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Asymptotic analysis to Goursat problems

By

MASAFUMI YOSHINO*

Abstract

This paper deals with a new proof of solvability and uniqueness of solutions of initial-
boundary value problems via an analytic continuation with respect to a certain parameter in
the equation.

§1. Introduction

Let © = (x1,22) € C? and 833]. = ai Let N > 1 be an integer. For real constants

x; "

a; (x5 =1,2,...,N) let the operator L(J) be given by

N
(1.1) Lo :=0NoN — Z (ajai\’;_jagﬂ + a_jai\’;*jai\;_j) .

X1 X2
j=1

We consider the Goursat problem

(1.2) Lov = f(x), &7 v|x,,:0 =0, (j=0,1,...,N —1;v=1,2),

Ty

where f(x) is a given holomorphic function at the origin # = 0. The problem (1.2) has
a unique holomorphic solution in some neighborhood of the origin if there exists ¢t > 0
such that

N
(1.3) > (lajlt? + la_jlt™7) < 1.

Jj=1

The condition (1.3) is called a spectral condition. This theorem was proved by a ma-
jorant method in [3]. On the other hand, if (1.3) does not hold, then the solvability
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of (1.2) is a delicate problem because small denominator difficulties may enter in the
analysis, which was shown by Leray’s pioneering work (cf. [5]). We also note that, if
a small denominator difficulty occurs, then a majorant method does not work well. In
this note, we present a new method based on an analytic continuation with respect to
a certain parameter in the equation in order to show the solvability and uniqueness of
solutions of (1.2) in case (1.3) does not hold. We note that the above argument can also
be applied to the Diophantine case if we generalize the notion of the so-called Leray-
Pisot function of number theory appropriately. Finally I would like to appreciate the
anonymous referee for suggestions towards the improvement of the redundant argument.

8 2. Spectral radius and asymptotic solutions

In order to construct an asymptotic solution we first transform (1.2) to an equiv-
alent integro-differential equation, and we introduce an asymptotic parameter € in the
equation. For a holomorphic function w(z) near the origin, we define the integration
operator 83;1 by 8gﬁ_jlw(x) = foxj wds;, where the integral in the right-hand side is done
with respect to the j-th variable from the origin 0 to x;. In order to make an asymptotic
analysis we introduce a new parameter ¢ in front of 8% 853\2 in (1.2). Next we introduce
an unknown function u(z) by

v(z) = 9,80, Vu(x), 07 =(9;H)".

Lj

Then (1.2) is written in the following form

(2.1) (e—L)u=Tf,

where
N

(2.2) L= (40,70, +a ;0],0,7).
j=1

We assume that f has the following convergent expansion in e~?

(2.3) f=fo+ fie Tt +foe 2+,

where we assume that f; = f;(z) are holomorphic in some common neighborhood of
the origin x = 0. We construct an asymptotic solution « in the following form

(2.4) u=ug(x)e t +ui(z)e ? +ug(z)e ™+ - -
By substituting (2.4) into (2.1) we obtain the following recurrence relations

U():fo, u1:f1+£f07"'7
(25) un:fn+£fn—l+"'+£nf07 n:1727"'
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In order to study the convergence of the series (2.4) we introduce a function space.
For power series u = ), uqx®/al and ¢(x) = > ¢ox®/a! we say that ¢ is a majorant
series of u and denote it by u < c¢ if there exists ¢ > 0 such that for every v, v =

0,1,2,...,
(D a2 <e( D [6al)

o] =v o] =v

In the following we take
|cx|! x®

) = 2 Fal(jal 1)l

«

For R > 0 let X = Xp be the set of holomorphic functions defined by

(2.6) Xp = {u = Zua% < cp(z) for some ¢ > 0} :

Then |Ju| := inf{c;u < cé(z)} is the norm of u. The space X is a Banach space with
the norm || - ||. It is easy to see that £ is a continuous linear operator on Xg.

Suppose that f; € X (j =0,1,2,...) and Z;'io le| 77| f§]] < co. Then we want to
show that u = Z;X;O e~ u; converges in X if |¢| > ||£]|. Indeed, in terms of (2.5) we
have

(2.7) D1l gl < D el A L=l + -+ 121 fol)
< (Il + A1) 3 el =D fal +--)
<YLl el LN+ - el LN - )
The right-hand side of (2.7) converges if |¢| > ||£]|. It follows that (2.1) has an analytic
solution for every analytic f. Especially, for every homogeneous polynomial f = f; the
equation (2.1) has an analytic solution. Because £ maps every homogeneous polyno-
mial to the one with the same degree, ¢ — L is surjective on the set of homogeneous

polynomials. It follows that it is injective. Therefore every analytic solution of (2.1) is
unique if |e| > ||£]|. Summing up the above we have

Theorem 2.1.  Suppose that || > ||L||. Then (2.1) has a unique analytic solu-
tion in some neighbourhood of the origin x = 0 given by (2.4).

Example 2.2. We consider the operator
(2.8) L=08,"0y, + 0,0,

We can show that ||£|| = 2. As we will see in the following the spectral radius of L is
equal to 2. (cf. [3]).
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In the following we call || £|| the spectral radius of the Goursat problem (2.1). We
see from the above argument that the solution (2.4) is analytic with respect to € in the
domain [e| > ||£||. We shall study the analytic properties of the solution (2.4) in the
set, |e| < [|L]].

8§3. Asymptotic solution and solvability

In order to show the solvability inside the spectral radius, |e| < ||£||, we make the
analytic continuation of u in (2.4) with respect to €. From now we assume that there
exists ng > 0 such that

(3.1) f=fo@) + fi(@)e™ + -+ fao(x)e ™,

for the sake of simplicity. By (2.5), u can be written in the form

(3.2) u= i zn: eI = i d el

n=0 j=0 j—0n>j
_ n—j)—j—1pn—j _ Jj v—1 pv
E:E:w Ni=lpn=ifs = E:g Y eTIL
j=0n>j v>0

By simple calculations we can easily see that, if |¢| > ||£]|, then the right-hand side of
(3.2) is equal to

(3.3) Y el e-L)

We shall make the analytic continuation of u with respect to € inside the spectral
radius. For this purpose we study the spectrum of £ on X. In the following we assume
that a; = a_; for j = 1,2,..., N and a;’s are real. The operator £ maps the set of
homogeneous polynomials of degree v, H, to itself. Hence we consider the restriction
L, of L to H,. We remark that £, has the same expression (2.2). We expand u € H,
and v € H, as u = Zlal=v uer®/al and v = Z|a|:u vox®/al, and we define the inner
product (u,v) := > uTs. Here, for the sake of simplicity we think u, = 0 if o ¢ Z3.
In view of (2.2) the operator 0,0y, induces a shift operator Sy : uq + Ua4o, Where
o = (—n,n). Hence we have

(3.4) (0,107, u,v) = Z SollaUq = ZuaS_ava = (u,0;,0,,"v).

Therefore, it follows from (2.2) and the reality of a; that £, is a self-adjoint operator
on H,. Hence the eigenvalues of £, are real.
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In view of the proof of Theorem 2.1, £, has no eigenvalues if |e| > ||£||. Hence £
has no point spectrum outside the closed interval —||L|| < e < ||[£||. Next we will show
that if e € C\ [—||£|], ||£]|], then it is in the resolvent set. Because £ is a Hermitian
operator on H,, the eigenvalues are contained in the interval —||L|| < e < ||£|. By
diagonalizing ¢ — £ with a unitary operator we see that there exists C' > 0 independent
of v(r =0,1,2,...) such that for every homogeneous polynomial f, of degree v we have

(3.5) Ite = L) full < ClIA-

By multiplying both sides of (3.5) with R”/v! and by summing up with respect to v we
have, for f=>"_f,

RY RY
(3.6) Ie = L)~ fll = Sup —rlte= L7l < C'sup —r el =Clfl.

Therefore u in (3.3) can be analytically continued with respect to € to C\[—||£|[, || £]|]-
We note that (1.2) has a unique holomorphic solution in some neighborhood of the ori-
gin. Summing up the above we have proved

Theorem 3.1.  Suppose that (3.1) holds. Moreover, assume that a; = a_; for
j=1,2,...,N and a;’s are real numbers. Then u in (3.2) can be analytically continued
with respect to € into C\ [—||L]], ||L||] with having values in X, and it gives the unique
holomorphic solution of (2.1) in some neighborhood of the origin x = 0.

§4. Uniform estimates of Toeplitz matrices

In this section we shall prove a theorem which plays an important role in this paper.
Let o2(t) =3, (aje¥'™ +a_;e~*) be the Toeplitz symbol of £ given by (2.2). We set
f(z) =¢e— Zj(ajzj +a_j277). Then we have f(e?™) = & — o,(6). In this section we
assume that a; is a real number. Let £, be the restriction of £ to H,. Let €y denote
the connected unbounded component of the set C\ {o(t);0 <t < 2}. Then we have

Theorem 4.1.  Forn > 0, let V;, be an n-neighborhood of o,([0,2]). Let £ > 0
be such that (o \ V) N {le| < £} # 0. Then there exists an integer vy > 0 independent
of e € (Q\ V) N{le| < £} such that for every e € (o \ V;)) N {le|] < £} and every
v >y, eE — L, is invertible, where E is the identity operator. Moreover, there exists
a constant M > 0 independent of v such that for every v > vy and every homogeneous
polynomial f, of degree v we have

(4.1) I(eE = L) full < MIIfoll,

where the norm is a L?>-norm on a finite dimensional Fuclidian space. The constant M
can be chosen uniformly with respect to € in (Qo \ V) N{le| < £}.
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Proof. We make use of the argument in [1]. Let € € (0\V;)N{|e| < ¢}. The matrix
representation of e E' — L,, coincides with the one for the so-called discrete Wiener-Hopf
equation

1 1 . .
(1.2 5 [ wOFE T =g 0 < k<)
—1
We set u(0) = >y _oure*®™ and g(0) = >°7_, gre’™™. We will show that there exist

vp > 0 and M > 0 such that for all € € (Qp \ V};) N {|e| < £} we have
(4.3) [ull < Mlgll, Vv = .

This shows that the matrix given by (4.2) is invertible. Hence we have the assertion.
By assumption we have f(z) # 0 for |z| = 1 and that the winding number of f(z)
at the origin along |z| = 1 is zero. Hence we have the factorization

N N
(4.4 7™ = ay [T =2 [T = e 7py),
j=1 j=1
where A\, u; € C satisfy
(4.5) ] < <un| <67 <1<do <[ <o < Al

for some ég > 1 independent of € € (Qp \ V;)) N {|e] < £}. We set

N N
(4.6) A=ay [[("" = N;), B:=]]01-e "),
j=1 j=1
and define
(4.7) A:=A"1 B:=B1

We note that f = BA. The equation (4.2) can be written in the form

(4.8) uf =G1 4+ g+ Go,

where

(4.9) Gy = nge’keﬂ, Gy = nge’keﬁ.
v+1 —00

We will show that there exist vy > 0 and Ky > 0 independent of € € (Qp\ V;)) N{le| < ¢}
such that for all v > vy we have

(4.10) IG1A] < Kollgll,  [1G2BIl < Kollgll
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Indeed, if we can show (4.10), then, by multiplying (4.8) with AB we obtain

(4.11) lull < GLAB| + lgAB| + | G2 AB|
— 1Bl | G1 Al + [ ABI 1 Igll + | All s |G B,

where ||h||z1 ==Y, |hy| for h =3 h,e®?". This proves (4.3).

We set
~ 00 ~ ~ —v—1 ~
(4.12) Alv) = Z A ™™ B(v) = Z B, e™mo™.
m=v+1 —0o0

It follows from (4.8) that

(4.13) uA =GB+ gB+ GyB, uB=G1A+ gA+ G,A.
By the first equation of (4.13) we have

(4.14) G2B = —(9B)” — (G1B)” = —(¢9B)” — (G1B(v)) ",

where h™ means the negative part of a Fourier expansion. Hence we have

(4.15) IG2B| < llgB| + [|G1B(v)]
<|Bllzligl + 1B@) Al [GL Al

For any small o > 0 there exists 1 independent of € € (29 \ V;)) N {|e] < £} such that
for every v > vy we have ||B(v)Al|;1 < o. In order to see this it is sufficient to estimate

|B(v)||z1. We have
N

B — H(l _ e—iﬁﬂﬂj)—l'

j=1
Because dg in (4.5) can be taken independent of ¢ € (0 \ V;) N {|e| < €} we see that

| B(v)||z1 tends to zero uniformly in & € (R \ V;,) N {|e] < £} when v tends to infinity.
It follows from (4.15) that

(4.16) 1G2B]| < ||Bllz1llgll + allG1AJl.

By the similar argument, using the fact that uB in (4.13) has zero Fourier coefficients
for k > v we have, when ||A(v)B||11 < o (v > 1p),

(4.17) IG1A| < [ Allz2llgll + allG2B]|.

The number vy can be chosen uniformly with respect to e € (9 \ V;)) N {le] < ¢}. By
(4.16) and (4.17) we have the desired estimates if we take a < 1. We note that the
above argument also shows that M has the desired property. This ends the proof.
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§5. Spectral property

In this section we continue to use the same notation as in §3. We assume that
aj = a_; for j = 1,2,...,N and a;’s are real numbers. In §3 we proved that u in
(2.4) can be analytically continued with respect to e to C\ [—||£|[, ||£]|]. We study the
singularity of u in the set [—| L], ||£||] Let £, denote the restriction of £ to H,. We
denote the eigenvalues of £, by Ap @) with multiplicity where j = 1,2,...,v 4+ 1. We
define pg := sup,, ; |/\,(,J )|. Then we have

Lemma 5.1.  We have || L] = po.

Proof. Because L, is a linear Hermitian operator on a finite dimensional space we
easily see that |[£,| = max; |)\,(,j)| < po. We expand z = Yz, € X as the sum of
homogeneous polynomials x,, of degree v. Because L preserves the set of homogeneous
polynomials, we have

RV
(5.1) ezl =11 Lo < sup (| Ly |

v

R
< Lo sup _'”xy” < POHxH
v v

Hence we have [|L]| < pp. On the other hand, because £ preserves the set of homoge-
neous polynomials, A is an eigenvalue of £. It follows that |)\(‘7 )| < |I£]]. By taking
the supremum of the left-hand side we obtain the converse inequality. This ends the
proof.

We study the spectral set [—pg, po]. We define the Toeplitz symbol o (t) corre-
sponding to £ in (2.2) by replacing the integro-differential operator 0, kak with ekt

(0 <t < 2), namely
N

(5.2) op(t)=2) ajcosmjt, 0<t<2,
j=1

where we recall that a; = a_; and a; is a real number. We set o,([0,2]) := {o2(¢);0 <
t <2}. Then we have

Lemma 5.2.  We have o.([0,2]) C [—po, po)-

Proof. We can easily see that the matrix representation of £, on the basis intro-
duced in (3.4) is a Toeplitz matrix. It follows from Szegd’s theorem (cf. [4]) that the
set of all eigenvalues of £, (v = 0,1,2,...) forms a dense subset of the set o.(]0,2]).
This ends the proof.

We study the analytic continuation of u into [—pg, po].
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Theorem 5.3.  The function u = u(x, ) in (3.2) is a meromorphic function of
e on the open set C\ o,([0,2]) with having values in X.

Proof. Let L, be the restriction of £ to H,. For every n > 0 sufficiently small, let
V,, be an n-neighborhood of o,([0,2]). Because the Toeplitz symbol is real-valued for
0 <t <2, the connected component of C\ o.([0,2]) is equal to C\ o,([0,2]). It follows
from Theorem 4.1 that there exists 1y such that for every v > vy the eigenvalues of £,
is contained in the set V,,. Because L preserves the set of homogeneous polynomials,
every eigenvalue of £, is also an eigenvalue of £, and conversely, every eigenvalue of £
is an eigenvalue of £, for some v. This implies that the set of the point spectrum of £
in C\ V;, is a finite one. Therefore the set of the point spectrum of £ may accumulate
only on o([0,2]).

Next we will show that if e € C\ V,, is not an eigenvalue of £, then it is in the
resolvent set. It follows from Theorem 4.1 that there exists C > 0 independent of
v(vr =0,1,2,...) such that for every homogeneous polynomial f, of degree v we have

(5.3) Ite = L) full < ClIA-

Then by the same argument as in (3.6) we can show that ¢ is in the resolvent set. In
order to show the analyticity in e, we first note that (e — £)~!f, is analytic with respect
to €. We also note that the constant C' in (5.3) is uniform on every compact set in
the complement of the point spectrum of £ in C\ V. It follows that (¢ — £)71f =
>, (e = L)~ f, is an analytic function of e. This ends the proof.

Example 5.4. It follows from Theorem 5.3 that every point in [—pg, po]\o 2 ([0, 2])
belongs either to the resolvent of £ or to the point spectrum of £, which may accumulate
only on o([0,2]).

If £ has the Toeplitz symbol o, (t) = 2cos7t, then we have 0,([0,2]) = [-2,2] =
[—po, po], (cf. Lemma 5.1 and Example 2.2.) If o,(t) has the Toeplitz symbol o, (t) :=
cos it + 2 cos 2wt — cos 3wt, then we have [—po, po] \ o([0,2]) # 0.

Finally we study the spectral set o.(]0,2]) of £ on X.

Theorem 5.5.  The set o.([0,2]) consists of the point spectrum of L and the
residual spectrum of L. The point spectrum is a countable dense subset of o ([0,2]).

Proof. The density of a point spectrum is proved in the proof of Lemma 5.2.
Suppose that ¢ € 0,.([0,2]) is not an eigenvalue of £. By Szegd’s theorem we can
choose a sequence of eigenvalues {e;} of £ such that Loy = ej¢y for some homogeneous
polynomial ¢ of degree v = v(k), ||¢x| = 1, and

(5.4) li]?wk =¢e, v(l)<v(2)<---<vk)<vk+1l)<--
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We define u =), crér(x) € X for some ¢, # 0. Then we have
(e—L)u=> crle —er) o).

Hence, if u is in the domain of (¢ — £)7!, then it follows that

v(k) v(k)

—1 _ |
cklle — x| orll = SUD T ek lle —er| ™ < oo

R

-1 .
55 =0l = s
Because of (5.4), there exists v = Y, dréx such that sup,, [dx|R*™*) /v(k)! < co and v
cannot be arbitrarily approximated in X by the set of u satisfying (5.5). Indeed, the
set of sequences {cx R*®) /u(k)!} which tend to zero is not dense in the set of bounded

1

sequences. This proves that the domain of (¢ — £)~" is not dense. This ends the proof.

§ 6. Diophantine phenomena

In this section we continue to use the same notation as in §5. Let ¢g € R and
0 < 0y < w/2. We define the sector Si(g9) in the upper (lower ) half plane with vertex
at €9 by

(6.1) Si(eg) :={e;|arg(e —eo) F /2| < bp}.
Let £, be the restriction of £ to H,. We denote by ¢,; (j = 1,2,...,v + 1) the

eigenvalues of £, counted with multiplicity. We define the Leray-Pisot function by

(6.2) p(go) := lim inf min |gg — &, ;|*".
V—00 7

We can easily see that 0 < p(g9) < 1. Now we assume that ¢ € 0,([0,2]) and we want
to study the limit
lim  (e—-£L)"'f, feX.

e—¢e0,e€5+ (g0)

Example 6.1. In the case o,(t) = 2cos7t, we have

€vj = 2cos G=12,...,v+1).

v+2

Writing €9 = 2 cos ms we have that

1
(6.3) p(eg) = hyn_lgéf 15;f co8 " — CO8 TS
By simple computations we have
1
(6.4) p(eg) = hyrglorgf 1r}f SR

The Diophantine function (6.4) was introduced by Leray and Pisot. (cf. [6].)
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We will prove

Theorem 6.2.  Suppose that p(eg) > 0. Moreover, assume that ¢ is not an
eigenvalue of L. Let R and R’ satisfy that R' < Rp(gg)%. Then, for every f € Xr we
have

(6.5) lim  (e—L)'f=(e0— L) f, inXp.

e—e0,6€5+ (g0)

Proof. We take R"” such that R'/p(eg) < R” < p(eo)R. Next we take n > 0
sufficiently small such that (R”/R)(p(e0) —n)~! <1 and (R'/R")(p(e0) —n)~! < 1. By
the definition of p(gg) there exists 1y such that, for every v > vy we have

(66) |€0 _gV»jl > (p(g()) _"’7)1/7 .] = 1727"'7V+1'
Because ¢ is not an eigenvalue, there exists K > 0 such that for all v > 0 we have
(67) |€0_€V,j| >K(P(5O)_77)Va ] = 1727"'7V+1'

On the other hand we can easily see that there exists g > 0 independent of j and v
such that

(68) |8—8,/,j| > 50|80 —8V,j| for all € € Si(é“o),j = 1,...,l/+ l,v = 0,1,...

Let f € Xgr. We expand f as the sum of homogeneous polynomials, f = > f,,
where f,, is homogeneous of degree v. We expand f, as f, = > i CujPuj (x), where ¢, ;

(Ilpv,j1l = 1) is the eigenfunction of the eigenvalue €, ; for the Hermitian operator £, .
We have
J

Because ¢, ; and ¢, (k # j) are orthogonal to each other, we have

(6.10) Ie = L) full® = Zlcuyl e —ev; = lewgl®

J

|5—5,,,j|_2.

lbwl?

In terms of (6.7) and (6.8) the right-hand side of (6.10) can be estimated by the following
quantity

(6.11) (Kdo)*(p(e0) — )~ Z ey )7 =

J

(Kd0)2(pleo) —m) >[I 117,

for every € € S1(gg). It follows that

(6.12) I(e = £) £l < (K30) " pleo) = m) “IIfll. v = 0.
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Therefore we have

(613) (e = £)" fllx, =sup -

< (Kd) ™ Sup (p(e0) =) "I/l

O pleo) =) ).

= (K0) " sup ( I£.1
Because (R”/R)(p(eo) — 1)~ ! < 1, we get, from (6.13) that

_ _ RY _
(6.14) (e = L) fllx,m < (Kdo) 1SL1137||fu|| = (K60) | fllxp, €€ Sx(eo).
Hence we have, for € € S1(gp)

(6.15) e = L)' = (0= L) flxp = l(eo —e)(e = L) o = L) fllxp-

In terms of (6.14) with e = gy and the one with R and R” replaced by R” and R/,
respectively, we get, from (6.15)

(6.16) Ie = L) = (0 = £) 7 fllxp < leo — el (K80) [ £l xu-

Hence we obtain (6.5). This ends the proof.

§ 7. Nonsymmetric case

We shall extend Theorem 3.1 to the non Hermitian operator £ with Toeplitz symbol
given by

(7.1) oc(t) =) (aje™" +a_je ™),

n
=1

J

where a;’s are real numbers. We write o,(t) = or(t) + ior(t) with or(t) and or(t)
given by

(7.2) Z (aj +a_j)cosmjt, o Z a_;)sinmjt.

Let L., and L,, be the operators (2.2) with Toeplitz symbols or and oy, respectively.
Then we have

(7.3) L="Ly, +ilsy,.
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Theorem 7.1.  Suppose that (3.1) holds. Moreover, assume that a; is a real
number. Then the solution w in (3.2) is analytically continued with respect to € to the
union of the sets |Je| > ||Lo, || and |Re| > || Lo || with having values in X.

Remark. If L,, =0, then Theorem 7.1 reduces to Theorem 3.1.

Proof. We assume that |Se| > ||£,,]. For 0 < s < 2 we introduce a geodesic
parameter n (n > 0) by

(7.4) e=||Lsp|l ((n+ 1) cos(ms) + insin(ws)) .
Then we have

eE — L = ||Logll(n+ 1) cos(ms)E = Loy + i ([|Lopllnsin(ms) E — Lo, )
(75) :ZHl —I—iHQ,

where F is the identity operator, and where H; and H; are Hermitian operators. Let us
assume that sinms # 0. Then we take n > 0 sufficiently large that ||L,,,||n|sin(7s)| >
|I£o,]]. In view of (7.4) this is possible, because € satisfies that |Se| > ||L,,]|. We can
easily see that Hs is invertible. It follows that e — £ = Hy + i¢H> is invertible because
H, is invertible. Hence ¢ is in the resolvent set.

We will prove that (¢E — L)1 f coincides with the analytic continuation of the
solution (3.2). In view of (7.4) it is sufficient to show this for the parameter 1. Because
the inverse can be constructed by a Neumann series, H; is analytic with respect to .

Indeed we have
(7.6) Hy''= (enE —L,,)” Z g +1’

where ¢ = ||L,, || sin(7s). On the other hand, noting that Hy = (én + ¢)E — L, with
¢ =Lyl cosms we have

o o~ (L)) o on (Lar)”
(77) o= T = @ 2= Lou) 2 G = ¢ 01 2
~ - (EC"I)V _é é C — - (EJI)V
+(6 = Lop) VZ:% (en)v+1 ¢ + cEJ' e Lo ;) (em)v+t

We note that Ly is an Hermitian operator if n is a real number. Moreover Lj is an
analytic function of 7 in some (complex) neighborhood of every point 79 > 0 such that
g0 which corresponds to 1y by (7.4) satisfies |Seg| > || Lo, |-

Next we will prove that (iF + Lo) ! exists and it is given by

oo(—1) ) oo
(7.8) / e Cettode = — / e~ exp(—i€Lo)de,
0 0
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where the integral in the left-hand side is taken along the path which starts from the
origin and goes to infinity along the negative imaginary axis. Because Lg is an Her-
mitian operator, we see that the integral converges. Moreover, we will show that the
integral converges for 1 in some (complex) neighborhood of 79 > 0 such that g9 which
corresponds to 1y by (7.4) satisfies [Seg| > || Lo, ]|. In order to see this we consider
the imaginary part of the term n~*~! in the right-hand side sum of (7.7). By setting
n=mn"+1in", we have

1 (77/ —W”)VH V+ 1 +1—k /AY
(7.9) S R PP |21/—|—2 Z ) (=in")".

k>0

Hence the imaginary part of the right-hand side of (7.9) can be bounded by

<y+1> ( //|>k_ |77//| Z<V+1> <|n//|>k
+1 B +2

I” = 7] I+ g \k+1/) \ In|
We can easily show that for any rg > 1 there exist d9 > 0 and Ky > 0 such that if
Im"1/|n| < Jo, then the right-hand side of (7.10) can be estimated by |n”||n|~* 2 Kor§.
It follows that there exists K7 > 0 such that modulo Hermitian operators the operator

norm of the right-hand side of (7.7) can be bounded by K;|n”| < Kid9. This proves
that if we take ¢ sufficiently small, then the right-hand side integral of (7.8) converges

(7.10)

when |n”'| < dg. This proves the assertion.
Next we will show that (7.8) is equal to (iE + Lg)~!. Indeed, we have

oo(—1i) ) oo(—1) .
(7.11) (1E + LO)/ e—zCeCLodC:/ (iE + Lo)e—C(z—l—LO)dC
0 0

_ _[e—C(iJrLo)]giO—iOO - E.
Indeed, we have lim¢_, o0 e ¢0FL0) f = limg o e ¢F%L0 f = (. Hence we have
(7.12) (eE— L)' =H,'(iE+ L)' = —iHy / S exp(—i€Lg)dE.

We take n > 0 sufficiently large so that ¢ given by (7.4) satisfies |e| > ||£]||. Because
both sides of (7.12) are analytic functions of € by Theorem 2.1 and what we have proved
in the above, it follows that (7.12) gives the analytic continuation of (¢FE — £)~! along
the path given by (7.4) to the domain [Se| > ||£,,]|. This proves the assertion.

In order to show the existence and the analyticity of (¢E — £)~! with respect to e
in the domain [Re| > ||Lo, ||, we consider iL = iL,, — L,, instead of £. By what we
have proved in the above, we see that (¢/F —iL£)™! = —i(—ie’E — L)1 exists and it is
analytic when |S¢’| > || Lo, ||. Setting ¢ = —ie’, we see that (eE — £)~! exists and is
analytic when |Re| > ||£5,]||. This ends the proof.
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Example 7.2. For a > 0 we consider the operator £, with the following Toeplitz
symbol

(7.13) o(t) = 2 cosmt + 2ai sin(2tr).

Then L,, and L., are the operators with symbols given by 2cos 7t and 2asin(2t7),
respectively. We know that ||£,.|| = 2, and by the similar argument we see that
I£s,]l = 2a. (cf. Example 2.2.) We have the analytic continuation of the resolvent to
the set of € such that either [Se| > 2a or |Re| > 2 is satisfied.

§ 8. Analytic continuation and the Fredholm property

In this section we study the Fredholmness and the extension of Theorem 5.3 to non
Hermitian operators. (cf. [7]). Let o,(t) be the Toeplitz symbol corresponding to the
operator (2.2). Then we have

Theorem 8.1.  The solution u in (3.2) can be continued as a meromorphic func-
tion of € in the connected unbounded component of C\ {o,(t);0 <t < 2}. For every
e € C\{o,(t);0 <t <2} the operator eE — L is a Fredholm operator of index zero on
X, where E denotes the identity operator. Namely, the image of eEE — L is closed and
the dimension of the kernel and the cokernel of eE — L 1is finite.

Proof. The former half follows from the same argument as in the proof of Theorem
5.3 by using Theorem 4.1. We will show the latter half. It follows from Theorem 4.1 that
the uniform estimates (4.1) hold for all ¥ > vy with vy given by Theorem 4.1. By the
definition of the norm in X we see that e ¥ — L is invertible on the subspace of X with
homogeneous degree greater than vy. Hence e E — L is the sum of an invertible operator
and a finite-dimensional operator. Hence it is a Fredholm operator. The index property
also follows if we recall that eFF — L preserves the set of homogeneous polynomials of
degree k > 0. This ends the proof.
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