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A determinant formula for the quotient
of the relative class numbers of imaginary abelian
number fields of relative degree 2

By

Mikihito HIRABAYASHI* -

Abstract

We give a determinant formula for the quotient of the relative class numbers of imaginary
abelian number fields of relative degree 2, which is a generalization of End6’s formulas for the
mth cyclotomic field, m an odd integer, and its quadratic extension.

§1. Introduction

Let p be an odd prime. For an integer u let Ry(u) and R, (u) be the integers such
that

Rp(u)=u (modp), 0<R,(u)<p
and

p
R,(u) =u (mod p), —g < Rp(u) < 3
respectively. For an integer u coprime to p, let u~! be an integer with uu~! = 1
(mod p). We have already obtained a lot of determinant formulas for the pth cyclotomic
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field Q({p), {p a primitive pth root of unity. For example,

(1.1) det (Bp(u0™)) e ve(poryyz = (1) p"7T R,

258,® pEthr i 2|ordy(2),
(1.2) det(Rp,(uv ™)) 1<u, v<(p-1)/2 =

0 otherwise,

II @—x@2)-A;,

XEX~

3

ok

_1)Bp(wv™?) =(-1)=
(1.3) det (( 1) )1su,vS(p—1)/2 (=0

where ord,(2) is the order of 2 modulo p, X ~ the set of odd characters of the field Q((p)
and h;, the relative class number of the field Q(¢p)-

The determinant in the formula (1.1) is called Maillet determinant (See [1]) and
the one in (1.3) could be called Dem’janenko determinant. The formulas (1.1) and (1.3)
are special ones of the generalized formulas in [3], [14], [17] and [18]; and the formula
(1.2) a special one of [3], [15] and [17]. Funakura [7] gave, up to sign, a generalized
formula of (1.3) for the mth cyclotomic field, m an odd integer.

As a corresponding formula to (1.3), we shall obtain by the formula (2.5) in Corol-
lary 2.3

s h}
ot h4f if p=3 (mod 4),
_1\R,(uwv™Y) = g
(1.4) det (( 1)% )1§u,v£(p—1)/2
0 otherwise,

where hj, is the relative class number of the 4pth cyclotomic field. Kanemitsu and
Kuzumaki [15, Corollary 4] have already obtained the formula (1.4), up to sign, under
some condition.

The aim of this paper is to give a determinant formula for the quotient of the
relative class numbers of imaginary abelian number fields with relative degree 2, which
is a generalization not only of the formula (1.4) but also of Endé’s formulas in [2] and
[4]. As does the formula in [14], our determinant formula has a parameter b. By taking
b= fm+1 (fm : the conductor of “the larger field”) we obtain the formula in [2,
Theorem 1 for k = 1] ; by taking b = 2, the one in [4, Theorem 1]; by takingb=g (¢: a
primitive root modulo p), the one in Corollary 2.5, in which the elements of determinant
are coefficients of some digit expression as in [11].

Our result would be an answer to the inquiry of Kanemitsu and Kuzumaki [15,
p.285] about the relation between Tsumura’s and the author’s generalized Dem’janenko
determinants and (generalization of) Endd’s determinants Sp, T, and U, in [5]. The
determinants Sp, Tp and U, are special ones of the left-hand sides of (2.5), (2.6) and
(2.7) for the pth cyclotomic field Q((p,), respectively.
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§2. Results

Let m be an integer with m > 3 and m # 2 (mod 4). For an integer u let Ry, (u)
and R;,(u) be the integers such that

Rm(u)=u (modm), 0< Rn(u)<m
and
R, (u) =u (mod m), _%z_ <R, (u) < %,

respectively. For an integer u coprime to m, let u~! be an integer such that uu=1 =1
(mod m).

Let K be an imaginary abelian number field of degree 2n = [K : Q] and with
conductor m. Let h%, Qx and wx be the relative class number of K, the unit index of
K and the number of roots of unity in K, respectively.

Let G, be the multiplicative group (Z/mZ)*, Z the ring of integers, and H the
subgroup of Gy, corresponding to K. For an integer ¢ coprime to m let Z = t+mZ € G.

Since H does not contain —1, we can take classes Cy,Ca,- - - ,C,, of G, /H satisfying

Gm/H = {Cl""ChC?;_C%"- 7Cn’—cn}'

Let R = {C1,02,.. . ,Cn} and let C; = H.

Let Xt and X~ be the sets of primitive even and odd Dirichlet characters of
K, respectively. In the following, except to specify, we assume that the characters we
consider are primitive.

Let b be an integer with > 2 and m [ b. Let m’ = m/(m,b), ¥ = b/(m,b), where
(m, b) is the greatest common divisor of m and &.

For a character x € X~ let f, be the conductor of x and define cy(b) as

leIm (1 - Y(Z)) if fx Xmlv
cx(b) = .
by (1~ X)) = Zhx(®) [Ty (L~ XM) i f | 70,

where [ runs over prime numbers, ¥ is the conjugate character of x and ¢ the Euler
totient function.

Let K be the composite of K and a quadratic field Q( ‘D), where D is the discrim-
inant of the field Q( D). We assume that D is coprime to m. Let f be the conductor
of the field Q( D) and ¢ the quadratic Dirichlet character corresponding to Q( D).

For a class C =¢H in G,,/H let

79, = 35 U(olet) + dm) ([b ) +de - 1) :

feH d=0 fm 2
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where [z] means the integral part of a rational number z. When H = {1}, we use c(f:z
instead of ngb for C =¢cH = {e}.

Let h%, Q, w and ¢y (b) be defined for K as above. Note that we define ¢, (b)
by using fm instead of m.

Theorem 2.1. Let K be an imaginary abelian number field of degree 2n and
with conductor m. Let K, ¢ and f be as above. Take an integer b with b > 2 and
fm }b. Then we have

1
(2.1) det (T(b) -1 ) = H G (D) - H = B1xw
CiC7 CilCiER  yex XEX*2
- Qrw h}g
= (-1)" Cxw(b) - e
Xgp T Qruwg hk’

where X* is X or X~ according as ¥(—1) = —1 or ¢(~1) = +1.

When b = fm+1, we have the following formula, which is obtained by taking k = 1
in [2, Theorem 1]:

Corollary 2.2 (cf. [2, Theorem 1]).  Let K be an imaginary abelian number field
of degree 2n and with conductor m. Let K, 1 and f be as above. Then we have

j-1 -
(2.2) det (Z > (R (cicy 't) + dm) (R,n(czc}n:) tdm _ %))
C;,C;€R

teH d=0

~ T1 TIe - @) TT 5Buxs

XEX* l|m xex

xi*

h
= (0 T [0 - o) - 2x2x 0k,

~ w~
XEX™* l|m QK K

>
=

where C; = ¢ H, Cj = ?J'H

Let 1o be the principal character modulo f and let

18, = 32 3 oln(et) + dm) ([o- Enleim) 222)

TcH d=0 fm 2

for C =¢H.
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We remark that we have already obtained

= H Cx (B) - H %Bl,x

XEX~ xXE€EX—

(®)
(2.3) det <Tc,z —

) C;,C;€R

(See [12, (24)]) and

(2.4) det <T(b) S, ) det (T(b) ) = & () - =B,
c;crt, 00 R CiC;ty CiCieR H X H 9T hX

xGX‘ xeX“
IT & 58
xEX- QKwK

where X~ is the set of odd characters of K. Kucera [16] gave a determinant formula
generalizing the formula (2.4) but he did not refer to the formula (2.3).

Endb [6, Theorem] gave the formula (2.4), up to sign, in the case where K = Q(Cpu),
a p-power-th cyclotomic field, K = Q(G=, ), (f,p) =1and b= fp* +1.

We can not get our result (2.1) “directly” from (2.3) and (2.4), because
det (Tc(:b)c-l is equal to zero under some conditions.

iC; o CiCiER

In Theorem 2.1, taking b = fm + 1; ¢ = x4, ¥ = xa®s and ¢ .= 15, we have
generalizations of Endd’s formulas for the mth cyclotomic field Q(¢), m an odd integer,
in [2, Theorem 2], where x4 is the odd character with conductor 4 and s the even
character with conductor 8:

Corollary 2.3 (cf. [2, Theorem 2|).  Let K be an imaginary abelian number field
of degree 2n and with odd conductor m. Then we have

(2.5) det (Z(-l)R’m(cw;lﬂ)
C;,C;e€R

teH

Qx wi h}{(\/_)
= Xxa(m)™ 2" x(2) - (1= xxa(D)) -
xg+ xg+ E Qk(v=nWk(vT) Pk

(2.6)  det (Z " (eic; 1t))
teH Ci,Cj€R
h*

w
= Xas(m)" H x(2) - H H(1_Xx4¢8(1)). 5 QKwK K}(l;/_)
XEX+ XEX+ llm K(v=2) YK(V=2) K
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and
(2.7)  det (ZU,’,,(cicj‘lt))
teH Ci,C;€R
h*
m w
= = rggmy [T 1) TT [10 - b)) gge— - 2,
XEX+ YEX~ Ujm K(2) YK(V2) K

where C; = ¢;H, C; =¢;H and for an integer c

(-1)%%2  § R_()=0 (mod 2),
Thle) =

0 if Ri.(c)=1 (mod 2)

and

0 if R(c)=0 (mod 2),

Un(e) =
Rl (c)—1

(-)™7— i Rp(g=1 (mod2).

Endé’s formula in [2, Theorem 2] are represented, up to sign, by the form of product
of first generalized Bernoulli numbers. Endé (5] has already given such determinants in
(2.5), (2.6) and (2.7) for the pth cyclotomic field Q((p).

 Asintroduced in §1, the formula (1.4) is a special case of (2.5) for the pth cyclotomic
field Q((p). Here we note that if p = 3 (mod 4), then erx+ x(2) = Xp(2)(?’“1)”‘r =
+1, where Y, is a Dirichlet character with conductor p and of degree p — 1.
In Theorem 2.1 taking K = Q((,) and b = 2, we have formulas in [4]:

Corollary 2.4 ([4, Theorem 1]).  Let K be the pth cyclotomic field Q((p), p an
odd prime. Let D be a square-free integer such that (D,p) = 1 and D = 1 (mod 4).
Let K be the composite of K and the quadratic field Q( ‘D). Let v(u) be the quadratic
character corresponding to the field Q( D). For an integer u with (u,p) =1 put
(p|D|-1)/2

Su(®) = > p(k).

(k,pD)=1, k= u (mod p)

Then we have: If D > 0, then

(p—1)/2
(28)  det (Suv(¥))1<u, 0cp-vy2=% 1] 2- ()2 5By
i=1
9 (p—1)/2 ” h’;?
=44 2 — i1 2)) - 2
Qrug g( vxp (2) 7
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If D <0, then

(p—1)/2
(2.9) det (Suo (1,1’))15u,vg(p_1)/2 == (1-9(p)) H (2- xffgb(Z))%Bl,xgiw
i=1
(p—1)/2 *
— _ 2p 28 . _h_fé
=% (1= 90) 5 1__]1 (2=’ 4

In Theorem 2.1 taking K = Q((p) and b = g, g a primitive root modulo p, we have
a formula corresponding to the one in [11, Corollary 2]:

Corollary 2.5. Let K be the pth cyclotomic field Q((), p an odd prime. Let g
be a primitive root modulo p with g > 2 and g =1 (mod 4). Let K be the composite of
K and the quadratic field Q( '=1). Then for an integer i we have

@) _ kyy [ 9B (9%)
TRp(yi),x4 - Z x4(Rap(g")) [T
0<k<Lp—-2
R4p(9k) = Rp(g%) (mod p)
R .k
D VIRV NC SRy
0<k<p—2

Ryp(—g¥) = Rp(gt) (mod p)

= 3 [Q&Z_@k)] _ Z [9&;;5*9'“)]
P P

0<k<p—~2 0<k<p-—2
Ryp(g*) = Rp(g?) (mod p) Ryp(~gk) = Rp(g?) (mod p)

and

det (T(g’

— eztl h
Rp(gi_j)’x“)ogi,jS(p_g)/z = (17 70 -xa®) [ (6-x(9)- R

XEX+

Remark.  With the notation in Corollary 2.5 expand 1/(4p) to the basis 1/g:
1 0
- =Z%§-§—), z(k) € {0,1,...,9—1}.

Then we have

9R4p(9k_1)}
z(k) = |72 L for k=1,2,...
(k) [ 4p

(See [11, Theorem 10]).

Example 2.6. We give here an example of Corollary 2.5. Let K, K and g be
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as in Corollary 2.5. We take p =7, g = 5. Then K = Q(C7),I? = Q((2g) and

Thotso)e = 5381] - —% =0-2 = -2,
Thnstoe = %] - L5—2819-7 = 0-3 = -3,
- [52] - [52] - 14
Tz(qi)(54),x4= %—8?-] - % =1-4 = -3,
Tg)(ss),xf '_55_8171 - %—;} 3-0= 3

Hence
-2

3 -
) _ __
det (T -1y xa) o s = 8 | =3 —g = —62.

w
N W W

On the other hand, letting ¢, be a primitive uth root of unity, we have

7-1 ht‘ ht
(-1 31— xa(M) I -0 5= 12 G- DE- 6=
h*
=—62- hﬁ;.

Therefore h% = R Actually, we have already known that h% = hy = 1.

§3. Proofs of Theorem and Corollaries

To prove Theorem 2.1 we need the following lemma originating from [8].

Lemma 3.1 ([14, Lemma 1)).  Let K be an imaginary abelian number field with
conductor m and b an integer with b > 2 and m [ b. Then, for an odd character x of K
and for C = ¢H we have

1
s (0)Bix = 3 %1
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where
R, (ct) b—1
T = LI :
#- (=2
teH
Proof of Theorem 2.1. Recall that for a class C = gH in G,,/H we define
F-1
(b) ) Ry (ct) +dm b—-1
T,w—ZZ¢(Rm(ct)+dm)<[b = -
feH d=0
Let ¢(—1) = (=1)*¥, k¥’ = 0 or 1. Then we have
T = (¥ HTY),
First we consider the case where 9(—1) = —1. Since Tib()w = ngzp, it follows from

the group determinant (cf. for example, [19, p.71]) that

b (b
det(Té)C )0 CieR = H Z X(C)Zc(f}«p
x€X+TCHER

Since

(k,fm)=1
noting that the assumption of b, we obtain by Lemma 3.1

b 1_
Z X(C)Te(}},w =3 xa(b)Bl,xd)'
cHeR

Therefore we have

b
det(Té)o- wewcier= 1] Sw®) - ] 2Bl,xw
x€X+ XEXT

we by
= (1" ] Ele) - KUK

*
_K
~ )~ *® °
XEX* QK wK hK

Next we consider the case where (—1) = +1. Taking some odd character x; of
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K, we have, letting C; = ¢;H, C; =GH,

det(T(bC_1 )i, c;er =det(x1 (Cicj_l)Té )0’ )Ci, iR

= H Z XIX(a) HH

xeX+aHeER

=1 X xormh,

x€X-aTHER

= 1] &®- ]I %Bl,xt/)

XEX— XE€EX—

h
= (1" [T Golt)- KX

*
XEX* Qrwg hk

¥

|

This completes the proof. O

Corollary 2.2 is easily proved by Theorem 2.1, because when b = fm + 1, it holds
that

Ew®) = fm [ —xw@) = fm [ [(1 - x0()).
l|fm llm

To prove Corollary 2.3 we need the following two lemmas.

Lemma 3.2 (cf. [13, Lemma 2]).  For an integer ¢ with (c,m) = 1, we define
the permutation o, on R = {C1,Ca,... ,Cp} up to “£” by
eCi==%Cy iy fori=12,...,n
Then we have
(3.1) sgnoe = J[ x(o),
xeX+

where sgno, = +1 or —1 according as o. is even or odd.

In [13, Lemma 2] we have shown that

(-1)Nesgno. = [ x(e),
XEX—
where N, is the number of the “minus cosets” —C,_(;) in the set {cC; = £Cy ;)i 1 =

1,2,... ,n}. Wecan prove the identity (3.1) by taking [T, x+ x(c) instead of [, x-x(c)
in the proof of [13, Lemma 2]. (The right hand §;;{,, of the equation on page 22, line
13 from the top of [13] should be ng" )
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Lemma 3.3 ([2, Proof of Theorem 2]).  Assume that m is an odd integer. For
an integer ¢ with (c,m) =1 let ¢’ an integer such that (¢, m) =1 and 2¢ = ¢ (mod m).
Then, for any integers c;,c; coprime to m, we have

3 -1
-1 Ry(cic;™ ) 4+dm 1 _ 1 R! (cieTh)
G;)X“(Rm(clcj ) + dm) ( i - -2") = —xa(m) - 5 (=1) i),
7 _ . /‘—1 +d 1
> xats(Bmescs ™) +dm) (R"’(" LTI 1) nm T (e )
-0
and

7
> s(Rum(cic; ™) + dm)

(Rm(cidj‘l) +dm 1
d=0

- 5) = (=) " Ya(m)Up (cic5™).

Proof of Corollary 2.8. By Lemmas 3.3 and 3.2 and by Corollary 2.2 we have

(=1)"xa(m)" - ’21: - det (Z(—l)Rin(Cw;‘ﬂ)
C;,CjeR

teH

4m

3 _ i) +dm 1
= det (_Z > xa(Brn(ci; ™) + dm) (R"‘(c“c’ S 5))
teH d=0 Ci,Cj€R

3 . ‘_1
H x(2) - det <Z ZX‘I(Rm(Cz'Cj_lt) + dm) (Rm(c‘c’ t) +dm _ %))
C;,C;eR

XEX+ teH d=0 4m
h*
w K(J/=
= I x@- -0 ] [Ta o) 5—2K0% v,
XEX+ XEX+ ljm K(vV=-1) YK(v=T) K

where C; =G H, C; = C;H. Hence we have obtained the first formula (2.5).
In the same way as above we can prove the second and third formulas (2.6) and

(2.7). O
Proof of Corollary 2.4. If 1(—1) = —1, then we have Tﬁbc),‘,p = —ngzp and

det (T(b)

— (_1\25Ee (b)
o = (1) det(T

C'C"ﬂ/))‘ =
> Ci,C5€R Tt/ ccieR

1f (~1) = +1, then we have T'g, , = T} and

det (T® _ = (-1 %ﬁdt(T(b) ) .
° ( CiCite Ci,CjeR =) AN Ci,CjeR
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Here § is the number of the cosets C; € R whose square C? are H or —H, and &' the
number of cosets C; € R whose inverses are not contained in R, ie., C;° =~ ()
for some o(i) € {1,2,... ,n} (As for the signs of the two identities of determinants just
above, see [9, Proposition 2]).

Therefore by Theorem 2.1 we obtain, in the both cases where P(—1) = 1,

det <Tg)cf"”)ci,ojevz= £ [ B I1 %Bl,w

xEeX* XEX™
_ ~ Qrwx I%
= =+ H CX¢(b) QI? wg h}‘{

In our case where K = Q((p), H = {1} and b = 2, we have ngp = —8.(¢) for C =¢H.
Hence, calculating Gy, (2) we have the desired formula. a

Corollary 2.5 immediately follows from Theorem 2.1 by taking b = g. Here we only
note that Qg = 1 and Q = 2 and that the multiplicative group (Z/4pZ)* constitutes
of Ry4p(g*) modulo 4p and Ryp(—g*) modulo 4p for all £ =0,1,... ,p— 2.
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