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Spaces of equivariant algebraic maps from real

projective spaces into complex projective spaces

By

Andrzej Kozlowski * and Kohhei YAMAGUCHI**

Abstract

We study the homotopy types of certain spaces closely related to the space of algebraic
(rational) maps from the m dimensional real projective space into the n dimensional complex
projective space for 2\leq m\leq 2n (we conjecture that this relation to be a homotopy equiva‐

lence). In [10] we proved that natural maps from these spaces to the spaces of all continuous

maps are \mathbb{Z}/2‐equivariant homotopy equivalences, where the \mathbb{Z}/2‐equivariant action is induced

from the conjugation on \mathbb{C} . In the same article we also proved that the homotopy types of the

terms of the natural degree filtration approximate closer and closer the homotopy type of the

space of continuous maps and obtained bounds that describe the closeness of the approxima‐
tion in terms of the degrees of the maps. In this paper, we improve the bounds by using new

methods used in [11]. In addition, in the the last section, we reprove a special case (m=1) of

the conjecture stated in [1] that our spaces are homotopy equivalent to the spaces of algebraic
maps.

§1. Introduction.

Summary of the contents. In [13] Mostovoy showed (modulo certain errors that

were corrected in [14]) that if 2\leq m\leq n then the space \mathrm{H}\mathrm{o}1(\mathbb{C}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) of holomorphic

maps from \mathbb{C}\mathrm{P}^{m} to \mathbb{C}\mathrm{P}^{n} has the same homotopy type of the space Map (\mathbb{C}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})
of corresponding continuous maps up to a certain dimension, which generalizes the

classical result of Segal [16] for m=1 . In [1] we used a variant of Mostovoy�s method
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to the analogous problem for the space \mathrm{A}\mathrm{l}\mathrm{g}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n}) of algebraic maps from \mathbb{R}\mathrm{P}^{m}

to \mathbb{R}\mathrm{P}^{n} for 2\leq m<n . These our results can also be seen as generalizations of the

results of [6] and [12]. In [10] we used analogous methods to prove a homotopy (or
homology) approximation theorem for the space \mathrm{A}\mathrm{l}\mathrm{g}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) of real algebraic maps

from \mathbb{R}\mathrm{P}^{m} to \mathbb{C}\mathrm{P}^{n} when 2\leq m\leq 2n . Combing this result with the main theorem of

[1], we obtained a \mathbb{Z}/2‐equivariant homotopy approximation result in [10] (where the

\mathbb{Z}/2‐action on \mathbb{C}\mathrm{P}^{n} is induced by complex conjugation), which is itself a generalization
of [6, Theorem 3.7].

In his recent paper [14], Mostovoy, in addition to correcting the mistakes in [13],
introduced a new idea that allowed him to improve the bounds on the degree of ho‐

motopy groups in his homotopy approximation theorem. With the help of analogous
methods and some additional techniques of ours, in the recent work [11], we improved
the bounds of the homotopy approximation theorem given in [1].

The first purpose of this article is to obtain an improved version of the equivariant

homotopy approximation theorem of [10]. Since the arguments are analogous to those

in [11], we only state our new results and refer to other literature for detailed proofs

(cf. Remark 2 below).
The second purpose is to consider the possibility of approximating the space of

continuous maps by its subspaces of algebraic maps of a fixed degree, analogously to

the results of Segal [16] and Mostovoy [14]. Because the situation is analogous, in this

paper we only consider the space of algebraic maps from \mathbb{R}\mathrm{P}^{m} to \mathbb{R}\mathrm{P}^{n} . For this purpose

we only need to prove that the projection maps

$\Psi$_{d} : A_{d}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n}) , $\Gamma$_{d} : \tilde{A}_{d}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n})

are homotopy equivalences, where they will be defined below. It is easy to see that

both of these maps have contractible fibres. However that alone is not sufficient to

prove that these two maps are homotopy equivalences. In fact, in [1, Conjecture 3.8],
we conjectured that this is true in general. Here we provide an informal argument
which shows that this is true for m=1 . A proof of this fact already appeared in [12,
Proposition 2.1]. However we find that the argument given there is unconvincing since

it does not seem to make any use of any properties of the map $\Psi$_{d} (e.g. the fact that is

a quasi‐fibration).

In the remainder of this section we briefly describe the notations and the definitions.

Notation. The notation of this paper is essentially analogous to the one used in [1]
and [10]. Note that the presence of \mathbb{C} indicates that a complex case is being considered

(i.e. maps take values in \mathbb{C}\mathrm{P}^{n} rather than \mathbb{R}\mathrm{P}^{n} or polynomials have coefficients in \mathbb{C}

rather than \mathbb{R}
, etc.).
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Let m and n be positive integers such that 1\leq m\leq 2n . We choose \mathrm{e}_{m}=[1 :

0 : . . . : 0]\in \mathbb{R}\mathrm{P}^{m} and \mathrm{e}_{n}'=[1:0: . . . : 0]\in \mathbb{C}\mathrm{P}^{n} as the base points of \mathbb{R}\mathrm{P}^{m}

and \mathbb{C}\mathrm{P}^{n} , respectively. Let \mathrm{M}\mathrm{a}\mathrm{p}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) denote the space consisting of all based

maps f:(\mathbb{R}\mathrm{P}^{m}, \mathrm{e}_{m})\rightarrow(\mathbb{C}\mathrm{P}^{n}, \mathrm{e}_{n}') . When m\geq 2 ,
we denote by \mathrm{M}\mathrm{a}\mathrm{p}_{ $\epsilon$}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})

the corresponding path component of \mathrm{M}\mathrm{a}\mathrm{p}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) for each  $\epsilon$\in \mathbb{Z}/2=\{0, 1\}=
$\pi$_{0}(\mathrm{M}\mathrm{a}\mathrm{p}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})) ([5]). Similarly, let Map (\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) denote the space of all free

maps f : \mathbb{R}\mathrm{P}^{m}\rightarrow \mathbb{C}\mathrm{P}^{n} and \mathrm{M}\mathrm{a}\mathrm{p}_{ $\epsilon$}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) the corresponding path component of

Map (\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) .

A map f : \mathbb{R}\mathrm{P}^{m}\rightarrow \mathbb{C}\mathrm{P}^{n} is called a algebraic map of degree d if it can be represented
as a rational map of the form f=[f_{0} : : f_{n}] such that f_{0}, \cdots, f_{n}\in \mathbb{C}[z_{0}, \cdots, z_{m}]
are homogeneous polynomials of the same degree d with no common real roots except

0_{m+1}=(0, \cdots, 0)\in \mathbb{R}^{m+1} . We denote by \mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) (resp. \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) )
the space consisting of all (resp. based) algebraic maps f : \mathbb{R}\mathrm{P}^{m}\rightarrow \mathbb{C}\mathrm{P}^{n} of degree d . It

is easy to see that there are inclusions

\mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\subset \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) , \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\subset \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,

where [d]_{2}\in \mathbb{Z}/2=\{0 ,
1 \} denotes the integer d mod2.

Let A_{d}(m, n)() denote the space consisting of all (n+1) ‐tuples (f_{0}, \cdots, f_{n})\in
\mathbb{C}[z_{0}, \cdots, z_{m}]^{n+1} of homogeneous polynomials of degree d with coefficients in \mathbb{C} and

without non‐trivial common real roots (but possibly with non‐trivial common non‐real

ones). Since \mathbb{C}^{*} acts on A_{d}(m, n)() freely, one can define the projectivisation \tilde{A}_{d}^{\mathbb{C}}(m, n)
by the orbit space \tilde{A}_{d}^{\mathbb{C}}(m, n)=A_{d}(m, n)(\mathbb{C})/\mathbb{C}^{*}

Let A_{d}^{\mathbb{C}}(m, n)\subset A_{d}(m, n)() be the subspace consisting of all (n+1) ‐tuples

(f_{0}, \cdots, f_{n})\in A_{d}(m, n)() such that the coefficient of z_{0}^{d} in f_{0} is 1 and 0 in the other

f_{k}' \mathrm{s}(k\neq 0) . Then there are natural projection maps

$\Psi$_{d}^{\mathbb{C}}:A_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) , $\Gamma$_{d}^{\mathbb{C}}:\tilde{A}_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) .

For m\geq 2 and g\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m-1}, \mathbb{C}\mathrm{P}^{n}) a fixed algebraic map, we denote by

\mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g) and F(m, n;g) the spaces defined by

\left\{\begin{array}{ll}
\mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g) & =\{f\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}):f|\mathbb{R}\mathrm{P}^{m-1}=g\},\\
F(m, n;g) & =\{f\in \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) : f|\mathbb{R}\mathrm{P}^{m-1}=g\}.
\end{array}\right.
It is well‐known that there is a homotopy equivalence F(m, n;g)\simeq$\Omega$^{m}\mathbb{C}\mathrm{P}^{n} ([15]).

Let \mathcal{H}_{d}^{m} denote the space of all homogenous polynomials h\in \mathbb{C}[z_{0}, \cdots, z_{m}] of degree
d . We choose a fixed tuple \mathrm{g}=(g_{0}, \cdots, g_{n})\in A_{d}^{\mathbb{C}}(m-1, n) such that $\Psi$_{d}^{\mathbb{C}}(\mathrm{g})=g . In

this situation, we denote by A_{d}^{*}(\mathbb{C})\subset(\mathcal{H}_{d}^{m})^{n+1} the subspace given by

A_{d}^{*}(\mathbb{C}) :=\{(g_{0}+z_{m}h_{0}, \cdots, g_{n}+z_{m}h_{n}) : h_{k}\in \mathcal{H}_{d-1}^{m}(0\leq k\leq n)\},
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and define the subspace A_{d}^{\mathbb{C}}(m, n;g)\subset A_{d}^{\mathbb{C}}(m, n) by A_{d}^{\mathbb{C}}(m, n;g)=A_{d}^{\mathbb{C}}(m, n)\cap A_{d}^{*}(\mathbb{C}) .

Because $\Psi$_{d}^{\mathbb{C}}(f_{0}, \cdots, f_{n})\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g) for any (f_{0}, \cdots, f_{n})\in A_{d}^{\mathbb{C}}(m, n;g) ,
one

can define the projection $\Psi$_{d}^{\mathbb{C}'} : A_{d}^{\mathbb{C}}(m, n;g)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g) by the restriction $\Psi$_{d}^{\mathbb{C}'}=
$\Psi$_{d}^{\mathbb{C}}|A_{d}^{\mathbb{C}}(m, n;g) . Let

(1.1) \left\{\begin{array}{l}
i_{d,\mathbb{C}}:\mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\rightarrow\subset \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,\\
j_{d,\mathbb{C}}:\mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,\\
i_{d,\mathbb{C}}' : \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g)\rightarrow F(m, n;g)\simeq$\Omega$^{m}\mathbb{C}\mathrm{P}^{n}
\end{array}\right.
denote the inclusions and

(1.2) \left\{\begin{array}{l}
i_{d}^{\mathbb{C}}=i_{d,\mathbb{C}}\circ$\Psi$_{d}^{\mathbb{C}}:A_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,\\
j_{d}^{\mathbb{C}}=j_{d,\mathbb{C}}\circ$\Gamma$_{d}^{\mathbb{C}}:\tilde{A}_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,\\
i_{d}''=i_{d,\mathbb{C}}'\circ$\Psi$_{d}^{\mathbb{C}'}:A_{d}^{\mathbb{C}}(m, n;g)\rightarrow F(m, n;g)
\end{array}\right.
the natural maps.

The notations used in this paper can be summarized in the following two diagrams,
where g\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m-1}, \mathrm{K}\mathrm{P}^{n}) denotes a fixed based algebraic map of degree d and we

omit their details of the notations in (1.4) and refer the reader to [1].

Map ( \mathrm{P} , P) Map(1.3) (\mathrm{m}, \mathrm{n}; g)

Alg ( \mathrm{P} , P) Alg

\mathrm{d};

Alg (\mathrm{m}, \mathrm{n}; g)

(\mathrm{m}, \mathrm{n}; g)\tilde{A}_{d}^{\mathbb{C}}(m, n)

(1.4)

Alg ( \mathrm{P} , P)

\tilde{A}_{d}(m, n)

Map ( \mathrm{P} , P) Map \mathrm{F} (\mathrm{m}, \mathrm{n}; g)

\mathrm{d};

Alg (\mathrm{m}, \mathrm{n}; g)Alg

\mathrm{A} (\mathrm{m}, \mathrm{n}; g)
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§2. The main results.

In this section we state the main results of this paper. First define the positive

integers D_{\mathrm{K}}^{*}(d;m, n) and D_{\mathrm{K}}(d;m, n) by

(2.1) D_{\mathrm{K}}^{*}(d;m, n)=\left\{\begin{array}{ll}
(n-m)(\mathrm{L}\frac{d+1}{2}\rfloor+1)-1 & \mathrm{i}\mathrm{f} \mathrm{K}=\mathbb{R},\\
(2n-m+1)(\mathrm{L}\frac{d+1}{2}\rfloor+1)-1 & \mathrm{i}\mathrm{f} \mathrm{K}=\mathbb{C},
\end{array}\right.
(2.2) D_{\mathrm{K}}(d;m, n)=\left\{\begin{array}{ll}
(n-m)(d+1)-1 & \mathrm{i}\mathrm{f} \mathrm{K}=\mathbb{R},\\
(2n-m+1)(d+1)-1 & \mathrm{i}\mathrm{f} \mathrm{K}=\mathbb{C},
\end{array}\right.
where \lfloor x\rfloor is the integer part of a real number  x and we remark that the equality

D_{\mathbb{C}}(d;m, n)=D_{\mathbb{R}}(d;m, 2n+1) holds.

We first recall the following two results.

Theorem 2.1 (The case (, m)=(\mathbb{R}, 1);[9], [18] ). If m=1<n ,
the natural

map i_{d} : A_{d}(1, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{1}, \mathbb{R}\mathrm{P}^{n})\simeq $\Omega$ S^{n} is a homotopy equivalence up to dimen‐

sion D_{\mathbb{R}}(d;1, n)=(n-1)(d+1)-1. \square 

Theorem 2.2 (The case \mathrm{K}=\mathbb{R} and m\geq 2;[11] ). Let m and n be positive inte‐

gers such that 2\leq m<n.

(i) Let g\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m-1}, \mathbb{R}\mathrm{P}^{n}) be an algebraic map of degree d . Then the natural map

i_{d}' : A_{d}(m, n;g)\rightarrow F(m, n;g)\simeq$\Omega$^{m}S^{n} is a homotopy equivalence up to dimension

D_{\mathbb{R}}(d;m, n) if m+2\leq n and a homology equivalence up to dimension D_{\mathbb{R}}(d;m, n)
if m+1=n.

(ii) The natural maps

\left\{\begin{array}{l}
i_{d} : A_{d}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n})\\
j_{d}:\tilde{A}_{d}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n})
\end{array}\right.
are homotopy equivalences up to dimension D_{\mathbb{R}}(d;m, n) if m+2\leq n ,

and homology

equivalences up to dimension D_{\mathbb{R}}(d;m, n) if m+1=n. \square 

Remark 1. (i) Theorem 2.2 was recently proved in [11] and it is an improvement
of the main result of [1].

(ii) A map f : X\rightarrow Y is called a homotopy (resp. a homology) equivalence up to

dimension D if f_{*}:$\pi$_{k}(X)\rightarrow$\pi$_{k}(Y) (resp. f_{*}:H_{k}(X, \mathbb{Z})\rightarrow H_{k}(Y, \mathbb{Z}) ) is an isomorphism
for any k<D and an epimorphism for k=D.

(iii) Let G be a finite group and let f : X\rightarrow Y be a G‐equivariant. For a subgroup
H\subset G ,

we denote by X^{H} the H‐fixed set of X given by X^{H}=\{x\in X : h x=
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x for any h\in H}. A map f : X\rightarrow Y is called a G ‐equivariant homotopy (resp.
homology) equivalence up to dimension D if the restriction to the set of fixed points

f^{H}=f|X^{H} : X^{H}\rightarrow Y^{H} is a homotopy (resp. homology) equivalence up to dimension

D for any subgroup H\subset G (cf. [8]).

Now we state the main results of this paper as follows.

Theorem 2.3. Let m and n be positive integers such that 2\leq m\leq 2n.

(i) Let g\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(\mathbb{R}\mathrm{P}^{m-1}, \mathbb{C}\mathrm{P}^{n}) be a fixed algebraic map of degree d . Then the natural

map i_{d}'' : A_{d}^{\mathbb{C}}(m, n;g)\rightarrow F(m, n;g)\simeq$\Omega$^{m}S^{2n+1} is a homotopy equivalence up to

dimension D_{\mathbb{C}}(d;m, n) if m<2n and a homology equivalence up to dimension

D_{\mathbb{C}}(d;m, n) if m=2n.

(ii) The natural maps

\left\{\begin{array}{l}
i_{d}^{\mathbb{C}}:A_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\\
j_{d}^{\mathbb{C}}:\tilde{A}_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})
\end{array}\right.
are homotopy equivalences up to dimension D_{\mathbb{C}}(d;m, n) if m<2n and homology

equivalences up to dimension D_{\mathbb{C}}(d;m, n) if m=2n.

Note that the complex conjugation on \mathbb{C} naturally induces \mathbb{Z}/2‐actions on the spaces

\mathrm{A}\mathrm{l}\mathrm{g}_{d}^{\mathbb{C}}(m, n;g) and A_{d}^{\mathbb{C}}(m, n) . In the same way, it also induces a \mathbb{Z}/2‐action on \mathbb{C}\mathrm{P}^{n} and it

extends to \mathbb{Z}/2‐actions on the spaces \mathrm{M}\mathrm{a}\mathrm{p}^{*}(\mathbb{R}\mathrm{P}^{m}, S^{2n+1}) and \mathrm{M}\mathrm{a}\mathrm{p}_{ $\epsilon$}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n}) ,
where

we identify S^{2n+1}=\displaystyle \{(w_{0}, \cdots, w_{n})\in \mathbb{C}^{n+1} : \sum_{k=0}^{n}|w_{k}|^{2}=1\} and regard \mathbb{R}\mathrm{P}^{m} as a

\mathbb{Z}/2‐space with the trivial \mathbb{Z}/2‐action.

Since (i_{d}'')^{\mathbb{Z}/2}=i_{d}', (i_{d}^{\mathbb{C}})^{\mathbb{Z}/2}=i_{d} and (j_{d}^{\mathbb{C}})^{\mathbb{Z}/2}=j_{d} , by Theorem 2.2 and Theorem

2.3 we obtain the following result.

Corollary 2.4. Let m and n be positive integers such that 2\leq m<n.

(i) Let g\in \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m-1}, \mathbb{C}\mathrm{P}^{n}) be an algebraic map of degree d . Then the natural map

i_{d}'' : A_{d}^{\mathbb{C}}(m, n;g)\rightarrow F(m, n;g)\simeq$\Omega$^{m}S^{2n+1} is a \mathbb{Z}/2 ‐equivariant homotopy equiva‐
lence up to dimension D_{\mathbb{R}}(d;m, n) if m+2\leq n and a \mathbb{Z}/2 ‐equivariant homology

equivalence up to dimension D_{\mathbb{R}}(d;m, n) if m+1=n.

(ii) The natural maps

\left\{\begin{array}{l}
i_{d}^{\mathbb{C}}:A_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})\\
j_{d}^{\mathbb{C}}:\tilde{A}_{d}^{\mathbb{C}}(m, n)\rightarrow \mathrm{M}\mathrm{a}\mathrm{p}_{[d]_{2}}(\mathbb{R}\mathrm{P}^{m}, \mathbb{C}\mathrm{P}^{n})
\end{array}\right.
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are \mathbb{Z}/2 ‐equivariant homotopy equivalences up to dimension D_{\mathbb{R}}(d;m, n) if  m+2\leq

 n and are \mathbb{Z}/2 ‐equivariant homology equivalences up to dimension D_{\mathbb{R}}(d;m, n) if
m+1=n. \square 

Remark 2. Remark that D_{\mathrm{K}}^{*}(d;m, n)<D_{\mathrm{K}}(d;m, n) for d\geq 2 . Thus, we may

regard Theorem 2.3 and Corollary 2.4 as the improvements of [10, Theorems 1.4, 1.5

and Corollary 1.7]. The method of the proof of Theorem 2.3 is to apply the ideas used

in the proof of Theorem 2.2 to the argument of the proof of [10, Theorems 1.4 and 1.5].
We shall therefore omit the details and refer the reader to [10] and [11].

Remark 3. There is a mistake in the statement of [10, Corollary 1.7]; the condi‐

tion 2\leq m\leq 2n should be replaced by 2\leq m<n as in Corollary 2.4.

§3. The projections $\Psi$_{d} and $\Gamma$_{d}.

In this section, we consider the following conjecture stated in [1].

Conjecture 3.1 ([1], Conjecture 3.8). If 1\leq m<n ,
the projection maps $\Psi$_{d} :

A_{d}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n}) and $\Gamma$_{d} : \tilde{A}_{d}(m, n)\rightarrow \mathrm{A}\mathrm{l}\mathrm{g}_{d}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n}) are homotopy

equivalences.

It is easy to see that $\Gamma$_{d} is a homotopy equivalence if $\Psi$_{d} is so. Thus, we only
consider the projection $\Psi$_{d} . There is evidence which suggests that $\Psi$_{d} is a homotopy

equivalence. Indeed, the fibre of it over \mathrm{A}\mathrm{l}\mathrm{g}_{d-2k+2}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n})\backslash \mathrm{A}\mathrm{l}\mathrm{g}_{d-2k}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{R}\mathrm{P}^{n}) is

homeomorphic to the space of everywhere positive \mathbb{R}‐coefficient polynomials in (m+1)-
variables of degree 2k with leading coefficient 1, which is convex and then contractible.

If it is a quasi‐fibration, it is a homotopy equivalence. Although we cannot prove this

in general, we can do it for m=1.

Theorem 3.2. If m=1
, Conjecture 3.1 is true.

Proof. Even if we replace the point \tilde{e}_{n}=[1 : 1:. . . : 1 ] as the base point of \mathbb{R}\mathrm{P}^{n},
all corresponding spaces are homeomorphic each other and all corresponding statements

as above are equivalent. Thus, from now on, we choose \mathrm{e}_{n} as the base point of \mathbb{R}\mathrm{P}^{n}

Then by taking z_{1}/z_{0}=z we see that A_{d}(1, n) is homeomorphic to the space consisting
of all (n+1) ‐tuples (f_{0}(z), \cdots, f_{n}(z))\in \mathbb{R}[z]^{n+1} of monic \mathbb{R}‐coefficients polynomials
of one variable z with the same degree d

,
such that f_{0}(z) , \cdots, f(z) have no common

real root (but may have a complex common root). We will exploit the convenient fact

that spaces of tuples of monic polynomials in one variable can be identified with certain

configuration spaces of points or particles in the complex plane. More exactly, we can
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also identify the space A_{d}(1, n) with the space of d particles of each of n+1 different

colours, in the case n=2
, say, red, blue and yellow, located in \mathbb{C}=\mathbb{R}^{2} symmetrically

with respect to the real axis and such that no three particles of different colour lie at

the same point on the real axis. Note that off the real axis the particles are completely
unrestricted.

'

\bullet

----

\bullet

'

The space \mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{1}, \mathbb{R}\mathrm{P}^{n}) can also be thought of as a configuration space of k particles
of each of n+1 different colours as above, where k\leq d ,

but with the additional property
that when n+1 different particles meet (off the real line) they (and their conjugate

particles) disappear (this space is topologised as the obvious quotient of the preceding

one).
Finally, we need one more configuration space introduced in [12]. Let T(d, n)

denote the space defined as follows. Consider the d‐fold symmetric product \mathrm{S}\mathrm{P}^{d}(\mathbb{R}) of

the real line \mathbb{R}
,

and we write the points of \mathrm{S}\mathrm{P}^{d}(\mathbb{R}) as linear combinations with non‐

negative integer coefficients (divisors) \displaystyle \sum k_{i}x_{i} ,
where x_{i} is a point in \mathbb{R} and k_{i} is a

non‐negative integer with \displaystyle \sum_{i}k_{i}=d . Now consider the subspace of the (n+1) ‐th

cartesian power of \mathrm{S}\mathrm{P}^{d}(\mathbb{R})^{n+1} consisting of (n+1) ‐tuples of divisors whose supports

have empty intersection. Then we impose on this subspace the equivalence relation

��defined by

(\displaystyle \sum_{i}k_{i}^{0}x_{i}^{0}, \sum_{i}k_{i}^{1}x_{i}^{1}, \ldots, \sum_{i}k_{i}^{n}x_{i}^{n})\sim(\sum_{i}l_{i}^{0}x_{i}^{0}, \sum_{i}l_{ii}^{1_{X}1}, \ldots, \sum_{i}l_{i}^{n}x_{i}^{n})
if k_{i}^{j}\equiv l_{i}^{j} (mod2) for all i, j . We denote by T(d, n) its quotient space (with the quotient

topology). We can think of it as the space of no more than k_{i}\leq d particles of colour

i
,

where k_{i}\equiv d (mod2), on the real axis, with the property that any even number of

particles of the same colour at the same point on the real axis vanish, and of course,

as before no n+1 particles of different colours lie at the same point. In other words,

T(d, n) is a configuration space modulo 2. There is a map  $\Phi$ :  A_{d}(1, n)\rightarrow T(d, n) defined

by sending a collection of polynomials to the collection of their real root systems with

multiplicities reduced mod2 (when the polynomials in a collection have no real roots

we send the collection to (0, \cdots, 0) ). Clearly, the map  $\Phi$ factors through  $\Psi$_{d},

 $\Phi$=Q_{d}\circ$\Psi$_{d} : A_{d}(1, n)\rightarrow^{d}\mathrm{A}\mathrm{l}\mathrm{g}_{d}^{*}(\mathbb{R}\mathrm{P}^{1}, \mathbb{R}\mathrm{P}^{n}) $\Psi$\rightarrow^{d}T(d, n)Q.

Proposition 3.3 ([12], Proposition 2.1). The maps $\Psi$_{d} and Q_{d} above are homo‐

topy equivalences.
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A proof of this proposition is given in [12], but as we stated earlier, it does not

seem convincing to us, so we will give here a different one. More precisely, we need the

following:

Lemma 3.4. The maps Q_{d} and Q_{d}\circ$\Psi$_{d} are quasi‐fibrations with contractible

fibres.

From this it follows at once that $\Psi$_{d} is a homotopy equivalence, and this completes
the proof of Theorem 3.2. \square 

Proof of Lemma 3.4. We first prove that the fibre of Q_{d}\circ$\Psi$_{d} (and Q_{d} ) over any

point in T(d, n) is contractible. Consider a configuration in T(d, n) .

——

In the fibre over this configuration, all points in the upper half plane can be sent

linearly to point corresponding to the pure imaginary number i and those in the lower

half plane to -i . For a 2k or 2k+1 fold particle lying on the real line, k of the particles
are moved to -i and k are moved to to -i leaving 0 or 1 particles in place. This

argument shows that the fibres of both Q_{d}\circ$\Psi$_{d} and Q_{d} are contractible.

Next, we will show that the maps Q_{d}\circ$\Psi$_{d} and Q_{d} are both quasi‐fibrations. Consider

a point (configuration of particles) in T(d, n) . By an �obstacle for colour k �
we mean

a collection of n particles of distinct colours other than the k‐th colour which are all

located at the same point. The reason for the name is, of course, the fact that a particle
of the k‐th colour cannot �pass� through obstacle for the k‐th colour as that would

violate the requirement that there can never be n+1 particles of different colour in the

same position.
The idea of the proof is simple enough to describe but harder to write out for‐

mally. The fibre over each configuration in T(d, n) consists of configurations that are

unrestricted except on the real axis. In general, fibres over nearby configurations look

different because an even number of particles of the same colour can come together
on the real axis and disappear. However, if the number of particles of each colour is

fixed, this cannot happen. Thus the projections onto the subspace T(d, n;p_{0}, \ldots,p_{n})
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of T(d, n) consisting of configurations with a fixed number of particles of each colour

are locally trivial fibrations. Now consider the subspace T(d, n;p0, . . . , p_{n-1}) of T(d, n)
consisting of configurations in which the numbers of particles of the first n colours

are fixed at p_{0}, p_{2} ,
. . .

, p_{n-1} and filter it by the number of particles of the n+1‐th

colour (in other words, the k‐th term of the filtration consists of configurations with

p_{0}, p_{2} ,
. . .

, p_{n-1} particles of the first n colour and less or equal to k particles of the

n+1‐th colour). The set theoretic differences between the terms of the filtration are

precisely the spaces T(d, n;p0, . . . , p_{n}) and we have already proved that the restriction

of the maps Q_{d}\circ$\Psi$_{d} and Q_{d} to the inverse images of these spaces are quasi‐fibrations.
Now we apply the Dold‐Thom criterion [7, Lemma 4.3]. For this purpose we need to

construct open neighbourhoods of spaces of configurations with no more than k-1

particles of the last colour in the space of configurations of no more than k‐particles of

the last colour. Our deformation will pull together pairs of particles of the last colour

which are very close by means of a gravitational force field between particles of the last

colour. For this purpose we must avoid hitting any obstacles for this colour. It is easy

to see how to choose open neighbourhoods and deformations with the right properties.

Applying the Dold‐Thom lemma we conclude that the maps restricted to the pre‐images
of spaces with the number of particles of the first n-1 colours fixed (and an unrestricted

number of particles of the last colour) are quasi‐fibrations. Now fix the first n-1 colours

and filter the resulting spaces according to the number of particles of the n‐th colour.

Proceeding by induction we conclude that Q_{d}\circ$\Psi$_{d} and Q_{d} are quasi‐fibrations. \square 
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