therefore the estimate (4.6) is established by combining
all these observations.
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