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Abstract

We construct the directed graph (quiver) for which the associated cluster algebra gives
the Hirota‐Miwa equation, and prove that the difference equations obtained from its reductions

have the Laurent phenomenon by means of a theorem known to hold for cluster algebras. We

also prove that when the autonomous difference equations called Somos‐4 and 5 are deautono‐

mized such that they preserve the Laurent phenomenon, their coefficients satisfy the q‐Painlevé

I and II equations, respectively.

§1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in 2002 [1], and are

defined by so‐called quivers (directed graphs) whose vertices correspond to variables

(called cluster variables) on which an the operation called quiver mutation acts. It is well

established that cluster algebras have a lot of mathematically interesting properties. One

of the most distinct properties among them is the Laurent phenomenon. The Laurent

phenomenon or the Laurentness of a difference equation implies that a solution of the

initial value problem is always expressed by Laurent polynomials of the initial entries.

The 2nd order difference equations called Somos‐4 and 5 are the typical equations which

exhibit the Laurent phenomenon. The Laurentness of these equations was proved by

considering periodic quivers, which are quivers whose graphical topologies do not change

by quiver mutations [2].
In this paper, we focus on the Laurent phenomenon of difference equations. Consid‐

ering some specific quivers, we show that the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, the Hirota‐Miwa
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equation and the difference equations obtained by reduction of the Hirota‐Miwa equa‐

tion all enjoy the Laurent phenomenon. The periodic quivers which give Somos‐4, 5 are

obtained from those for the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation. Furthermore, by considering cluster

algebras with coefficients, we prove that the necessary and sufficient conditions for the

Laurentness of nonautonomous equations are given by some difference equations for the

coefficients. In particular, these difference equations turn out to be the q‐Painlevé I and

II equations, respectively, for the deautonomized Somos‐4 and 5 equations.

§2. Cluster algebras

In this chapter, we briefly explain on some examples the notions of cluster algebra
introduced by Fomin and Zelevinsky [1][3][4] and the Laurent phenomenon.

The n‐tuple x=(x_{1}, \ldots, x_{n}) will be called a cluster and each element x_{i} a cluster

variable. Consider a quiver whose vertices correspond to the cluster variables. We

assume that the quiver does not have a loop or a 2‐cycle (Figure 1). The pair consisting
of a quiver Q and a cluster x, (Q, x) ,

is called a seed. We often call a vertex x_{k} when

its corresponding cluster variable is x_{k}.

\overline{\backslash F^{1}}-
. \mathrm{t}_{\dot{f}}

Figure 1. loop and 2‐cycle

Now we define a quiver mutation $\mu$_{k}(k=1, \ldots, n) at the vertex x_{k} of a quiver

Q . Let $\mu$_{k}(Q) be the new quivers obtained by the following three operations on the

quiver Q . Firstly, for each pair of arrows x_{i}\rightarrow x_{k}\rightarrow x_{j} ,
we draw a new arrow

x_{i}\rightarrow x_{j} . Secondly, we remove all 2‐cycles in the quiver thus obtained. Finally, we

reverse the direction of all directed arrows at the vertex x_{k} . A quiver mutation $\mu$_{k}

satisfies $\mu$_{k^{2}}(Q)=Q . Figure 2 is an example of $\mu$_{1} ,
where instead of drawing k\in \mathbb{N}

(k\geq 2) arrows, we attached the number k to the arrow.

Next we define seed mutations $\mu$_{k}(k=1, \ldots, n) of a seed (Q, x) . Let ($\mu$_{k}(Q), x') :=

$\mu$_{k}((Q, x)) . The new cluster x' = (xí, . . .

, x_{n}' ) is defined as

x_{i}'=x_{i} (i\neq k) ,

x_{k}'=\displaystyle \frac{\prod_{j\leftarrow k}x_{j}+\prod_{j\rightarrow k}x_{j}}{x_{k}}.
This relation between x and x' is called the exchange relation. The symbol \displaystyle \prod_{j\leftarrow k}x_{j}
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. I_{4} . 1 $\iota$_{4}\leftarrow.1_{\lrcorner}^{-}

Figure 2. mutation $\mu$_{1} at the vertex x_{1}

(\displaystyle \prod_{j\rightarrow k}x_{j}) denotes the product of all x_{j}\mathrm{s} whose corresponding vertices in Q have arrows

from (resp. to) the vertex x_{k}.

Example 2.1. Let the seed (Q, x) be

Q=x_{1}\rightarrow^{2}x_{2}, x=(x_{1}, x_{2}) .

The quiver mutation at x_{1} gives

$\mu$_{1}(Q)=x_{1}'\leftarrow^{2}x_{2}', x'=(x_{1}', x_{2}') ,

where the new cluster variables are

x_{1}'=\displaystyle \frac{x_{2^{2}}+1}{x_{1}}, x_{2}'=x_{2}.
We apply seed mutations starting from an initial seed (Q, x) . Let \mathcal{X} be the set of

all obtained cluster variables. The cluster algebra \mathcal{A}(Q, x) is then defined as

\mathcal{A}(Q, x)=\mathbb{Q}[x|x\in \mathcal{X}]\subset \mathbb{Q}(x|x\in \mathcal{X}) .

Example 2.2 (cluster algebra of type A_{2} ). Let (Q, x) be the initial seed with

Q=x_{1}\rightarrow x_{2}, x=(x_{1}, x_{2}) ,

Q=Q(0) , x=x(0) , x_{1}=x_{1}(0) , x_{2}=x_{2}(0) .

We apply a mutation at x_{1} to the initial seed (Q(0), x(0)) . Denoting the new quiver
and cluster variables by Q(1) , x_{1}(1) , x_{2}(1) ,

we find

Q(1)=x_{1}(1)\leftarrow x_{2}(1) , x(1)=(x_{1}(1), x_{2}(1)) ,

x_{1}(1)=\displaystyle \frac{x_{2}(0)+1}{x_{1}(0)}=\frac{x_{2}+1}{x_{1}}, x_{2}(1)=x_{2}(0)=x_{2}.
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Next, we apply a mutation at x_{2} to the seed (Q(1), x(1)) . The new quiver and cluster

variables, Q(2) , x_{1}(2) , x_{2}(2) ,
are

Q(2)=x_{1}(2)\rightarrow x_{2}(2) , x(2)=(x_{1}(2), x_{2}(2)) ,

x_{1}(2)=x_{1}(1)=\displaystyle \frac{x_{2}+1}{x_{1}}, x_{2}(2)=\frac{x_{1}(1)+1}{x_{2}(1)}=\frac{x_{1}+x_{2}+1}{x_{1}x_{2}}.
Similarly, we apply mutations at x_{1} and x_{2} . The new quiver and cluster variables are

Q(3)=x_{1}(3)\leftarrow x_{2}(3) ,

x_{1}(3)=\displaystyle \frac{x_{2}(2)+1}{x_{1}(2)}=\frac{x_{1}+1}{x_{2}}, x_{2}(3)=x_{2}(2)=\frac{x_{1}+x_{2}+1}{x_{1}x_{2}},
Q(4)=x_{1}(4)\rightarrow x_{2}(4) ,

x_{1}(4)=x_{1}(3)=\displaystyle \frac{x_{1}+1}{x_{2}}, x_{2}(4)=\frac{x_{1}(3)+1}{x_{2}(3)}=x_{1},
Q(5)=x_{1}(5)\leftarrow x_{2}(5) ,

x_{1}(5)=\displaystyle \frac{x_{2}(4)+1}{x_{1}(4)}=x_{2}, x_{2}(4)=x_{2}(3)=x_{1}.
Since the last seed is equal to the initial seed with x_{1} and x_{2} exchanged, it is clear that

the seed returns to the original seed after 5 more applications of the mutations. All

possible mutations are given above, and the newly obtained cluster variables are

x_{1}(1)=\displaystyle \frac{x_{2}+1}{x_{1}}, x_{2}(2)=\frac{x_{1}+x_{2}+1}{x_{1}x_{2}}, x_{1}(3)=\frac{x_{1}+1}{x_{2}}.
Therefore, the cluster algebra \mathcal{A}(Q, x) is found to be

\mathcal{A}(Q, x)=\mathbb{Q}[x_{1}, x_{2}, x_{1}(1), x_{2}(2), x_{1}(3)]\subset \mathbb{Q}(x_{1}, x_{2}) .

In Example 2.2 the number of cluster variables is finite and this cluster algebra
is said to be of type A_{2} . However, the number of cluster variables will in general be

infinite. The following theorem holds [4].

Theorem 2.3 (Finite type classification). The number of different cluster vari‐

ables that appears in \mathcal{A}(Q, x) is finite, if and only if the undirected graph, topologically

equivalent to the quiver of a seed of \mathcal{A}(Q, x) ,
coincides with a Dynkin diagram of type

A, D or E.

In the Example 2.2, all the cluster variables x_{1}(1) , x_{2}(2) , x_{1}(3) are Laurent polyno‐
mials of the initial cluster variables x_{1}, x_{2} . In general, we have the following theorem

[4].
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Theorem 2.4 (Laurent phenomenon). All cluster variables obtained by muta‐

tions can be expressed as Laurent polynomials of the cluster variables in the initial seed.

§3. Laurent phenomenon of difference equations

In this chapter we will show that many difference equations have Laurentness by

applying Theorem 2.4.

First, we define the Laurent phenomenon for difference equations.

Definition 3.1 (Laurent phenomenon). A difference equation is said to exhibit

the Laurent phenomenon (or Laurentness) if the solution of its initial value problem is

expressed as a Laurent polynomial of the initial entries.

Many one‐dimensional difference equations can be shown to exhibit the Laurent

phenomenon by using periodic quivers and Theorem 2.4 [2]. A periodic quiver is defined

as follows.

Definition 3.2 (periodic quiver). A quiver Q is called a periodic quiver if there

exists a quiver mutation $\mu$_{k} such that $\mu$_{k}(Q) coincides with Q , up to an exchange of

cluster variables at the vertices.

The following is an example of a periodic quiver called the Somos‐4 quiver.

Example 3.3 (Somos‐4 quiver). Consider the quiver in Figure 3. We apply a

mutation at $\rho$_{0} and obtain the quiver shown in Figure 4. Then, we move the vertex $\rho$_{0}

to the right, to the vertex $\rho$_{3} ,
and obtain the quiver in Figure 5, which is the same as

the original quiver if we shift the indices of the vertices.

We shall illustrate the above notions in the case of the difference equation called

Somos‐4

(3.1) $\rho$_{n}$\rho$_{n+4}=$\rho$_{n+2^{2}}+$\rho$_{n+1}$\rho$_{n+3},

which is known to exhibit the Laurent phenomenon [2]. Let us take as initial cluster

variables $\rho$_{0}, $\rho$_{1}, $\rho$_{2}, $\rho$_{3} and let us consider a quiver with an initial seed as shown in Figure
3. We apply the mutations $\mu$_{0} at $\rho$_{0} and denote the new cluster variable by $\rho$_{4}:=$\mu$_{0}($\rho$_{0}) .

By the exchange relation, $\rho$_{4} is defined as

$\rho$_{4}=\displaystyle \frac{$\rho$_{2^{2}}+$\rho$_{1}$\rho$_{3}}{$\rho$_{0}}.
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Figure 3. Somos‐4 quiver Figure 4. after mutation at $\rho$_{0}

Figure 5. after replacing variables

Since the quiver is a periodic quiver, we obtain the same quiver as that shown in Figure
5. Then, we apply a mutation at $\rho$_{1} and denote the new cluster variable by $\rho$_{5} . By the

exchange relation, $\rho$_{5} is defined as

$\rho$_{5}=\displaystyle \frac{$\rho$_{3^{2}}+$\rho$_{2}$\rho$_{4}}{$\rho$_{1}}.
As in the previous mutation, we obtain a new quiver which coincides with the initial

quiver, except for a shift of the vertex indices by one. Similarly, we apply a mutation

at $\rho$_{2}, $\rho$_{3},
\cdots and denote the new cluster variables by $\rho$_{6}, $\rho$_{7},

\cdots successively. By the

exchange relation, $\rho$_{n} is defined as

$\rho$_{n+4}=\displaystyle \frac{$\rho$_{n+2^{2}}+$\rho$_{n+1}$\rho$_{n+3}}{$\rho$_{n}}.
By Theorem 2.4, all cluster variables $\rho$_{n} can be expressed as Laurent polynomials of the

initial variables $\rho$_{0}, $\rho$_{1}, $\rho$_{2}, $\rho$_{3} . Therefore, we conclude that Somos‐4 (3.1) exhibits the

Laurent phenomenon.

Similarly, it can be shown that the difference equation called Somos‐5

$\rho$_{n}$\rho$_{n+5}=$\rho$_{n+2}$\rho$_{n+3}+$\rho$_{n+1}$\rho$_{n+4}

exhibits the Laurent phenomenon [2]. In this case, we take initial variables $\rho$_{0}, $\rho$_{1}, $\rho$_{2}, $\rho$_{3}, $\rho$_{4}

as initial entries, and consider a quiver with initial seed as shown in Figure 6. This quiver
is also a periodic quiver. We apply a mutation at $\rho$_{0}, $\rho$_{1},

\cdots and denote the new cluster

variables by $\rho$_{5}, $\rho$_{6},
\cdots

,
which satisfy Somos‐5 and exhibit the Laurent phenomenon.
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Figure 6. Somos‐5 quiver

Next, we show that the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, which is the two dimensional dif‐

ference equation:

(3.2) $\sigma$_{l-1}^{n}$\sigma$_{l+1}^{n+1}=$\sigma$_{l+1}^{n}$\sigma$_{l-1}^{n+1}+$\sigma$_{l}^{n+1}$\sigma$_{l}^{n}
exhibits the Laurent phenomenon for some specific initial value problems. In this case,

unlike Somos‐4 or 5 the choice of the initial entries is not unique. First, we take the

initial entries as

(3.3) $\sigma$_{l}^{n} (l=0 \mathrm{o}\mathrm{r} l=1\mathrm{o}\mathrm{r}n=0 )

and consider a quiver with an initial seed as in Figure 7. Here l denotes the index for

the horizontal direction and n denotes that for the vertical direction, and the quiver
contains infinitely many vertices. We apply a mutation at $\sigma$_{0}^{0} and denote the new cluster

variable by $\sigma$_{2}^{1} . By the exchange relation, $\sigma$_{2}^{1} is defined as

$\sigma$_{2}^{1}=\displaystyle \frac{$\sigma$_{2}^{0}$\sigma$_{0}^{1}+$\sigma$_{1}^{1}$\sigma$_{1}^{0}}{$\sigma$_{0}^{0}}
and we obtain the new quiver shown in Figure 8, where we have changed the position of

$\sigma$_{2}^{1} . This quiver is not a periodic quiver, but it does have similar properties. The partial

quiver which consists of all the links with the vertex $\sigma$_{0}^{0} in Figure 7 and that with the

vertices $\sigma$_{0}^{1} or $\sigma$_{1}^{0} in Figure 8 are equivalent. We apply a mutation at $\sigma$_{0}^{1} of the quiver
in Figure 8 and denote the new cluster variable by $\sigma$_{2}^{2} . By the exchange relation, $\sigma$_{2}^{2} is

defined as

$\sigma$_{2}^{2}=\displaystyle \frac{$\sigma$_{2}^{1}$\sigma$_{0}^{2}+$\sigma$_{1}^{2}$\sigma$_{1}^{1}}{$\sigma$_{0}^{1}}.
Furthermore, we apply a mutation at $\sigma$_{1}^{0} of the quiver in Figure 8 and denote the new

cluster variable by $\sigma$_{3}^{1} . By the exchange relation, $\sigma$_{3}^{1} is defined as

$\sigma$_{3}^{1}=\displaystyle \frac{$\sigma$_{3}^{0}$\sigma$_{1}^{1}+$\sigma$_{2}^{1}$\sigma$_{2}^{0}}{$\sigma$_{1}^{0}}.
We successively apply mutations at the variables in the lower left part in the figures, to

obtain new variables $\sigma$_{l}^{n} by

$\sigma$_{l+1}^{n+1}=\displaystyle \frac{$\sigma$_{l+1}^{n}$\sigma$_{l-1}^{n+1}+$\sigma$_{l}^{n+1}$\sigma$_{l}^{n}}{$\sigma$_{l-1}^{n}},
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Figure 7. discrete \mathrm{K}\mathrm{d}\mathrm{V} equation quiver

Figure 8. after mutation at $\sigma$_{0}^{0}
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which is the dKdV equation (3.2). Hence, from Theorem 2.4 we find that all the cluster

variables $\sigma$_{l}^{n} can be expressed as Laurent polynomials of the initial variables. Thus, we

find that the Laurentness of multidimensional difference equations may be proved by

using quivers (with an infinite number of vertices) that possess some good properties.
Besides (3.3), there are other sets of initial variables for which the discrete \mathrm{K}\mathrm{d}\mathrm{V}

equation exhibits the Laurent phenomenon such as:

$\sigma$_{l}^{n} (l+n=k, k=0,1,2) ,

$\sigma$_{l}^{n} (l+2n=2k, k=0,1,2,3) ,

$\sigma$_{l}^{n} (l+3n=3k, k=0,1,2,3,4) .

We take the quivers of initial seeds shown in Figs. 9,10,11 proving that the discrete \mathrm{K}\mathrm{d}\mathrm{V}

equation exhibits the Laurent phenomenon for these initial variables. These quivers, as

well as that in Figure 7, transform to each other by appropriate quiver mutations.

Figure 9. initial values : $\sigma$_{l}^{n} (l+n=k, k=0,1,2)

The Hirota‐Miwa equation

$\tau$_{l} $\tau$_{l+1}= $\tau$_{l+1} $\tau$_{l} $\tau$_{l} $\tau$_{l+1}
n m+1. n+1 m nm n+1 m+1+n+1 m. n m+1

also exhibits the Laurent phenomenon [5]. The quiver of the initial seed is shown in

Figure 12, where we take initial variables

n_{\mathcal{T}_{l}}m (l-m+n=k, k=-1,0,1) .

As a matter of fact, the Somos‐4 and Somos‐5 quivers are obtained from a reduction

of the quiver of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, and that of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation is



34 Naoto OkUbO

Figure 10. initial values:  $\sigma$ í

Figure 11. initial values :  $\sigma$_{l}^{n} (l+3n=3k, k=0,1,2,3,4)

(l+2n=2k, k=0,1,2,3)

Figure 12. Hirota‐Miwa equation quiver
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obtained from a reduction of the quiver of the Hirota‐Miwa equation. In this sense, the

quivers of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation and the Hirota‐Miwa equation introduced in this

paper can be regarded as generalizations of periodic quivers. In particular, Somos‐4

$\rho$_{n}$\rho$_{n+4}=$\rho$_{n+2^{2}}+$\rho$_{n+1}$\rho$_{n+3}

is obtained from the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation

$\sigma$_{l-1}^{n}$\sigma$_{l+1}^{n+1}=$\sigma$_{l+1}^{n}$\sigma$_{l-1}^{n+1}+$\sigma$_{l}^{n+1}$\sigma$_{l}^{n}

by imposing the reduction condition

$\sigma$_{l+2}^{n-1}=$\sigma$_{l}^{n}, $\rho$_{l}:=$\sigma$_{l}^{0}.

The Somos‐4 quiver in Figure 3 can be obtained by flattening the quiver of the discrete

\mathrm{K}\mathrm{d}\mathrm{V} equation in Figure 10 in the (l, n)=(2, -1) direction. Similarly, Somos‐5

$\rho$_{n}$\rho$_{n+5}=$\rho$_{n+2}$\rho$_{n+3}+$\rho$_{n+1}$\rho$_{n+4}

is obtained from the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation by imposing the reduction condition

$\sigma$_{l+3}^{n-1}=$\sigma$_{l}^{n}, $\rho$_{l}:=$\sigma$_{l}^{0}.

Accordingly, the Somos‐5 quiver in Figure 6 can be obtained by flattening the discrete

\mathrm{K}\mathrm{d}\mathrm{V} equation quiver in Figure 11 in the (l, n)=(3, -1) direction. Moreover, the

discrete \mathrm{K}\mathrm{d}\mathrm{V} equation is obtained from the Hirota‐Miwa equation

$\tau$_{l} $\tau$_{l+1}= $\tau$_{l+1} $\tau$_{l} $\tau$_{l} $\tau$_{l+1}
n m+1. n+1 m nm n+1 m+1+n+1 m. n m+1

by imposing the reduction condition

nm+1nm$\tau$_{l+1}=$\tau$_{l}, $\sigma$_{l}^{n}:=^{n}$\tau$_{l}^{0}

Accordingly, the quiver of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation in Figure 9 can be obtained by

flattening the quiver of the Hirota‐Miwa equation quiver in Figure 12 in the (l, m, n)=
(1,1,0) direction. It should be noted that, in addition to the quivers for the differ‐

ence equations introduced this paper, quivers of other difference equations constructed

from reductions of the Hirota‐Miwa equation can be obtained by similarly flattening
the quiver of the Hirota‐Miwa equation, and hence they will all exhibit the Laurent

phenomenon.

§4. Cluster algebras with coefficient

In this chapter, we will define cluster algebras with coefficients following [6].
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We introduce two sets of n‐tuples x:=(x_{1}, \ldots, x_{n}) and y:=(y_{1}, \ldots, y_{n}) . Each x_{i}

is called a cluster variable and each y_{i} a coefficient. We consider the same quivers as in

the case of the cluster algebras without coefficients. Let (Q, x, y) be the triple of the

quiver Q ,
the cluster variables x

,
and the coefficients y. (Q, x, y) will be called a seed

as well.

Next, we define a seed mutation $\mu$_{k}(k=1, \ldots, n) of a seed (Q, x, y) . Let $\mu$_{k}((Q, x, y))=
($\mu$_{k}(Q), x', y') ,

where $\mu$_{k}(Q) is the same quiver as that obtained by the quiver mutation

without coefficients. The new cluster variables x' = (xí, . . .

, x_{n}' ) are defined as

x_{i}'=x_{i} (i\neq k) ,

x_{k}'=\displaystyle \frac{\prod_{j\leftarrow k}x_{j}+y_{k}\prod_{j\rightarrow k}x_{j}}{(y_{k}+1)x_{k}},
(The products are the same as those for the case without coefficients). The new coeffi‐

cients y' = (yí, . . .

, y_{n}' ) are defined as

y_{i}'=\left\{\begin{array}{ll}
\frac{1}{y_{i}} & (i=k) ,\\
y_{i}(y_{k}+1)^{ $\lambda$} & (i\rightarrow $\lambda$ k) ,\\
y_{i}(\frac{y_{k}}{y_{k}+1})^{ $\lambda$} & (i\leftarrow $\lambda$ k) ,\\
y_{i} & (i k) ,
\end{array}\right.
where the second, third, and fourth conditions (from the top) treat the case where there

exist  $\lambda$ arrows from  x_{i} to x_{k} in Q ,
the case where there exist  $\lambda$ arrows from  x_{k} to x_{i},

and the case where there do not exist any arrows between x_{i} and x_{k}.

We have the following theorem [6].

Theorem 4.1 (Laurent phenomenon). In cluster algebras with coefficients, all

cluster variables obtained by mutations can be expressed as Laurent polynomials of the

cluster variables of the initial seed.

We give the example of a cluster algebra with coefficients, of type A_{2}.

Example 4.2. We take an initial seed (Q, x, y)

Q=x_{1}\rightarrow x_{2}, x=(x_{1}, x_{2}) , y=(y_{1}, y_{2}) ,

where Q=Q(0) , x=x(0) , x_{1}=x_{1}(0) , x_{2}=x_{2}(0) , y=y(0) , y_{1}=y_{1}(0) , y_{2}=y_{2}(0) . We

then apply a mutation at x_{1} to the initial seed (Q(0), x(0), y(0)) . Let us denote the

new quiver, cluster variables, and coefficients by Q(1) , x_{1}(1) , x_{2}(1) , y_{1}(1) , y_{2}(1) . These

are given by

Q(1)=x_{1}(1)\leftarrow x_{2}(1) , x(1)=(x_{1}(1), x_{2}(1)) , y(1)=(y_{1}(1), y_{2}(1)) ,
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x_{1}(1)=\displaystyle \frac{x_{2}(0)+y_{1}(0)}{(y_{1}(0)+1)x_{1}(0)}=\frac{x_{2}+y_{1}}{(y_{1}+1)x_{1}}, x_{2}(1)=x_{2}(0)=x_{2},
y_{1}(1)=\displaystyle \frac{1}{y_{1}(0)}=\frac{1}{y_{1}}, y_{2}(1)=\frac{y_{2}(0)y_{1}(0)}{y_{1}(0)+1}=\frac{y_{1}y_{2}}{y_{1}+1}.

Then, we apply a mutation at x_{2} to the seed (Q(1), x(1), y(1)) . We denote the new

quiver, cluster variables, and coefficients by Q(2) , x_{1}(2) , x_{2}(2) , y_{1}(2) , y_{2}(2) :

Q(2)=x_{1}(2)\rightarrow x_{2}(2) , x(2)=(x_{1}(2), x_{2}(2)) , y(2)=(y_{1}(2), y_{2}(2)) ,

x_{1}(2)=x_{1}(1)=\displaystyle \frac{x_{2}+y_{1}}{(y_{1}+1)x_{1}}, x_{2}(2)=\displaystyle \frac{x_{1}(1)+y_{2}(1)}{(y_{2}(1)+1)x_{2}(1)}=\frac{y_{1}y_{2}x_{1}+x_{2}+y_{1}}{(y_{1}y_{2}+y_{1}+1)x_{1}x_{2}},
y_{1}(2)=\displaystyle \frac{y_{1}(1)y_{2}(1)}{y_{2}(1)+1}=\frac{y_{2}}{y_{1}y_{2}+y_{1}+1}, y_{2}(2)=\frac{1}{y_{2}(1)}=\frac{y_{1}+1}{y_{1}y_{2}}.

Similarly, we apply a mutation at x_{1} and x_{2} . The new quiver, cluster variables, and

coefficients are

Q(3)=x_{1}(3)\leftarrow x_{2}(3) ,

x_{1}(3)=\displaystyle \frac{x_{2}(2)+y_{1}(2)}{(y_{1}(2)+1)x_{1}(2)}=\frac{y_{2}x_{1}+1}{(y_{2}+1)x_{2}},
y_{1}(3)=\displaystyle \frac{1}{y_{1}(2)}=\frac{y_{1}y_{2}+y_{1}+1}{y_{2}},

x_{2}(3)=x_{2}(2)=\displaystyle \frac{y_{1}y_{2}x_{1}+x_{2}+y_{1}}{(y_{1}y_{2}+y_{1}+1)x_{1}x_{2}},
y_{2}(3)=\displaystyle \frac{y_{2}(2)y_{1}(2)}{y_{1}(2)+1}=\frac{1}{y_{1}(y_{2}+1)},

Q(4)=x_{1}(4)\rightarrow x_{2}(4) ,

x_{1}(4)=x_{1}(3)=\displaystyle \frac{y_{2}x_{1}+1}{(y_{2}+1)x_{2}}, x_{2}(4)=\frac{x_{1}(3)+y_{2}(3)}{(y_{2}(3)+1)x_{2}(3)}=x_{1},
y_{1}(4)=\displaystyle \frac{y_{1}(3)y_{2}(3)}{y_{2}(3)+1}=\frac{1}{y_{2}}, y_{2}(4)=\frac{1}{y_{2}(3)}=y_{1}(y_{2}+1) ,

Q(5)=x_{1}(5)\leftarrow x_{2}(5) ,

x_{1}(5)=\displaystyle \frac{x_{2}(4)+y_{1}(4)}{(y_{1}(4)+1)x_{1}(4)}=x_{2}, x_{2}(5)=x_{2}(4)=x_{1},
y_{1}(5)=\displaystyle \frac{1}{y_{1}(4)}=y_{2}, y_{2}(5)=\frac{y_{2}(4)y_{1}(4)}{y_{1}(4)+1}=y_{1}.

Since the last seed is equal to the initial seed when we replace x_{1} and y_{1} with x_{2} and y_{2}

respectively, it is clear that a further 5 applications of these mutations make the seed

return to the original seed. The above mutations exhaust all possibilities. The newly
obtained cluster variables are

x_{1}(1)=\displaystyle \frac{x_{2}+y_{1}}{(y_{1}+1)x_{1}}, x_{2}(2)=\frac{y_{1}y_{2}x_{1}+x_{2}+y_{1}}{(y_{1}y_{2}+y_{1}+1)x_{1}x_{2}}, x_{1}(3)=\frac{y_{2}x_{1}+1}{(y_{2}+1)x_{2}},
which are all Laurent polynomials of the initial cluster variables x_{1}, x_{2}.
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§5. Laurent phenomenon of nonautonomous difference equations

In this chapter, we give a theorem concerning the Laurent phenomenon of nonau‐

tonomous difference equations. In a special case of this theorem, q‐Painlevé equations

appear as the difference equations that are satisfied by the coefficients.

Let Q be a periodic quiver with the vertices x_{0} ,
. . .

, x_{k-1} that coincides with the

quiver $\mu$_{0}(Q) by replacing x_{i} with x_{i-1}(i=1,2, k-1, k\equiv 0) . The following theorem

can be proved using Theorem 4.1. Note that the coefficients in the equations below are

in fact the variables y(n) of Example 4.2.

Theorem 5.1. Assume that the quiver Q satisfies the above condition. Then,
the nonautonomous difference equation

(y_{n}+1)x_{n}x_{n+k}=\displaystyle \prod_{0\rightarrow i}x_{n+i}+y_{n}\prod_{0\leftarrow i}x_{n+i},
where the coefficients y_{n} satisfy

y_{n}=\displaystyle \frac{1}{y_{n-k}}\prod_{0\rightarrow i}\frac{y_{n-i}}{y_{n-i}+1} \prod_{0\leftarrow i}(y_{n-i}+1) ,

exhibits the Laurent phenomenon.

The number k denotes the number of vertices of the periodic quiver. The possible

types of periodic quivers are quite restricted when k is small. We explicitly give the

resulting difference equations obtained from Theorem 5.1 for small k.

\bullet case of  k=2 (Figure 13)

(y_{n}+1)x_{n}x_{n+2}=1+y_{n}x_{n+1}^{ $\lambda$},

y_{n}=\displaystyle \frac{(y_{n-1}+1)^{ $\lambda$}}{y_{n-2}}.
$\iota$_{[]< $\lambda$-.1_{1}}.

Figure 13. periodic quiver with two vertices

\bullet case of  k=3 (Figure 14)

(y_{n}+1)x_{n}x_{n+3}=1+y_{n}x_{n+1}^{ $\lambda$}x_{n+2}^{ $\lambda$},

y_{n}=\displaystyle \frac{(y_{n-1}+1)^{ $\lambda$}(y_{n-2}+1)^{ $\lambda$}}{y_{n-3}}.
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Figure 14. periodic quiver with three vertices

\bullet case of  k=4 (Figure 15)

(y_{n}+1)x_{n}x_{n+4}=1+y_{n}x_{n+1}^{ $\lambda$}x_{n+2}^{ $\mu$}x_{n+3}^{ $\lambda$},

y_{n}=\displaystyle \frac{(y_{n-1}+1)^{ $\lambda$}(y_{n-2}+1)^{ $\mu$}(y_{n-3}+1)^{ $\lambda$}}{y_{n-4}},
or

(5.1) (y_{n}+1)x_{n}x_{n+4}=x_{n+2}^{ $\mu$}+y_{n}x_{n+1}^{ $\lambda$}x_{n+3}^{ $\lambda$},

(5.2) y_{n}=\displaystyle \frac{y_{n-2}^{ $\mu$}(y_{n-1}+1)^{ $\lambda$}(y_{n-3}+1)^{ $\lambda$}}{y_{n-4}(y_{n-2}+1)^{ $\mu$}}.

Figure 15. periodic quiver with four vertices

\bullet case of  k=5 (Figure 16)

(y_{n}+1)x_{n}x_{n+5}=1+y_{n}x_{n+1}^{ $\lambda$}x_{n+2}^{ $\mu$}x_{n+3}^{ $\mu$}x_{n+4}^{ $\lambda$},

y_{n}=\displaystyle \frac{(y_{n-1}+1)^{ $\lambda$}(y_{n-2}+1)^{ $\mu$}(y_{n-3}+1)^{ $\mu$}(y_{n-4}+1)^{ $\lambda$}}{y_{n-5}},
or

(5.3) (y_{n}+1)x_{n}x_{n+5}=x_{n+2}^{ $\mu$}x_{n+3}^{ $\mu$}+y_{n}x_{n+1}^{ $\lambda$}x_{n+4}^{ $\lambda$},

(5.4) y_{n}=\displaystyle \frac{y_{n-2}^{ $\mu$}y_{n-3}^{ $\mu$}(y_{n-1}+1)^{ $\lambda$}(y_{n-4}+1)^{ $\lambda$}}{y_{n-5}(y_{n-2}+1)^{ $\mu$}(y_{n-3}+1)^{ $\mu$}},
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Figure 16. periodic quiver with five vertices

where,  $\lambda$,  $\mu$\in \mathbb{Z}_{>0}.
We consider the Somos‐4 quiver in Figure 3. In this case,  $\lambda$=1,  $\mu$=2 for

(5.1),(5.2). Therefore, the difference equations in Theorem 5.1 are

(5.5) (y_{n}+1)x_{n}x_{n+4}=x_{n+2}^{2}+y_{n}x_{n+1}x_{n+3},

y_{n}=\displaystyle \frac{y_{n-2}^{2}(y_{n-1}+1)(y_{n-3}+1)}{y_{n-4}(y_{n-2}+1)^{2}}.
The nonautonomous difference equation for x_{n} is nothing but Somos‐4 with coefficients.

When we integrate 2 times the difference equation for y_{n} ,
we obtain the q‐Painlevé I

equation [7]

y_{n-1}y_{n+1}=c$\gamma$^{n}\displaystyle \frac{y_{n}+1}{y_{n^{2}}},
where c,  $\gamma$ are arbitrary constants. Hence, we find that the deautonomized Somos‐4 (5.5)
exhibits the Laurent phenomenon if the coefficients satisfy the  q‐Painlevé I equation.

Similarly, when we consider the Somos‐5 quiver in Figure 6, where  $\lambda$=1,  $\mu$=1 for

(5.3),(5.4), the difference equation in Theorem 5.1 is

(y_{n}+1)x_{n}x_{n+5}=x_{n+2}x_{n+3}+y_{n}x_{n+1}x_{n+4},

y_{n}=\displaystyle \frac{y_{n-2}y_{n-3}(y_{n-1}+1)(y_{n-4}+1)}{y_{n-5}(y_{n-2}+1)(y_{n-3}+1)}.
The nonautonomous difference equation for x_{n} is the deautonomized Somos‐5. Inte‐

grating the difference equation of y_{n}3 times, we obtain the q‐Painlevé II equation [8]

y_{2m-2}y_{2m}=c_{1}$\gamma$^{m}\underline{y_{2m-1}+1},
y_{2m-1}

y_{2m-1}y_{2m+1}=c_{2}$\gamma$^{m}\displaystyle \frac{y_{2m}+1}{y_{2m}},
where c_{1}, c_{2},  $\gamma$ are arbitrary constants. Hence, the deautonomized Somos‐5 exhibits the

Laurent phenomenon if the coefficients satisfy the  q‐Painlevé II equation.

§6. Conclusion

We found that the q‐Painlevé I and II equations can be obtained from difference

equations that exhibit the Laurent phenomenon: A necessary and sufficient condition
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for the deautonomized Somos‐4 (5) to exhibit the Laurent phenomenon is that its co‐

efficients solve the q‐Painlevé I (II) equation. It is interesting to try to clarify whether

other q‐Painlevé equations can be similarly obtained from some periodic quiver. We

also expect that multidimensional extensions of Theorem 5.1 may be possible, by using

quivers which have similar properties to those discussed in connection to the discrete

\mathrm{K}\mathrm{d}\mathrm{V} equation.
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