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Essential dimension of some twists of $\mu$_{p^{n}}

By

Gombodorj BAYARMAGNAI

Abstract

Fix an odd prime p and a field k of characteristic not p . Let C_{p^{7l}} be a twist of the k‐group
of pn‐th roots of the unity $\mu$_{p^{n}} . Then we give an upper bound for the essential dimension of a

twisted C_{p^{n}} , which is expressed in terms of the dergee of its minimal splitting field over k . We
also compute the essential dimension of a twisted C_{8} over fields of odd characteristic,

§1. INTRODUCTION

Fix a field k and let G be a finite k‐group scheme. Then we have an interesting
numerical invariant called the essential dimension, which depends on the group scheme

G and the base field k (cf. Reichstein [4], Rost [5] and Berhuy‐Favi [2] for the definition

and basic facts).
Here we consider the case where the order of a k‐group scheme G is a power of a

prime p , which is different from the characteristic of the base field k . There are two

main results in this paper (Theorem 3.2 and Theorem 4.10).
First, we give an upper bound for the essential dimension of a twisted group G of

the group scheme $\mu$_{p^{n}} over a field of characteristic \neq p , which depends on the minimal

splitting field of G . Note that we have a trivial upper bound when p=2.

Secondly, we show that

\mathrm{e}\mathrm{d}_{k}G=[K:k],

where G is a twist of $\mu$_{8} and K is the minimal splitting field of G over the base field k

with char (k)\neq 2 . For the outline of this paper, in §2, after stating conjectures which

are motivations of our investigation, we give precise formulation for the main results

of this paper. In the following two sections we focus on the proof of Theorems. In §3,
applying the section 5,6 in [2], we will discuss a proof of a generalization for Theorem

2.2. In §4, we will show that our first conjecture holds for the case where G is a twist of

the group scheme $\mu$_{8} . Our computation is based on an idea of Rost and used some facts

in [6], In fact, this result is a generalization of a result of Rost in [6] for $\mu$_{4} (Theorem
2.1).
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§2. STATEMENT OF RESULTS

Fix a field k of characteristic is prime to n and fix an algebraic closure \overline{k} of k.

Let G be a k‐form of the group $\mu$_{n} , the k‐group scheme of the n‐th roots of the unity.

Denote by K the minimal splitting field of the algebraic group G. The inclusion map

$\mu$_{n}\mapsto G_{m} over K induces a k‐morphism G\rightarrow T ,
where G_{m} is the multiplicative group

scheme and T:={\rm Res}_{K/k} (Gm). Then we have that

1\rightarrow \mathrm{G}(\overline{k})\rightarrow T\otimes_{k}\overline{k}\rightarrow(T/\mathrm{G})(\overline{k})\rightarrow 1

where T/G is a quotient, which exists as an affine group over k . By using a property of

the scalar restriction functor {\rm Res} we see that the Hilbert 90 implies that the quotient

map  $\pi$ :  T\rightarrow T/G is a classifying G‐torsor. It shows that \mathrm{e}\mathrm{d}_{k}G\leq[K:k].
Remark. The upper bound does not look like a good one. In particularly, in this

paper we give a better upper bound for the case where n is a power of an odd prime p

(Theorem 3.2). But we expect that it is the best possible value in the case below:

Conjecture. Let n be a power of 2 and k be a field of odd characteristic. Then

\mathrm{e}\mathrm{d}_{k}G=[K:k].

In the case p=2 , our main result is to show that the above conjecture holds for n=8.

The main motivation of this paper is the following theorem, the case n=4 , proved in

[6].

Theorem 2.1. (Rost) Let k be a field of characteristic different from 2. Then

\mathrm{e}\mathrm{d}_{k}G=[K:k],

where G is a twist of $\mu$_{4} and K is the minimal splitting field of G.

Now suppose that p is an odd prime.
Denote by G_{p} the cyclic subgroup of order p of the group G and then it is a twisted form

of the $\mu$_{p} . Moreover, we have that Gal (K_{p}/k) is a subgroup of (\mathbb{Z}/p\mathbb{Z})^{*} and Gal (K/K_{p})
is a \mathrm{p}‐group, where K_{p} is the corresponding field to the group G_{p}.
Conjecture. We expect that

\mathrm{e}\mathrm{d}_{k}G= $\varphi$([K_{p}:k])[K:K_{p}].
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In fact it is motivated by the following theorem which is also deduced as a corollary of

a general result in [3].

Theorem 2.2. (Buhler‐Reichstein) The essential dimension for the cyclic
group of order \mathbb{Z}/p^{n}\mathbb{Z} over \mathbb{Q} is at most  $\varphi$(p-1)p^{r $\iota$-1} , where  $\varphi$ is the Euler function.

§3. AN UPPER BOUND

In this section we discuss a generalization of Theorem 2.2 to the twisted groups.
We keep the notations of the previous section and our main reference is [2].

Denote by  F the subfield of K/k such that Gal(K/F)\cong Gal(K_{p}/k) . Note that

Gal(K/k) is a cyclic group because p is an odd prime. Put s=[K:F] . Hence for the

character group of the torus {\rm Res}_{K/F}(G_{m}) one can conclude that

X^{*}({\rm Res}_{K/F}(G_{rn}))\cong \mathbb{Z}[x]/\{x^{s}-1\},

where the action of Gal(\overline{k}/F) is identified with multiplication by x.

For any subextension L/F of K , the norm map N_{K/L} : K^{*}\rightarrow L^{*} induces a map

N_{K/L}:{\rm Res}_{K/F}(G_{m})\rightarrow{\rm Res}_{L/F}(G_{m}) .

Definition 3.1. We now define algebraic groups T_{K/F} and $\Lambda$_{K/F} to be the kernel

and the image of the map\oplus N_{K/L} , respectively, where

\displaystyle \oplus N_{K/L}:{\rm Res}_{K/F}(G_{m})\rightarrow F\subset L\subseteq K\bigoplus_{\infty}{\rm Res}_{L/F}(G_{m}) .

Then we show that the algebraic group T_{K/F} is a torus contaning G_{p} . On applying
the functor {\rm Res}_{F/k} to the torus we obtain a new G‐torsor. It implies the following
theorem since  $\pi$ is a classifying one.

Theorem 3.2.

\mathrm{e}\mathrm{d}_{k}G\leq $\varphi$([K_{p}:k])[K:K_{p}].

§4. TWIST OF $\mu$_{8}

In this section, in order to give a proof of the main result we confirm the funda‐

mental facts on the twists of $\mu$_{8} . The following notational conventions will be used

throughout this chapter.

[a] ‐the image \mathrm{o}\mathrm{f}a\in k in k/k^{2}, k_{a}:=k(\overline{a}) , k_{a,b}:=k(\overline{a}, \prime b) , H_{a}=\displaystyle \langle\acute{a}\otimes\frac{1}{\overline{a}} },
T_{a} :={\rm Res}_{k_{a}/k}(G_{m}) , T :={\rm Res}_{k_{a,b}/k} (Gm),  $\Gamma$- the absolute Galois group of k.
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Note that for any field extension L/k one has T(L)=(L\otimes_{k}k_{a,b})^{*} . Therefore we

may assume that any element of T(k) has of the form

1\otimes x+ \overline{a}\otimes y+ \acute{b}\otimes z+ \overline{\mathfrak{c} $\iota$ b}\otimes t,

where x, y, z, t\in\overline{k} . Now assume that k is a field of characteristic \neq 2 . Then we have

H^{1} ( k , Aut $\mu$_{8} ) =H^{1}(k, (\mathbb{Z}/8\mathbb{Z})^{*})\cong k^{*}/(k^{*})^{2}\times k^{*}/(k^{*})^{2}.

We fix two generators of Aut $\mu$_{8} , namely a : $\zeta$_{8}\mapsto$\zeta$_{8}^{3} and  $\tau$ :  $\zeta$_{8}\mapsto$\zeta$_{8}^{7}.

Lemma 4.1. Let G be an k ‐form with respect to an element [a]\times[b]\in H^{1} ( k , Aut $\mu$_{8} ).
Then G can be identified with a cyclic subgroup of T(k) generated by

\displaystyle \{\acute{a}\otimes\frac{1}{\prime,2\acute{a}}+ \acute{b}\otimes\frac{\overline{-1}}{\prime\prime,2b}\rangle.
Note that the image of [a]\mathrm{x}[b] is [ab] under the map

H^{1} (k ,
Aut $\mu$_{8} ) \rightarrow H^{1} ( k , Aut $\mu$_{4} ),

which is induced by the canonical injection $\mu$_{4}\rightarrow$\mu$_{8} . Equivalently, the subgroup of G

of order 4 (denote by G_{(x\'{o}} ) is a k‐form of $\mu$_{4} with respect to [ab] in H^{1} ( k , Aut $\mu$_{4} ).

§4.1. The case of degenerate twists of $\mu$_{8}

If [k_{a,b}:k]=1 ,
then \mathrm{e}\mathrm{d}_{k}G=1 because G is isomorphic to $\mu$_{8}.

Proposition 4.2. If [k_{a,b}:k]=2 , then \mathrm{e}\mathrm{d}_{k}G=2.

If ab is a square, then G_{ab}\cong$\mu$_{4} and so we need some observations on the functor

H^{1} G) . A classifying space of the functor H^{1} G ) is induced by the following exact

sequence.

Lemma 4.3. We have

1\displaystyle \rightarrow G\times H_{a}\rightarrow T\otimes_{k}\overline{k}\rightarrow^{$\pi$_{a}}\overline{k}^{*}\times\frac{(T\otimes_{k}\overline{k})}{\overline{k}^{*}}\rightarrow 1,
where $\pi$_{a}(x)=(N_{k_{a}/k}^{4}(x), [x2]) .

Now to estimate the essential dimension of versal elements for the functor H^{1} G),
we need some invariants. In fact, these invariants are cohomological invariants as follows

$\eta$_{k}:H^{1}(k, G)\rightarrow H^{1}(k, $\mu$_{4}) ,

{\rm Res}_{a}:H^{1}(k, G)\rightarrow H^{1}(k_{a}, G)\cong k_{a}^{*}/(k_{a}^{*})^{8}.
The invariant $\eta$_{k} is a map induced by the norm map N_{k_{a}/k} : G\rightarrow$\mu$_{4} and {\rm Res}_{a} is the

canonical restriction map induced by the inclusion Gal(\overline{k}/k_{a})\mathrm{c}\rightarrow Gal(\overline{k}/k) .
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Lemma 4.4. (1). One has for t\in k^{*} and  $\lambda$\in k_{a} :

$\eta$_{k}($\delta$_{k}(t, [ $\lambda$]))=(t) ,

{\rm Res}_{a}($\delta$_{k}(t, [ $\lambda$]))=(t$\lambda$^{4}/N_{a}^{2}( $\lambda$)) .

(2). The pair ($\delta$_{k}(x, 1+y \'{a}), k(x, y)) is a versal element for the functor H^{1} G).

Lemma 4.5. If ( $\alpha$, F) is a versal element for H^{1} G), then \mathrm{e}\mathrm{d}( $\alpha$)\geq 2.

§4.2. The case of the generic C_{8}

We may assume that a, b and ab are all non‐square�s in k
, since other cases are

discussed. In this case, let us start to introduce some properties of the functor H^{1} G )
, which are necessary to prove our main result.

Some generalities to describe the functor H^{1} G).
Let T/G denote the algebraic group G_{m}\times T_{a}/G_{m}\times T_{b}/G_{m}\times T_{ab}/G_{m} . Consider a

morphism $\pi$_{a,b} from T to T/G ,
for x\in T , defined as

$\pi$_{a,b(X)=(N_{k}a,(x),[\prime}b/kN_{k_{a,b}/k_{b}}(x)], [N_{k_{a,b}/k_{a}}(x)], [N_{k_{u,b}/k_{ab}}^{2}(x)]) .

Thus we can state the following useful proposition.

Proposition 4.6. There is an exact sequence of  $\Gamma$ ‐modules

 1\rightarrow G\times H_{a}\times H_{b}\rightarrow T(\overline{k})\rightarrow T$\pi$_{a,b}/G(\overline{k})\rightarrow 1.
Invariants.

Applying the cohomology to the exact sequence we obtain an exact sequence

k^{*}\times k_{ $\alpha$}^{*}/k^{*}\times k_{b}^{*}/k^{*}\times k_{ab}^{*}/k^{*}\rightarrow^{$\delta$_{k}}H^{1}(k, G)\rightarrow 1,
i.e.

$\delta$_{k}(q)\in H^{1}(k, G)
where q=(c, [ $\alpha$], [ $\beta$], [ $\gamma$]) for \mathrm{c}\in k^{*},  $\alpha$\in k_{ $\alpha$}^{*},  $\beta$\in k_{b}^{*},  $\gamma$\in k_{ab^{\ovalbox{\tt\small REJECT}}}^{*}

Cohomological invariants for G_{ab} , which can be found in Rost [6], are given as:

$\eta$_{1}:H^{1}(k, G_{ab})\rightarrow H^{1}(k, $\mu$_{2}) ,

$\eta$_{2}:H^{1}(k, G_{ab})\rightarrow H^{2}(k, $\mu$_{2}) .

Recall that the invariant $\eta$_{1} is the map induced from the projection G_{ab}\rightarrow$\mu$_{2} . The

invariant $\mu$_{2} is the composition of H^{1}(k, G)\rightarrow H^{1}(k, PGL(2)) and the standard map

H^{1}(k, PGL(2))\rightarrow H^{2}(k, $\mu$_{2}) arises from the embedding

G_{ab}\rightarrow PGL(2)

 $\zeta$\displaystyle \mapsto(\frac{1}{ab}i \overline{ab}^{-1}i1)
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where  $\zeta$\in G_{ab}(\overline{k}) is a generator and i= \overline{-1} . One has for t\in k^{*} and  $\lambda$\in k_{ab} :

$\eta$_{1}($\delta$_{k}(t, [ $\lambda$]))=(N_{k_{ab}/k}( $\lambda$)) ,

$\eta$_{2}($\delta$_{k}(t, [ $\lambda$]))=(ab)\cup(t) .

Consider the map H^{1}(k, G)\rightarrow H^{1}(k, G_{ab}) , which is induced from G\rightarrow^{[2]}G_{ab} , we get

cohomological invariants for G as follows

$\eta$_{1}:H^{1}(k, G)\rightarrow H^{1}(k, $\mu$_{2}) ,

$\eta$_{2}:H^{1}(k, G)\rightarrow H^{2}(k, $\mu$_{2}) .

Here $\eta$_{1} and $\eta$_{2} are new notations and these are induced by old ones.

Proposition 4.7. One has

$\eta$_{1}($\delta$_{k}(q))=(N_{k_{a\mathrm{t})}/k}( $\gamma$)) ,

$\eta$_{2}($\delta$_{k}(q))=(ab)\cup(c) .

Note that the group G can be identified with \displaystyle \{1\otimes\frac{1}{\prime,2}+ \displaystyle \acute{b}\otimes\frac{i}{\prime,2b},\rangle over  k_{a} . Thus,

for the canonical restriction map {\rm Res}_{a} : H^{1}(k, G)\rightarrow H^{1}(k_{a}, G) , we get

{\rm Res}_{a}($\delta$_{k}(q))=$\delta$_{k_{a}}(\displaystyle \frac{$\alpha$^{2}}{N_{o_{\ovalbox{\tt\small REJECT}}}( $\alpha$)}c, [$\beta$^{2} $\gamma$]) .

Similarly, for the restriction map {\rm Res}_{b} : H^{1}(k, G)\rightarrow H^{1}(k_{b}, G) ,
we also have

{\rm Res}_{b}($\delta$_{k}(q))=$\delta$_{k_{b}}(\displaystyle \frac{$\beta$^{2}}{N_{b}( $\beta$)}c, [$\alpha$^{2} $\gamma$]) .

Thus we obtain another invariants which are defined as an invariant $\eta$_{2} for G :

$\eta$_{a}:H^{1}(k, G)\rightarrow H^{2}(k_{a}, $\mu$_{2}) ,

$\eta$_{b}:H^{1}(k, G)\rightarrow H^{2}(k_{b}, $\mu$_{2}) .

More precisely, for instance, the map $\eta$_{a} is the composition of the map  H^{1}(k, G)\rightarrow
 H^{1}(k_{a}, G_{a}) and the map H^{1}(k_{a}, G_{a})\rightarrow H^{2}(k_{a}, $\mu$_{2}) . The above considerations allow us

to write the following proposition.

Proposition 4.8. We have

$\eta$_{a}($\delta$_{k}(q))=$\eta$_{b}($\delta$_{k}(q))=(a)\displaystyle \cup(b)\cup(\frac {}{}c)(\frac{N_{a$\xi$^{ $\alpha$)}}$\alpha$^{2} $\beta$}{N_{b}( $\beta$)}c).
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Remark. It would not be useful to consider the map H^{1}(k, G)\rightarrow H^{1}(k_{a}, $\mu$_{2}) ,

because it gives the same result as $\eta$_{1} in Proposition 4.7.

Proposition 4.9. Assume that t_{1}, t_{2}, t_{3} and t_{4} are independent variables over

k . Set E :=k(t_{1}, t_{2}, t_{3}, t_{4}) and  $\omega$ :=(t_{1}, [1+t_{2}\urcorner a, [1+t_{3}\prime b], [1+t_{4}\overline{ab}]) . Then the

pair

($\delta$_{E}( $\omega$), E)

is a versal element for H^{1} G).

We are now ready to state the Main Theorem.

Theorem 4.10. \mathrm{e}\mathrm{d}_{k}G=4 if a, b and ab are nonsquare elements of k.

For the proof, we show that the smallest possible value of the essentail dimension
of any element for G is 4 by using invariants $\eta$_{1}, $\eta$_{2}, $\eta$_{a} and $\eta$_{b}.

Corollary 4.11. Let k be a field of characteristic \neq 2 . Then

\{
1, if 2 and-1 are both squares in k

\mathrm{e}\mathrm{d}_{k}(\mathbb{Z}/8\mathbb{Z})= 4, if 2,-2 and-1 are not squares in k

2, otherwise
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