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The singularities of the maps associated with Milnor

fibrations

By

Daiki SUMIDA *

Abstract

Milnor fibrations have been studied since 1960' \mathrm{s} . In this paper, we study singular points of

differentiable maps, called Milnor fibration product maps, obtained by several Milnor fibrations.

We give a characterization of singular points of such product maps, and for the case of certain

weighted homogeneous polynomials, a criterion for a fold singular point together with its index.

§1. Introduction

For a singular point of a complex hypersurface, the intersection of the hypersurface
and the sphere centered at the point with sufficiently small radius, is called a link.

Milnor [3] has constructed a theory of so‐called �Milnor fibrations�, which are locally
trivial fibrations over the unit circle, where the total space is the complement of the

link in the sphere. This is important in singularity theory and is used, for example, to

describe the topology of complex hypersurface singularities.
Milnor�s fibration theorem was later extended in order to describe the topology

of complete intersection singularities of complex algebraic varieties by Hamm [2]. It

provides rich and important examples of locally trivial fibrations like Milnor fibrations.

On the other hand, it is important to investigate singular points of differentiable maps

in the study of differentiable structures of manifolds. However, in general, it is difficult

to construct explicit examples in which the singularities are completely determined.

If we can clarify the singularities of differentiable maps constructed by using simple

objects like polynomials by means of a straightforward technique, then we can expect
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a rich family of examples of differentiable maps for which the relations among the

singular points are clear. In this paper, we define Milnor fibration product maps, which

generalize the Milnor fibrations in a direction different from Hamm�s, and study their

singularities in detail. A Milnor fibration product map is a differentiable map into the

torus T^{r}=S^{1}\times S^{1}\times\cdots\times S^{1}, r\geq 1 ,
which is constructed by r hypersurfaces in complex

n‐space passing through a common point. Its source is the complement to the union of

the links in a small sphere, and each component function is a Milnor fibration map.

We study singular points of Milnor fibration product maps into the tori, especially
those into the 2‐dimensional torus. First we give a necessary and sufficient condition

for a point of the source to be a singular point of the map, applying the techniques
of Milnor. As a corollary, we obtain examples of Milnor fibration product maps which

have no singular points. On the other hand, when the polynomials defining the Milnor

fibration product map are a pair of weighted homogeneous polynomials whose weights
are linearly dependent, we have a corollary which refines the above necessary and suffi‐

cient condition. This corollary makes it easy to determine the singular point set, since

this singular point set turns out to be contained in a certain complex algebraic set de‐

termined by the weighted homogeneous polynomials, while the singular point set is a

real algebraic set in general. In addition, for such a singular point obtained by using
this result, we give a necessary and sufficient condition for it to be a fold point in a

practical and efficient form. Fold singular point is one of the generic singular points of

differentiable maps into 2‐dimensional manifolds. The key technique to obtain a char‐

acterization of a fold point for Milnor fibration product maps, is to choose good local

coordinates around the singular point of the Milnor fibration product map, and to see

if the singular point is a non‐degenerate critical point of one of the Milnor fibration

maps restricted to the Milnor fiber of the other fibration. Furthermore, we determine

the index of such a fold singular point when the normal space of the Milnor fiber at

the point is a complex 1‐dimensional vector space. Using these results, we give concrete

examples for which Milnor fibration product maps have only fold points as their singular

points, and determine their indices completely. We also give examples of Milnor fibra‐

tion product maps which have singular points such that none of them are fold points.
In the case where the pair of polynomials that define the Milnor fibration product map

is a pair of homogeneous polynomials in two variables, we show that the singular point
set is a union of circles and we also study the number of components. Finally some

of these results are extended to Milnor fibration product maps into the tori of higher
dimensions.
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§2. Preliminaries

Let m and n be integers with n\geq 2 and 1\leq m\leq 2n-1 . Let f_{j}\in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] be

polynomials with f_{j}(0)=0, j=1 , 2, . . .

,
m . For a sufficiently small positive real number

 $\epsilon$ , set  S_{ $\epsilon$}=\{z\in \mathbb{C}^{n}|\Vert z\Vert= $\epsilon$\} and K_{ff\cdots f_{m}}12=\{z\in S_{ $\epsilon$}|f_{1}(z)f_{2}(z)\cdots f_{m}(z)=0\} . Let

us consider the map

 $\Phi$ :  S_{ $\epsilon$}\backslash K_{f_{1}f_{2}\cdots f_{m}}\rightarrow S^{1}\times S^{1}\times\cdots\times S^{1}=T^{m}

defined by

 $\Phi$(z)=(\displaystyle \frac{f_{1}(z)}{|f_{1}(z)|}, \frac{f_{2}(z)}{|f_{2}(z)|}, \ldots, \frac{f_{m}(z)}{|f_{m}(z)|}) , z\in S_{ $\epsilon$}\backslash K_{f_{1}f_{2}\cdots f_{m}}.
We call the C^{\infty} map  $\Phi$ the Milnor fibration product map associated with  m polynomials

f_{1}, f_{2} ,
. . .

, f_{m} . Note that  $\Phi$ is the projection of Milnor fibration for  m=1.

For complex vectors u, v\in \mathbb{C}^{n} ,
the symbol \langle u,  v\rangle will denote the usual Hermitian

inner product of  u and v
,

i.e.

\displaystyle \langle u, v\rangle=\sum_{j=1}^{n}u_{j}\overline{v_{j}},
where u=(u_{1}, u_{2}, \ldots, u_{n}) and v=(v_{1}, \mathrm{v}_{2}, \ldots, v_{n}) . Note that if we regard u and v as

real vectors in \mathbb{C}^{n}=\mathbb{R}^{2n} ,
then their usual Euclidean inner product is given by {\rm Re}\langle u, v\rangle.

For a holomorphic function h defined on an open subset U of \mathbb{C}^{n}, grad h(p) will denote

the complex conjugate of the gradient vector of h at p\in U ,
i.e.

grad h (p)=(\overline{\frac{\partial h}{\partial z_{1}}(p)}, \overline{\frac{\partial h}{\partial z_{2}}(p)}, \ldots, \overline{\frac{\partial h}{\partial z_{n}}(p)}) ,

moreover \mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(\mathrm{h}) will denote the n\times n Hessian matrix of h at p\in U ,
i.e.

\displaystyle \mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(h)=(\frac{\partial^{2}h}{\partial z_{j}\partial z_{k}}(p))_{j,k}
Furthermore, for a matrix V, V^{T} will denote its transposed matrix, and \overline{V} will denote

its complex conjugate matrix.

§3. Singular points of Milnor fibration product maps

Let f and g be polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] with f(0)=g(0)=0 . In this

section, we study singular points of the Milnor fibration product map  $\Phi$ associated with

 f and g.

First we give a necessary and sufficient condition for a point to be a singular point
of  $\Phi$.
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Lemma 3.1. Let f and g be polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] with f(0)=g(0)=
0 . A point p\in S_{ $\epsilon$}\backslash K_{fg} is a singular point of the Milnor fibration product map  $\Phi$

associated with  f and g if and only if the three vectors p , igrad \log f(p) and i grad log g(p)
are linearly dependent over \mathbb{R}.

Proof. For p\in S_{ $\epsilon$}\backslash K_{fg} ,
we have the differential d$\Phi$_{p}:T_{p}(S_{ $\epsilon$}\backslash K_{fg})\rightarrow T_{ $\Phi$(p)}T^{2}

satisfies

d$\Phi$_{p}(v)=(i{\rm Re}\langle v , igrad log f(p)\displaystyle \rangle\frac{f(p)}{|f(p)|}, i{\rm Re}\langle v , igrad log g(p)\displaystyle \rangle\frac{g(p)}{|g(p)|})
for v\in T_{p}(S_{ $\epsilon$}\backslash K_{fg}) . Thus, p is a singular point of  $\Phi$ if and only if there exists

( $\beta$,  $\gamma$)\in \mathbb{R}^{2}\backslash \{(0,0)\} such that for every v\in T_{p}(S_{ $\epsilon$}\backslash K_{fg}) ,

{\rm Re}\langle v,  $\beta$ i grad log f(p)+ $\gamma$ i grad log  g(p)\rangle

= $\beta${\rm Re}\langle v , igrad log f(p)\rangle+ $\gamma${\rm Re}\langle v , igrad log g(p)\rangle=0

holds. Note that two vectors in \mathbb{C}^{n} are orthogonal to each other with respect to the usual

Euclidean inner product if and only if the real part of their Hermitian inner product
vanishes. Consequently, for every v\in \mathbb{C}^{n} ,

we have v\in T_{p}(S_{ $\epsilon$}\backslash K_{fg}) if and only if

{\rm Re}\langle v, p\rangle=0 holds. Therefore, if p is a singular point, then p and  $\beta$ i gradlog f(p)+
 $\gamma$ i gradlog g(p) are linearly dependent over \mathbb{R} . Thus, it follows that p, i gradlog f(p)
and i gradlog g(p) are linearly dependent over \mathbb{R}.

Conversely, if p, i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f(p) and i gradlog g(p) are linearly dependent over \mathbb{R},
then we have rank d$\Phi$_{p}<2 . Therefore, p is a singular point of the Milnor fibration

product map. \square 

The following lemma is due to Milnor [3].

Lemma 3.2. Let f be a polynomial in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] with f(0)=0 ,
where

n\geq 1. A point p\in S_{ $\epsilon$}\backslash K_{f} is a singular point of the C^{\infty} map $\varphi$_{f} : S_{ $\epsilon$}\backslash K_{f}\rightarrow S^{1} defined

by $\varphi$_{f}(z)=f(z)/|f(z)|, z\in S_{ $\epsilon$}\backslash K_{f} , if and only if the two vectors p and i gradlog f(p)
are linearly dependent over \mathbb{R} . Furthermore, for  $\epsilon$>0 sufficiently small, $\varphi$_{f} has no

singular point.

We have the following proposition to Lemmas 3.1 and 3.2.

Proposition 3.3. Let f be a polynomial in \mathbb{C}[z_{1}, z_{2}, . . . , z_{m}] and g be a polyno‐
mial in \mathbb{C}[z_{m+1}, z_{m+2}, . . . , z_{n}] with f(0)=g(0)=0 . We regard f and g as polynomials
in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] . Then, for  $\epsilon$>0 sufficiently small, the Milnor fibration product map

 $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} associated with f and g has no singular point.
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Proof. Let \hat{f} (or \hat{g} ) be the polynomial f (resp. g) considered as an element of

\mathbb{C}[z_{1}, z_{2}, . . . , z_{m}] (resp. \mathbb{C}[z_{m+1}, z_{m+2}, \ldots

, zn]). Let  $\epsilon$ be a small positive real number

such that for every positive real number  $\delta$\leq $\epsilon$, $\varphi$_{\hat{f}}=\hat{f}/|\hat{f}| : S_{ $\delta$}^{2m-1}\backslash K_{\hat{f}}\rightarrow S^{1} and

$\varphi$_{\hat{g}}=\hat{g}/|\hat{g}| : S_{ $\delta$}^{2(n-m)-1}\backslash K_{\hat{g}}\rightarrow S^{1} have no singular points, where S_{ $\delta$}^{2m-1}\subset \mathbb{C}^{m}
and S_{ $\delta$}^{2(n-m)-1}\subset \mathbb{C}^{n-m} are the spheres of radius  $\delta$ centered at the origins. Let  p=

(p_{1},p_{2}, \ldots,p_{n}) be a point in S_{ $\epsilon$}\backslash K_{fg} satisfying, for ( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{R}^{3},

 $\alpha$ p+ $\beta$ i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f(p)+ $\gamma$ i grad log g(p)=0.

Then, the points p_{(1)}= (p_{1},p2, . . . , p_{m}) and p_{(2)}=(p_{m+1}, p_{m+2}, \ldots, p_{n}) satisfy the

equations

\left\{ $\alpha$ p_{(1)}+\frac{}{} $\alpha$ p_{(2)}+\overline{\frac{\hat{f}(p_{(1)}) $\gamma$ i $\beta$ i}{\overline{\hat{g}(p_{(2)})}}}(\frac{}{}\frac{}{}\frac{}{})=0(\frac{\partial\hat{f}(p_{(1)})}{\partial\hat{g}(p_{(2)}),\partial z_{m+1}\partial z_{1}},,\frac{\partial\hat{f}(p_{(1)})}{\partial\hat{g}(p_{(2)}),\partial z_{m+2}\partial z_{2}},,......,,\frac{\partial\hat{f}(p_{(1)})}{\partial\hat{g}(p_{(2)}),\partial z_{n}\partial z_{m}})=0\right.
Note that the points p_{(1)} and p_{(2)} are not the origins, since we have \hat{f}(p_{(1)})\neq 0 and

\hat{g}(p_{(2)})\neq 0 . Thus, we have 0<$\epsilon$_{(1)}=|p_{(1)}|,  $\epsilon$_{(2)}=|p_{(2)}|\leq $\epsilon$ . From the assumption on

 $\epsilon$ , it follows that  p_{(1)} is a regular point of $\varphi$_{\hat{f}} : S_{$\epsilon$_{(1)}}^{2m-1}\backslash K_{\hat{f}}\rightarrow S^{1} and p_{(2)} is a regular

point of $\varphi$_{\hat{g}} : S_{$\epsilon$_{(2)}}^{2(n-m)-1}\backslash K_{\hat{g}}\rightarrow S^{1} . From Lemma 3.2, it follows that ( $\alpha$,  $\beta$,  $\gamma$)=(0,0,0) ,

i.e. p, i gradlog f(p) and i gradlog g(p) are linearly independent over \mathbb{R} . Therefore, p

is a regular point of the Milnor fibration product map  $\Phi$ associated with  f and g by
Lemma 3.1. \square 

We can extend Lemma 3.1 and Proposition 3.3 to the case of Milnor fibration

product maps associated with m polynomials for general m\geq 2 ,
which will be proved

in Section 5.

Let us define weighted homogeneous polynomials.

Denition 3.4. A polynomial f\in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] is called a weighted homoge‐
neous polynomial if there exists a sequence w_{f}=(w_{1}, \mathrm{w}_{2}, \ldots, w_{n}) of positive rational

numbers, called weights, such that

\displaystyle \sum_{j=1}^{n}\frac{z_{j}}{w_{j}}\frac{\partial f}{\partial z_{j}}=f
holds.

For a weighted homogeneous polynomial f ,
the weights of f are not uniquely de‐

termined in general. For example, f=z_{1}z_{2} is a weighted homogeneous polynomial in

\mathbb{C}[z_{1}, z_{2}] with weights w_{f}=(a, a/(a-1)) for every rational number a>1.
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The following characterizations of weighted homogeneous polynomials are known

[3].

Lemma 3.5. For a polynomial f in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] ,
the following conditions

are equivalent.

\bullet The polynomial  f is a weighted homogeneous with weights w_{f}=(w_{1}, \mathrm{w}_{2}, \ldots, w_{n}) .

\bullet We have  f(z_{1}e^{c/w_{1}}, z_{2}e^{c/w_{2}}, \ldots, z_{n}e^{c/w_{n}})=e^{c}f(z_{1}, z_{2}, \ldots, z_{n}) for every c\in \mathbb{C}.

\bullet For every non‐zero monomial  Cz_{1}^{b_{1}}z_{2}^{b_{2}}\cdots z_{n}^{b_{n}} of f ,
we have

\displaystyle \sum_{j=1}^{n}\frac{b_{j}}{w_{j}}=1.
For certain weighted homogeneous polynomials f and g ,

we have the following

corollary to Lemma 3.1.

Corollary 3.6. Let f and g be weighted homogeneous polynomials with weights

w_{f} and w_{g} , respectively. Suppose that there exists a positive rational number s such that

w_{g}=sw_{f} . Then a point p\in S_{ $\epsilon$}\backslash K_{fg} is a singular point of the Milnor fibration product

map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} associated with f and g if and only if

\displaystyle \frac{\partial f}{\partial z_{j}}(p)\frac{\partial g}{\partial z_{k}}(p)-\frac{\partial f}{\partial z_{k}}(p)\frac{\partial g}{\partial z_{j}}(p)=0
holds for all j, k=1

, 2, . . .

,
n.

Proof. Set z= (z_{1}, z2, . . . , z_{n}) . Let w(z) be the vector defined by

w(z)=(\displaystyle \frac{z_{1}}{w_{1}}, \frac{z_{2}}{w_{2}}, \ldots, \frac{z_{n}}{w_{n}})
for the weights w_{f}=(w_{1}, \mathrm{w}_{2}, \ldots, w_{n}) . From the definition of weighted homogeneous

polynomials, it follows that

\langle w(z) , grad \displaystyle \log f\rangle=\sum_{j=1}^{n}\frac{z_{j}}{w_{j}}\frac{1}{f}\frac{\partial f}{\partial z_{j}}=\frac{1}{f}\sum_{j=1}^{n}\frac{z_{j}}{w_{j}}\frac{\partial f}{\partial z_{j}}=1,
\langle w(z) , grad \displaystyle \log g\rangle=\sum_{j=1}^{n}\frac{z_{j}}{w_{j}}\frac{1}{g}\frac{\partial g}{\partial z_{j}}=\frac{s}{g}\sum_{j=1}^{n}\frac{z_{j}}{sw_{j}}\frac{\partial g}{\partial z_{j}}=s.

For a singular point p= (p_{1},p2, . . . ,p_{n}) of  $\Phi$
,
there exists ( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{R}^{3}\backslash \{(0,0,0)\} such

that  $\alpha$ p+ $\beta$ i gradlog f(p)+ $\gamma$ i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log g(p)=0 by Lemma 3.1. From this fact, it follows

that

(3.1)  $\alpha$\langle w(p) , p\rangle-i( $\beta$+ $\gamma$ s)=\langle w(p) ,  $\alpha$ p+ $\beta$ i grad log f(p)+ $\gamma$ i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log g(p)\rangle=0.
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We see that \langle w(p) ,  p\rangle is a positive real number, since

\displaystyle \langle w(p) , p\rangle=\sum_{j=1}^{n}\frac{p_{j}}{w_{j}}\overline{p_{j}}=\sum_{j=1}^{n}\frac{1}{w_{j}}|p_{j}|^{2}
From this fact and formula (3.1), it follows that  $\alpha$=0 . Therefore, gradlog f(p) and

gradlog g(p) are linearly dependent over \mathbb{C} , and p satisfies the required condition.

Conversely, if p satisfies the condition of Corollary 3.6, i.e. if there exists ( $\beta$,  $\gamma$)\in
\mathbb{C}^{2}\backslash \{(0,0)\} such that

(3.2)  $\beta$ grad log  f(p)+ $\gamma$ grad log  g(p)=0

holds, then it follows that  $\beta$=- $\gamma$ s\neq 0 ,
since

\overline{ $\beta$}+\overline{ $\gamma$}s=\langle w(p) ,  $\beta$ grad log  f(p)+ $\gamma$ grad log  g(p)\rangle=0.

From equation (3.2) and the equation \overline{ $\gamma$}( $\beta$,  $\gamma$)=(-| $\gamma$|^{2}s, | $\gamma$|^{2}) ,
it follows that p satisfies

the equation

-| $\gamma$|^{2} si grad log f(p)+| $\gamma$|^{2}i grad log g(p)=0.

We see that the three vectors p, i grad log f(p) ,
i grad log g(p) are linearly dependent over

\mathbb{R}
,

since (0, -| $\gamma$|^{2}s, | $\gamma$|^{2}) is a non‐zero real vector. Therefore, p is a singular point of the

Milnor fibration product map  $\Phi$ associated with  f and g by Lemma 3.1. \square 

We have the following theorem, which gives a necessary and sufficient condition for

a singular point of a Milnor fibration product map to be a fold point.

Theorem 3.7. Let f and g\in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] be weighted homogeneous poly‐
nomials in with weights w_{f} and w_{g} , respectively, such that w_{g}=sw_{f} ,

where s is a

positive rational number. Let p be a singular point of the Milnor fibration product

map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} associated with f and g . Let V=(r_{1}^{T}, r_{2}^{T}, \ldots, r_{2n-2}^{T}) be

an n\times(2n-2) complex matrix, where r_{1}, r_{2} ,
. . .

, r_{2n-2} constitute a real basis of the real

(2n-2) ‐dimensional vector space

{ v\in \mathbb{C}^{n}|{\rm Re}\langle v, p\rangle={\rm Re}\langle v , igrad \log f(p)\rangle=0}.

Then p is a fold point of  $\Phi$ if and only if

\det{\rm Re}(V^{T}\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))V)\neq 0

holds.

Proof. Let w_{f}=(w_{1}, \mathrm{w}_{2}, \ldots, w_{n}) be the weights of f . For t\in \mathbb{R} ,
let us define the

diffeomorphism h_{t}:\mathbb{C}^{n}\rightarrow \mathbb{C}^{n} by

h_{t}(z_{1}, z2, . . . , z_{n})=(z_{1}\displaystyle \exp(\frac{2 $\pi$ it}{w_{1}}), z_{2}\displaystyle \exp(\frac{2 $\pi$ it}{w_{2}}) ,
. . .

, z_{n}\displaystyle \exp(\frac{2 $\pi$ it}{w_{n}})) ,
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for z= (z_{1}, z2, . . . , z_{n})\in \mathbb{C}^{n} . Note that ||h_{t}(z)||=||z|| and that

f(h_{t}(z))=f(z)\exp(2 $\pi$ it) ,

g(h_{t}(z))=g(z)\exp(2 $\pi$ ist) .

Therefore, the diffeomorphism h_{t} preserves S_{ $\epsilon$}\backslash K_{f}, S_{ $\epsilon$}\backslash K_{g} and S_{ $\epsilon$}\backslash K_{fg} ,
and in

particular, it induces diffeomorphisms between Milnor fibers for f.
For p\in S_{ $\epsilon$}\backslash K_{fg} ,

we choose local coordinates (x_{1}, x2, . . . , x_{2n-1}) around p and

(y_{1}, y_{2}) around  $\Phi$(p)\in T^{2} as follows. For the Milnor fiber F_{f} for f containing p,

let (x_{1}, x_{2}, \ldots, x_{2n-2}) be local coordinates for F_{f} around p . We extend these coordi‐

nates to those for S_{ $\epsilon$}\backslash K_{fg} around p in such a way that the first 2n-2 coordinates

x_{1}, x_{2} ,
. . .

, x_{2n-2} are invariant under the diffeomorphism h_{t} for |t| sufficiently small, and

that the (2n-1) ‐th coordinate x_{2n-1} satisfies

$\varphi$_{f}(p)\exp(2 $\pi$ ix_{2n-1})=$\varphi$_{f}(x_{1}, x2, . . . , x_{2n-1}) .

Set  $\Phi$(p)=(\exp(2 $\pi$ i$\alpha$_{0}), \exp(2 $\pi$ i$\beta$_{0})) for $\alpha$_{0}, $\beta$_{0}\in \mathbb{R} . We can choose local coordinates

(y_{1}, y_{2}) for T^{2} around  $\Phi$(p) so that

(\exp(2 $\pi$ i( $\alpha$+$\alpha$_{0})), \exp(2 $\pi$ i( $\beta$+$\beta$_{0} \in T^{2}

corresponds to

(y_{1}, y_{2})=( $\alpha$,  $\beta$-s $\alpha$) ,

or in other words,

( $\alpha$,  $\beta$)=(y_{1}, y_{2}+sy_{1}) .

Then, with respect to the above local coordinates, we have

y\circ $\Phi$(0,0, \ldots, 0, x_{2n-1})=(x_{2n-1},0) ,

and yo  $\Phi$(x_{1}, x2, . . . , x_{2n-2},0) is of the form (0,  $\rho$(x_{1}, x_{2}, \ldots, x_{2n-2})) ,
where  $\rho$ is asmooth

function defined on a neighborhood of  p in F_{f} . Consequently, the differential d$\Phi$_{p} has

rank one, and by virtue of the well‐known characterization of a fold point (for example,
see [1]), we see that p is a fold point of  $\Phi$ if and only if  p\in F_{f} is a non‐degenerate
critical point of  $\rho$.

Note that we have

 $\rho$(x_{1}, x_{2}, \ldots, x_{2n-2})=y_{2}\circ $\Phi$(z(x_{1}, x_{2}, \ldots, x_{2n-2},0))
={\rm Re} (-i (\log g —slog f )) (x_{1}, x2, . . . , x_{2n-2},0) .

Thus, for k=1
, 2, . . .

,
2n-2

,
we have

\displaystyle \frac{\partial $\rho$}{\partial x_{k}}={\rm Re}(\sum_{a=1}^{n}\frac{\partial}{\partial z_{a}}(-i(\log g-s\log f))\frac{\partial z_{a}}{\partial x_{k}})
={\rm Re}\langle v_{k}, i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} (\log g —slog f ) \rangle,
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where

v_{k}=(\displaystyle \frac{\partial z_{1}}{\partial x_{k}}, \frac{\partial z_{2}}{\partial x_{k}}, \ldots, \frac{\partial z_{n}}{\partial x_{k}})
(Note that the vectors v_{1}(p), v_{2}(p), \ldots, v_{2n-2}(p)\in \mathbb{C}^{n} constitute a basis of the real

(2n-2) ‐dimensional vector space mentioned in the theorem.) Therefore, for m=

1
, 2, . . .

,
2n-2

,
we have

\displaystyle \frac{\partial^{2} $\rho$}{\partial x_{k}\partial x_{m}}(p)={\rm Re}\langle\frac{\partial v_{k}}{\partial x_{m}}(p) , i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\log g-s\log f)(p)\rangle
+{\rm Re}\displaystyle \{v_{k}(p) , i\sum_{b=1}^{n}\frac{\partial \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\log g-s\log f)}{\partial\overline{z_{b}}}(p)\overline{\frac{\partial z_{b}}{\partial x_{m}}(p)}\}

={\rm Re}(\displaystyle \sum_{a=1}^{n}\sum_{b=1}^{n}\frac{\partial z_{a}}{\partial x_{k}}(p)\frac{\partial^{2}(-i(\log g-s\log f))}{\partial z_{a}\partial z_{b}}(p)\frac{\partial z_{b}}{\partial x_{m}}(p)) ,

since we have

i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\log g-s\log f)(p)=0

by the proof of Corollary 3.6. Thus, we have the desired conclusion. \square 

Corollary 3.8. Let f and g\in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] be weighted homogeneous poly‐
nomials with weights w_{f} and w_{g} , respectively, such that w_{g}=sw_{f} ,

where s is a pos‐

itive rational number. Let p be a singular point of the Milnor fibration product map

 $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} associated with f and g such that p and i gradlog f(p) are linearly

dependent over \mathbb{C} . Let W=(r_{1}^{T}, r_{2}^{T}, \ldots, r_{n-1}^{T}) be an n\times(n-1) complex matrix, where

r_{1}, r_{2} ,
. . .

, r_{n-1} constitute a complex basis of the (n-1) ‐dimensional complex vector

space \{v\in \mathbb{C}^{n}|\langle v, p\rangle=0\} . Then p is a fold point of  $\Phi$ if and only if

\det(W^{T}\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))W)\neq 0

holds.

Proof. We see that r_{1}, r_{2} ,
. . .

, r_{n-1}, ir_{1}, ir_{2} ,
. . .

, ir_{n-1}\in \mathbb{C}^{n} constitute a real basis

of

{ v\in \mathbb{C}^{n}|{\rm Re}\langle v, p\rangle={\rm Re}\langle v , igrad \log f(p)\rangle=0}.

Set W=(r_{1}^{T}, r_{2}^{T}, \cdots, r_{n-1}^{T}) and V=(W, iW) . Putting H=\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f
we have

\det{\rm Re}(V^{T}HV)=\det{\rm Re}((W, iW)^{T}H(W, iW))

=\det\left(\begin{array}{ll}
\mathrm{R}\mathrm{e}(W^{T}HW) & -\mathrm{I}\mathrm{m}(W^{T}HW)\\
-\mathrm{I}\mathrm{m}(W^{T}HW) & -\mathrm{R}\mathrm{e}(W^{T}HW)
\end{array}\right)
=(-1)^{n-1}|\det(W^{T}HW)|^{2}



100 Sumida Daiki

Therefore, by Theorem 3.7, we have the desired conclusion. \square 

We can determine the index of the fold point in the situation of Corollary 3.8 as

follows.

Proposition 3.9. Let f and g\in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] be weighted homogeneous poly‐
nomials with weights w_{f} and w_{g} , respectively, such that w_{g}=sw_{f} ,

where s is a positive
rational number. Suppose that p\in S_{ $\epsilon$}\backslash K_{fg} is a fold point of the Milnor fibration product

map associated with f and g . Then, its index is equal to n-1
, if p and igrad \log f(p)

are linearly dependent over \mathbb{C}.

Proof. We use the same notations as in the proof of Corollary 3.8. The eigenvalues
of {\rm Re}(V^{T}HV) are real numbers, since {\rm Re}(V^{T}HV) is a real symmetric matrix. For a

positive integer m
,

let I_{m} denote the m\times m identity matrix. Let us calculate the

characteristic polynomial of {\rm Re}(V^{T}HV) :

\det(tI_{2n-2}-{\rm Re}(V^{T}HV))

=\det\left(\begin{array}{ll}
tI_{n-1}-\mathrm{R}\mathrm{e}(W^{T}HW) & \mathrm{I}\mathrm{m}(W^{T}HW)\\
\mathrm{I}\mathrm{m}(W^{T}HW) & tI_{n-1}+\mathrm{R}\mathrm{e}(W^{T}HW)
\end{array}\right)
For every non‐zero complex number t

,
and (n-1)\times(n-1) matrices A, B and I=I_{n-1},

\left(\begin{array}{lll}
I & -(1/2it)(tI-A & +iB)\\
0 & I & 
\end{array}\right)\left(\begin{array}{ll}
I & 0\\
iI & I
\end{array}\right)\left(\begin{array}{ll}
tI-A & B\\
B & tI+A
\end{array}\right)\left(\begin{array}{ll}
I & 0\\
iI & I
\end{array}\right)
=\left(\begin{array}{ll}
0 & B-(1/2it)(tI-A+iB)(tI+A+iB)\\
2itI & tI+A+iB
\end{array}\right)

holds. Therefore,

\det\left(\begin{array}{ll}
tI-A & B\\
B & tI+A
\end{array}\right)=\det((tI-A+iB)(tI+A+iB)-2itB)
=\det(t^{2}I-(A-iB)(A+iB))

holds. Consequently, for every non‐zero complex number t
,

we have

\det(tI_{2n-2}-{\rm Re}(V^{T}HV))
=\det(t^{2}I_{n-1}-W^{T}HWW^{T}HW) .

By the proof of Corollary 3.8, this equality holds also for t=0 . Thus, for every

eigenvalue of \overline{W^{T}HW}W^{T}HW ,
its square root must be eigenvalues of {\rm Re}(V^{T}HV) ,

which

are real numbers, since {\rm Re}(V^{T}HV) is a real symmetric matrix. When p is a fold
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point, the eigenvalues \pm$\lambda$_{1}, \pm$\lambda$_{2} ,
. . .

, \pm$\lambda$_{n-1} of {\rm Re}(V^{T}HV) are non‐zero real numbers.

Therefore, the index of the fold point p is equal to n-1. \square 

§4. Examples of singular points

In this section, we give explicit examples of singular points of Milnor fibration

product maps into the 2‐dimensional torus. We also clarify their fold points.

Proposition 4.1. Let f=\displaystyle \sum_{j=1}^{n}c_{j}z_{j}^{m} and g=\displaystyle \sum_{k=1}^{n}d_{k}z_{k}^{m} be homogeneous

polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] ,
where c_{j}\neq 0, d_{k}\neq 0 for all j and k

,
and A_{j,k}=

c_{j}d_{k}-c_{k}d_{j}\neq 0 forj\neq k ,
and m\geq 2 . Let  $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} be the Milnor fibration

product map associated with f and g . Then, form=2,  $\Phi$ is a fold map. For  m>2,  $\Phi$

has no fold point, although it has singular points.

Proof. The polynomials  f and g are weighted homogeneous with weights w_{f}=

w_{g}=(m, m, \ldots, m) . Therefore, it satisfies the condition of Corollary 3.6. Let Sing (  $\Phi$ )
be the singular point set of  $\Phi$ . Then we see that

Sing ( $\Phi$)=\{ $\epsilon$ e^{i $\theta$}e_{u}| $\theta$\in \mathbb{R}, 1\leq u\leq n\}

by Corollary 3.6, where

e_{1}=(1,0, \ldots, 0) , e_{2}=(0,1, \ldots, 0) ,
. . .

, e_{n}=(0,0, \ldots, 1)\in \mathbb{C}^{n}

Note that Sing (  $\Phi$ ) consists of  n circles. Then, every singular point p of  $\Phi$ satisfies

 i\displaystyle \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f(p)=\frac{mi}{$\epsilon$^{2}}p,
i.e., the hypothesis of Corollary 3.8 is satisfied. For p= $\epsilon$ e^{i $\theta$}e_{u}\in \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}( $\Phi$) ,

we see that

\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{ $\epsilon$ e^{i $\theta$}e_{j}|j\neq u, 1\leq j\leq n\}

is the complex orthogonal complement to the complex vector space spanned by p for

u=1
, 2, . . .

,
n . Let W be the n\times(n-1) complex matrix given by

W= $\epsilon$ e^{i $\theta$}(e_{1}, \cdots, e_{u-1}, e_{u+1}, \cdots, e_{n}) .

Furthermore, by direct computation, we have

\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))=\left\{\begin{array}{ll}
\frac{2ie^{-2i $\theta$}}{$\epsilon$^{2}c_{u}d_{u}}($\delta$_{j,k}A_{j,u})_{j,k=1}^{n}, & m=2,\\
0, & m>2,
\end{array}\right.
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for p= $\epsilon$ e^{i $\theta$}e_{u} ,
where

$\delta$_{j,k}=\left\{\begin{array}{ll}
1, & j=k,\\
0, & j\neq k.
\end{array}\right.
Note that for m=2

,
this is a diagonal matrix with non‐zero diagonals except for the

(u, u) ‐component. Then we have

W^{T}\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))W=\left\{\begin{array}{ll}
\frac{2i}{c_{u}d_{u}}($\delta$_{j,k}A_{j,u})_{j,k\neq u}, & m=2,\\
0, & m>2,
\end{array}\right.
where ($\delta$_{j,k}A_{j,u})_{j,k\neq u} is the (n-1)\times(n-1) diagonal matrix which has non‐zero diago‐
nal entries A_{1,u} ,

. . .

, A_{u-1,u}, A_{u+1,u} ,
. . .

, A_{n,u} . Therefore, by Corollary 3.8, none of the

singular point of  $\Phi$ is a fold point for  m>2 . Furthermore,  $\Phi$ is a fold map for  m=2

by our assumption on the coefficients c_{j} and d_{k}. \square 

Proposition 4.2. Let f=z_{1}^{m}+z_{2}^{m} and g=z_{1}z_{2} be polynomials in \mathbb{C}[z_{1}, z_{2}].
The Milnor fibration product map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2} associated with f and g is a fold

map for all m\geq 2 . Furthermore, the indices of the fold points are all equal to 1.

Proof. The two polynomials f and g are weighted homogeneous with weights

w_{f}=(m, m) and w_{g}=(2,2) ,
and we have w_{g}=sw_{f} for s=2/m . Then we have

Sing ( $\Phi$)=\displaystyle \{\frac{ $\epsilon$ e^{i $\theta$}}{\sqrt{2}}(1,  $\omega$)|$\omega$^{m}=1,  $\theta$\in \mathbb{R}\}
by Corollary 3.6. For the singular point p=2^{-1/2} $\epsilon$ e^{i $\theta$}(1,  $\omega$) of  $\Phi$

,
we have

 i\displaystyle \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f(p)=\frac{mi}{$\epsilon$^{2}}p,
and hence, every singular point p of  $\Phi$ satisfies the hypothesis of Corollary 3.8. Fur‐

thermore, we can put

 W=\displaystyle \frac{ $\epsilon$ e^{i $\theta$}}{\sqrt{2}}\left(\begin{array}{l}
1\\
- $\omega$
\end{array}\right),
since

\displaystyle \langle\frac{ $\epsilon$ e^{i $\theta$}}{\sqrt{2}}(1,  $\omega$) , \frac{ $\epsilon$ e^{i $\theta$}}{\sqrt{2}}(1, - $\omega$)\rangle=\frac{$\epsilon$^{2}}{2}(1- $\omega$\overline{ $\omega$})=0
holds. By direct computation, we have

\displaystyle \mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))=\frac{mie^{-2i $\theta$}}{$\epsilon$^{2}$\omega$^{2}}\left(\begin{array}{ll}
$\omega$^{2} & - $\omega$\\
- $\omega$ & 1
\end{array}\right),
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and hence,

W^{T}\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{p}(-i(\log g-s\log f))W=2mi.
Therefore,  $\Phi$ is a fold map by Corollary 3.8. Furthermore, the indices of the fold points
of  $\Phi$ are all equal to  n-1=1 by Proposition 3.9. \square 

We have a result about the number of connected components of the singular point
set Sing (  $\Phi$ ) .

Proposition 4.3. Let  f and g be two homogeneous polynomials in \mathbb{C}[z_{1}, z_{2}].
Then, the singular point set of the Milnor fibration product map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{fg}\rightarrow T^{2}
associated with f and g consists of at most \deg f+\deg g-2 circle components or the

whole S_{ $\epsilon$}\backslash K_{fg}.

Proof. The polynomial

R(z_{1}, z_{2})=\displaystyle \frac{\partial f}{\partial z_{1}}\frac{\partial g}{\partial z_{2}}-\frac{\partial f}{\partial z_{2}}\frac{\partial g}{\partial z_{1}}
is a homogeneous polynomial with degree d

,
where d=\deg f+\deg g-2 ,

or the zero

polynomial. Every two variable homogeneous polynomial can be written as a product of

some homogeneous polynomials of degree one; i.e. there exist $\alpha$_{1} ,
. . .

, $\alpha$_{d}, $\beta$_{1} ,
. . .

, $\beta$_{d}\in \mathbb{C}
such that

R(z_{1}, z_{2})=($\alpha$_{1}z_{1}-$\beta$_{1}z_{2})\cdots($\alpha$_{d}z_{1}-$\beta$_{d}z_{2}) .

If R(z_{1}, z_{2}) is the zero polynomial, then we see that every point of S_{ $\epsilon$}\backslash K_{fg} is a singular

point of  $\Phi$ by Corollary 3.6. If  R(z_{1}, z_{2}) is a non‐zero polynomial, then by Corollary 3.6

Sing (  $\Phi$ ) is contained in the set

 L=\{(z_{1}, z_{2})\in S_{ $\epsilon$}|R(z_{1}, z_{2})=0\}

=\displaystyle \{\frac{ $\epsilon$ e^{i $\theta$}}{\Vert($\alpha$_{j},$\beta$_{j})\Vert}($\beta$_{j}, $\alpha$_{j})|j=1 , 2, . . .

, d,  $\theta$\in \mathbb{R}\}
We have that p\in L is an element of S_{ $\epsilon$}\backslash K_{fg} if and only if f(p)g(p)\neq 0 holds. For

every real number t
,

a point e^{it}p is an element of S_{ $\epsilon$}\backslash K_{fg} if and only if p is an element

of S_{ $\epsilon$}\backslash K_{fg} ,
since

f(e^{it}z)=e^{it\deg f}f(z) , g(e^{it}z)=e^{it\deg g}g(z)

hold. Therefore, Sing (  $\Phi$ ) consists of at most  d circle components. \square 

§5. Milnor fibration product maps into higher dimensional tori

In this section, we extend some of the results obtained in Section 3 to Milnor

fibration product maps into the m‐dimensional torus for general m\geq 2.



104 Sumida Daiki

Lemma 5.1. Let f_{j}, j=1 , 2, . . .

,
m

,
be polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] with

f_{j}(0)=0 for all j. A point p\in S_{ $\epsilon$}\backslash K_{ff\cdots f_{7m}}12 is a singular point of the Milnor fibration

product map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{ff\cdots f_{m}}12\rightarrow T^{m} if and only if the m+1 vectors

p, i grad log f_{1}(p) ,
i grad log f_{2}(p) ,

. . .

, igrad \log f(p)

are linearly dependent over \mathbb{R}.

Proof. As in the proof of Lemma 3.1, for p\in S_{ $\epsilon$}\backslash K_{f} ,
the differential d$\Phi$_{p} :

T_{p}(S_{ $\epsilon$}\backslash K_{f})\rightarrow T_{ $\Phi$(p)}T^{m} satisfies

d$\Phi$_{p}(v)=(i{\rm Re}\langle v , igrad log f_{1}(p)\displaystyle \rangle\frac{f_{1}(p)}{|f_{1}(p)|}, \ldots, i{\rm Re}\langle v , igrad log f_{m}(p)\displaystyle \rangle\frac{f_{m}(p)}{|f_{m}(p)|}) ,

for v in T_{p}(S_{ $\epsilon$}\backslash K_{f}) . Therefore, p is a singular point of  $\Phi$ if and only if there exists

($\beta$_{1}, $\beta$_{2}, \ldots, $\beta$_{m})\in \mathbb{R}^{m}\backslash \{(0,0, \ldots, 0)\} such that for every v\in T_{p}(S_{ $\epsilon$}\backslash K_{f}) ,

{\rm Re}\{v, \displaystyle \sum_{j=1}^{m}$\beta$_{j}i grad log f_{j}(p)\displaystyle \}=\sum_{j=1}^{m}$\beta$_{j}{\rm Re}\langle v, i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f_{j}(p)\rangle=0

holds. In this case, p and $\Sigma$_{j=1}^{m}$\beta$_{j}i gradlog f(p) are linearly dependent over \mathbb{R} . Con‐

sequently p, i grad log f_{1}(p) ,
i grad log f_{2}(p) ,

. . .

,
i grad log f(p) are linearly dependent

over \mathbb{R} . Conversely if p, i grad log f_{1}(p) ,
i grad log f_{2}(p) ,

. . .

,
i grad log f(p) are linearly

dependent over \mathbb{R}
,

then we have rank d$\Phi$_{p}<m . Therefore, p is a singular point of

 $\Phi$. \square 

Proposition 5.2. For j\in\{1, 2, . . . , m\} ,
let f_{j}\in \mathbb{C}[z_{k_{j-1}+1}, z_{k_{j-1}+2}, . . . , z_{k_{j}}]

be a polynomial with f_{j}(0)=0 ,
where 0=k_{0}<k_{1}< <k_{m}=n . We regard

f_{1}, f_{2} ,
. . .

, f_{m} as polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] . For  $\epsilon$>0 sufficiently small, the

Milnor fibration product map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{ff\cdots f_{7m}}12\rightarrow T^{m} associated with f_{1}, f_{2} ,
. . .

, f_{m}
has no singular point.

Proof. Let \hat{f}_{j} be the polynomial f_{j}, j=1 , 2, . . .

,
m

,
considered as an element of

\mathbb{C}[z_{k_{j-1}+1}, z_{k_{j-1}+2}, . . . , z_{k_{j}}] . Let  $\epsilon$ be a small positive real number such that for every

positive real number  $\delta$\leq $\epsilon$,

$\varphi$_{\hat{f}_{j}}=\displaystyle \frac{\hat{f}_{j}}{|\hat{f}_{j}|}:S_{ $\delta$}^{2(k_{j}-k_{j-1})-1}\backslash K_{\hat{f}_{j}}\rightarrow S^{1}, j=1 , 2, . . .

,
m

have no singular points, where S_{ $\delta$}^{2(k_{j}-k_{j-1})-1}\subset \mathbb{C}^{k_{j}-k_{j-1}}, j=1 , 2, . . .

,
m

,
are the

spheres of radius  $\delta$ centered at the origins. Let  p= (p_{1},p2, . . . ,p_{n}) be a point in

S_{ $\epsilon$}\backslash K_{ff\cdots f_{m}}12 satisfying, for ( $\alpha,\ \beta$_{1}, $\beta$_{2}, \ldots, $\beta$_{m})\in \mathbb{R}^{m+1},

 $\alpha$ p+\displaystyle \sum_{j=1}^{m}$\beta$_{j}i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f_{j}(p)=0.
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Set P_{j}=(p_{k_{j-1}+1},p_{k_{j-1}+2}, \ldots,p_{k_{j}}) , j=1 , 2, . . .

,
m . Then P_{1}, P_{2} ,

. . .

, P_{m} satisfy the

equations

 $\alpha$ P_{j}+\displaystyle \frac{$\beta$_{j}i}{\overline{f_{j}(P_{j})}}(\overline{\frac{\partial f_{j}(P_{j})}{\partial z_{k_{j-1}+1}}}, \overline{\frac{\partial f_{j}(P_{j})}{\partial z_{k_{j-1}+2}}}, \ldots, \overline{\frac{\partial f_{j}(P_{j})}{\partial z_{k_{j}}}})=0.
By the assumption on  $\epsilon$, P_{j} is a regular point of $\varphi$_{\hat{f}_{j}} ,

and hence, by Lemma 3.2,
we have ( $\alpha,\ \beta$_{j})=(0,0) for every j=1 , 2, . . .

,
m . Therefore, the m+1 vectors

p , igrad \log f_{1}(p) ,
. . .

, igradlog f(p) are linearly independent over \mathbb{R}
,

i.e. p is a reg‐

ular point of  $\Phi$. \square 

Proposition 5.3. Let f_{1}, f_{2} ,
. . .

, f_{m}, 2\leq m\leq 2n-1 ,
be weighted homogeneous

polynomials in \mathbb{C}[z_{1}, z_{2}, . . . , z_{n}] with weights w_{f1}, w_{f2} ,
. . .

, w_{f_{m}} , respectively. Suppose
that w_{f_{j}}=s_{j}w_{f}1 for some positive rational numbers s_{j} forj=1 , 2, . . .

,
m . If  p\in

 S_{ $\epsilon$}\backslash K_{ff\cdots f_{m}}12 is a singular point of the Milnor fibration product map  $\Phi$ :  S_{ $\epsilon$}\backslash K_{ff\cdots f_{m}}12\rightarrow
 T^{m} associated with f_{1}, f_{2} ,

. . .

, f_{m} ,
then we have that the m ‐vectors

i grad log f_{1}(p) ,
i grad log f_{2}(p) ,

. . .

,
i grad log f(p)

are linearly dependent over \mathbb{C}.

Proof. By Lemma 5.1, there exists ( $\alpha,\ \beta$_{1}, $\beta$_{2}, \ldots, $\beta$_{m})\in \mathbb{R}^{m+1}\backslash \{(0,0, \ldots, 0)\} such

that

 $\alpha$ p+\displaystyle \sum_{j=1}^{m}$\beta$_{j}i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f_{j}(p)=0.
From the definition of weighted homogeneous polynomials, it follows that

\langle w(z) , grad \displaystyle \log f_{j}\rangle=\frac{1}{f_{j}}\sum_{k=1}^{n}\frac{z_{k}}{a_{k}}\frac{\partial f_{j}}{\partial z_{k}}=\frac{s_{j}}{f_{j}}\sum_{k=1}^{n}\frac{z_{k}}{s_{j}a_{k}}\frac{\partial f_{j}}{\partial z_{k}}=s_{j}, z\in \mathbb{C}^{n}\backslash f_{j}^{-1}(0)

for j=1 , 2, . . .

,
m

,
where w_{f}1= ( a_{1}, a2, . . .

, a_{n} ) and

w(z)=(\displaystyle \frac{z_{1}}{a_{1}}, \frac{z_{2}}{a_{2}}, \ldots, \frac{z_{n}}{a_{n}})
Therefore, we have

 $\alpha$\displaystyle \langle w(p) , p\rangle-i\sum_{j=1}^{m}$\beta$_{j}s_{j}=\{w(p) ,  $\alpha$ p+\sum_{j=1}^{m}$\beta$_{j}i\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\log f_{j}(p)\}=0.
Then we have  $\alpha$=0 by comparing the real part of the both sides of this equation. There‐

fore, i grad log f_{1}(p) , igrad \log f_{2}(p) ,
. . .

,
i grad log f(p) are linearly dependent over \mathbb{R}.

In particular, igrad \log f_{1}(p) ,
i grad log f_{2}(p) ,

. . .

,
i grad log f(p) are linearly dependent

over \mathbb{C}. \square 
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