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Construction of the exceptional orthogonal
polynomials and its application to the
superintegrable system

By

Satoshi T'suJiMOTO*

Abstract

To construct systems of polynomial eigenfunctions with jump in degree by means of the
theory of Darboux transformation, a class of eigenfunctions of the Sturm-Liouville operator
is introduced. Then we show a systematic way to construct the system of polynomial eigen-
functions with jump in degree from the Sturm-Liouville operator of the classical orthogonal
polynomial. We classify these systems of the polynomial eigenfunctions with jump in degree
according to the contour of integration which determines the gauge factor of the seed solu-
tion of the Darboux transformation. Finally, we give a brief review on the superintegrable
Hamiltonian derived from the exceptional orthogonal polynomials.

§1. Introduction

Let us consider the polynomial eigenfunctions of the general second-order ordinary
differential operator,

(1.1) A(2)0* + B(z)0 + C(x).
It is well-known that Bochner|[2] classified the all orthogonal polynomials which satisfy

(1'2) A(Clj)p;; + B(aj)p;z + C(Clﬁ)pn = )\npna deg bn =",
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for n = 0,1,2,..., and some value of the spectral parameter \,. In this case the
polynomial eigenfunctions are given by the classical orthogonal polynomials of Jacobi,
Laguerre, Hermite and the Bessel polynomials. If there exists polynomials of degree
0, 1,2 satisfying (1.2), then the coefficients of this operator, A(x), B(z) and C(x), are
required to be polynomials and their degrees are as follows: deg A(x) < 2,deg B(x) =1
and deg C(z) = 0.

Recently, as one of the generalization of the classical orthogonal polynomials,
Gomez-Ullate, Kamran and Milson (GKM) [6] have introduced the “exceptional or-
thogonal polynomials” which has following properties:

e cigenfunctions of a second-order differential operator,
e cxistence of a positive weight function w(x) on an interval I of real line,

e a complete basis in the corresponding L?(w(x)dz, I)-space,

but they do not contain any polynomials from degree 0 to degree j — 1 and start with
degree 7 > 0. They explicitly present the case when j = 1 starting from the La-
guerre polynomials and the Jacobi polynomials, which are known as the X;-Laguerre
polynomials and the X;-Jacobi polynomials, respectively. This new class of orthogonal
polynomials sequences is now attracting many interests of researchers of various fields.
Among them, Odake and Sasaki (OS) [11] have developed this new class of orthogonal
polynomial sequences and presented many new explicit examples, such as the excep-
tional Jacobi polynomials for 7 > 1, and also the g-analogue of exceptional orthogonal
polynomials. Recently, OS introduced the “multi-index” Jacobi polynomials and the
“multi-index” Laguerre polynomials [12]. Before GKM, Dubov, Eleonskii and Kulagin
(DEK) [5] has proposed similar polynomial sequences, which contain constant function
as the lowest degree polynomial and the second lowest degree polynomial is given by
j + 1-degree polynomial, in 1994. All these examples can be derived from the Darboux
transformation of the classical orthogonal polynomials [7, 15].

The purpose of this article is to show a systematic way to construct these classes of
polynomial sequences, which can be derived from the one-time Darboux transformation,
started from the Sturm-Liouville operator of the classical orthogonal polynomials. In
§2, we review the theory of Darboux transformations [1, 3, 4]. In §3, we discuss a class
of eigenfunctions of the Sturm-Liouville operator. In §4, we construct the system of the
orthogonal polynomials with jump in degree, and then present the list of the Darboux
transformed polynomial eigenfunctions, which has a positive finite weight function w(x)
on the real line. Finally we give brief review on the superintegrable Hamiltonian derived
from the X;-Jacobi polynomials [14].
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§ 2. Darboux transformations of Sturm-Liouville operator

The Darboux transformation is one of the basic tools in our method to construct
orthogonal polynomial systems with jump in degree. In this section we present the
Darboux transformation of the Sturm-Liouville operator and discuss several properties
of eigenfunctions of the Darboux transformed operators.

Consider the eigenvalue problem of the Sturm-Liouville equation,

(2.1) e (A ) + Clao = o,

where A is the eigenvalue, the function A(z),w(x) are continuously differentiable func-
tions on the interval I = (z¢,z;) and C(x) is continuous on I. Note that the second
order differential eigenvalue problem,

A(z)¢" + B(x)¢' + C(x)p = Ao,

can be turned into the form of the Sturm-Liouville eigenvalue problem (2.1) by intro-
ducing the function w(x) which satisfies

(2.2) (A(x)w(z))” = B(z)w(z).

Eq.(2.2) is formally solved to give w(z) = kgexp ( [* %&%l(y)dy), where kg is an
integration constant. We may write (2.1) as

(2.3) Llg] = Ao,
where the operator £, what we call Sturm-Liouville operator, is defined by

(2.4) £d] = —— (A@)w(@)¢) + C(x).

w(x)

Here we would like to introduce several notations to present the Sturm-Liouville operator
in short. We will present the Sturm-Liouville operator £ defined in (2.4) as follows:

(2.5) L=D,AD+C,

where the operators D, D, are defined by

f'(x)
f(x)

(2.6) D¢l =¢', Dylg]=f"0f6=9¢"+ ¢,

respectively.
Several useful formulas in calculation are presented here:

Dyyrlg] = Dyl¢]
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for nonzero constant x and

(2.7) (D - 9)[6] = (9~ Dyy)[6),
(2.8) (Dyn - g-Dipn)lél = (Dy - gD+ C)[d],

where C(z) = (Dyn-g-Diyn)[ll(x) = —=(Dy - g - D)[h](x)/h(x), which can be proved by
straightforward calculation. Note that by applying the operator D;,; to the function
f, then

Dyslf] = (fofHIf1 =0.

Darboux transformation Let us introduce a set of eigenfunctions {¢q}acr of £
such that

(2'9) £[¢a](x) = Aa ¢a($),

where I be an infinite set, which will be discussed in the next section, and A\, be the
spectral parameter corresponding to the eigenfunction ¢,. For simplicity here and
hereafter we assume that these spectral parameters A\, are all mutually distinct.

By fixing d € I, which we may call Darboux parameter, we introduce one eigen-
function ¢, as a seed eigenfunction of the Darboux transformation and denote that
AD = )7 and xV = ¢4. From the factorization of the operator £ — A1), we obtain a
pair of first order differential operators B(!) and F) such that

(2.10) £ —BW FO) L \W)
It is easy to see that BY) and FM) are explicitly given by
BL = Dwx(l) A/T(l), FO = @) Dl/x<1>v

respectively, where () (z) is introduced as an arbitrary decoupling function for normal-
ization purpose. Note that F(1) [0a] can be expressed in terms of Wronskian:

(x(V )/%) (1)

Y@ %)

AN
(xWY ¢l |

Pl = (o,

Here we introduce the new operator £(!) by exchanging B and FU) of £:
(2.11) £ = 71 ) L \@),
The Sturm-Liouville form of £(!) is given by

(2.12) LY =D, oy AD+CW,
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where w) = Aw/(r)? and ¢ = (FO B[] + XD which can be proved by
rewriting the operator £(1) as

LD -\ = FOBY = (rOD), 1) (D) A1) = Dty )1 ADpyyw) 4 /r1)

and using the formula (2.8). Concerning the backward operator B, we can view it as
an “undressing” operator of the “dressed” function:

(2.13) BW D] = (Aa — A6,

which can be proved by (2.10), (2.14) and (2.15).
Taking into account that the operator (1) annihilates the eigenfunction ") (= ¢4),
ie. FO[xM] =0, we define

r/(Awx W) if FW[ga] =0

(2.14) o) = T3 [0a] = { FO[¢]  otherwise

for all a € I, which is the eigenfunction of the transformed operator £(V): if F([¢,] # 0,
then
LOFD[pa]] = (FOL = AD) + 2O FD)[g0] = A F V0]
and, if FM[¢p,] = 0, then
LV [pW] = (FOBL £ A [pD] = \D) g1

where we have used B [r() /(AwxM)] = D, o [1/(wxP)] = D[1] = 0. Hence the

Darboux transformation
AL
(£ {¢a}) 7= (LW {60'})
is an isospectral transformation:
(2.15) LV = A, 1) for all a € L.
Orthogonality We give a formal discussion on the orthogonality relation of the

system of transformed functions {(/5&1)}. Suppose that there exists the linear functional
(-} = (w-) such that

<¢a¢a’>w - haéa’a/, for Oé,Oé/ & S C ]I,

where hy # 0 and 4, is Kronecker’s delta function. The system of transformed

eigenfunctions becomes the orthogonal system with respect to the modified weight
wh = Aw/(rM)2:

(216) <¢&1)¢S/)>w(1) = h&l)(sa,a’a
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where
L) _ ha(AY) — ) if AD £ )\,
“ (At (xM)72) otherwise

This orthogonality relation can be proved by induction:

(FOF Do o = FPP] @D r@ Dy ) o))
= (FOW)(A/r Dy ws)]) = —(BOFO[BP)wgl))
= (AW = 20)o wig) = AV = 2a) (6 63w
where we have used that the operator (BM))* = —A/r(1) D jypyv is formal adjoint of
BW e, (BM[u],v) = (u, (BL)*[v]). Similarly, we have
(FOUDTrD (Awx D)) oy = (" Dy ) [98] (XX ) )
= —(68) (=Dyor r)[(FIxM) 1) = (67 ()~ D[1]) = 0,

and ((r)?(Awx)72),,00 = ((Aw)~ (xV)72).

§3. System of quasi-polynomial eigenfunctions

In this section, we will discuss a special class of eigenfunctions of the operator £
such that

(3'1) E[éﬁn]('x) = ﬂné(x)ﬁn(x)a n=20,1,2,...

where £ is a function in x and p,, is a polynomial in . Here each eigenfunction is given
by what we call quasi-polynomial eigenfunction, that is, the product of gauge factor
¢ and polynomial p,, The operator £ may have several sequences of quasi-polynomial
eigenfuncitons. We call the set of all sequences of quasi-polynomial eigenfuncitons of
L as the system of quasi-polynomial eigenfunctions of L. From this system of quasi-
polynomial eigenfunctions, in the next section, we will take the seed function of the
Darboux transformation. This is the key ingredient in the construction of orthogonal
polynomial system with jump in degree.

First we introduce the Bochner type differential operator which provides a sequence
of polynomial eigenfunctions. Let IL be a set of second order ordinary differential oper-
ators defined by

(3.2) L= {04282 + a0 | a1, ag are polynomial in z,0 < deg(az) < 2,deg(ay) = 1} .
Suppose that £ = A(z)9? + B(x)0 € L and the condition

(3.3) kA" /2 + B #0 for k € Zo,
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holds, then, for each n > 0, the eigenvalue problem

(3'4) E[pn](x) =M pn(l’),

has a unique polynomial eigenfunction of degree n up to the scaling constant. We
may denote the nth degree monic polynomial eigenfunction of £ = A9%? + BO € L by
P, (z; A, B), that is,

L[P,(z; A, B)] = X\ P, (z; A, B),

where the value of spectral parameter, Ay, is given by A{P) = n[(n—1)A"/2+ B'].
The condition (3.3) assures that A\, # A, for any non-negative integer n # m|[8].

In this section, we give all possible gauge factors £(x) which enable us to derive a
sequence of quasi-polynomial eigenfunctions of £ € IL. Here we introduce the conjugated
operator by

(3.5) L=¢1LE— po,

and its corresponding spectral parameter A, = fi,, — o, then (3.1) is rewritten as

(3.6) Lpn] = MPny n=0,1,2,...,

which means that £ has a sequence of polynomial eigenfunctions. Then it follows
that £ € L from Bochner’s theorem. Here the zero eigenfunction is given by pp = 1:
L[] = Mo = 0. Now we can show that all possible gauge factors can be derived from
the following proposition.

Proposition 3.1.  Let £L = A(z)0*> + B(z)0 € L and let n, be the function
defined by

(3.7) ny(x) = n(x; A, B,y) = QLm/ B(Z)I&Zf)‘l/(z) Zd_z$’

where v is a positively oriented closed curve in C\{zeros of A(z),x} which does not
enclose the point x € C. In the case when (A, B) # (ao(x — a)?,bo(x — a)) with some
constants ag, by, a € C satisfying agby # 0, there exists some function £(x) such that

(3.8) clLe—pel,
where pu denotes the constant part of £~1LE, if and only if,
(3.9) ¢ (2)/€(w) = 1,(2),

with some . In the case when (A, B) = (ag(z—a)?,bo(x—a)), it holds that L LE—p €
L, if and only if, &' /€ = k/(x — a) with an arbitrary constant k.
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First we prove that this transformation £ ~1L£¢ preserves the polynomiality of the
coefficients of L.

Lemma 3.2. Let A(x), B(z),C(z) be polynomials in x and define the opera-
tor L by L = A(x)0* + B(2)0 + C(x). Let v be a positively oriented closed curve in
C\{zeros of A(x), x}. We introduce functions A(x), B(z),C(z) as the coefficients of the
operator 1 L&, = A(2)0? + B(x)0 + C(x), where &,(x) is determined up to the mul-
tiplier constant from & /&, = 1, = n(x; A, B,7). Then the coefficients A(x), B(z), C(x)
are the polynomials in x such that A = A and

(3.10) deg(é) < max(deg(A) — 1,deg(B)),
(3.11) deg(C) < max(deg(A) — 2,deg(B) — 1,deg(C)).

Proof. If there are no zeros of A(x) inside the curve ~, then this lemma trivially
holds. Here we suppose that the curve ~ encircles several number of zeros of A(x),
denoted by ai,as,...,a,. Let k; be the order of the zero a; for j =1,2,...,n. Then
we have A(x) = p(z) [[}—,(x — a;)% where p(z) is a polynomial. It follows that

=3 [R5

from the residue theorem. Let us introduce g,,(z) (j = 1,2,...,n) by
/4 T . /
g’YJ( ) = Res |:B(Z) A (Z):| 7
gy; () z=as [ A(2) (2 — )

which can be rewritten as

$@ _ ko1 a7 ((Z_a‘)k«» B(2) >
00 @ a0 1)1 g 7 ARG )

where k;o) denotes the order of pole at the point z = a; of B(x)/A(z). Then one can
find that &, () is proportional to H?:l gy, (7). Hence it is enough to prove that each
conjugate transformation, £ — g;jl Ly, , preserves the polynomiality of the coefficients
and the inequalities (3.10) and (3.11).

Let us consider the following conjugated operator:

95, Ly, = AD* + Bo+ C.

By equating coefficients on both sides of equation above, we find that A = A, B= B+

2A g;j /G, C=C+B gfy(% )/ G, +Agﬁy/j /9~;- The function gfyj (7)/g4,(x) can be expanded
k!
into g’ ()/ g, (x) = 32,1 apu(x — a;)* with some constant ay,. Since the order k;o) is
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less than or equal to kj, A(x)n,(z) is regular at « = a;. Therefore B() is a polynomial

of degree less than or equal to max(deg(A)) — 1,deg(B)). Substituting (logg,,)" =
) -

lljjzl o (z—aj)* into C' = C+(log g4, ) B+((log g4,)"+((log g,)’)?) A, one can find that

C(x) can be expanded into C = Zﬁ/[:_k(o) Bu(z—aj;)* where M = max(deg(C), deg(B)—

1,deg(A) — 2). After some calculations, we find that Res(C(z)) = Res((z — a)C(z)) =

- = Res((z — a)*=1C(x)) = 0, which mean that C(z) is a polynomial of degree less
than or_equal to M. This completes the proof. O

Let Qa,p be the set of all poles of the integrand (B(z) — A’(2))A(z) "} (z —2z)~! in
CU{oo}. The number of elements of Q 4 5, denoted by 1Q 4 g, is taken from 0 to 3, since
the degree of A is less than or equal to 2. One can find that the integrand is identically
zero if 4Q = 0 and also Q4,5 = {2} if Q4,5 = 1. The function 7, = n(z; A, B,~) can
be evaluated in terms of the residue at the pole. Since deg(A) < 2 and deg(B) = 1,
then we have at most two or four types of v. For any pair of nonzero polynomial A
of degree at most 2, and linear polynomial B, there are two types of closed curve 7,
denoted by I and II, as follows:

e I does not enclose any points in Q4,5
e II encloses all points but z in Q. g

Note that, if 1QA, g is equal to 0 or 1, then the 41 and <11 can be treated as being the
same curve. Additionally, if the set Qa p\{x} contains two elements, say a; and as,
then two more additional closed curves III and IV can be introduced as

e III encloses a1, but not as and x
e IV encloses as, but not a; and =

Let us define the finite set G4 g by

(LILIILIV}if 4Qap = 3
Gap = ) .
{1, 11} otherwise

Note that the operator £ = A9* + BO € L and the path of integration v € G4 g
determine the conjugated operator:

(3.12) Ly=¢1L8 —pyEL,

where the gauge function &, is formally given by

& (x) = &(x; A, B,y) = exp (/m W(Z;A,Bﬁ)d2> ,
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Figure 1. Case Qa5 = 3, curve I Figure 2. Case §Qa,p = 3, curve II

D R

Figure 3. Case §Qa,p = 3, curve III Figure 4. Case Q4,5 = 3, curve IV

and the constant s, can be calculated from p., = (1}, + n?y)A + nyB. Direct calculation
shows that

L, = A(2)0* + B, (z)0,

where B, () = B(x)+2A(z) n(z; A, B;v). Tt is easy to see that B, () is indeed a linear
polynomial in . By using (2.2) we can rewrite the equation of &, as follows:

&) 1 /B(z)—A’(z) dz 1 w'(z) dz

(3.13) @ ny(z) = o A(z) r—x  2mi

Suppose that Z,y satisfies the condition (3.3), then, for each n > 0, the nth degree
polynomial eigenfunction p, ) is uniquely determined up to the scaling constant from

(3.14) [:v [p('y,n)] = (L + 2"47776) [p('y,n)] = 5‘(%n) P(y,n)»

where 5\(%”) =n[(n—1)A"/2+ B' +2(An,)"].
In the following lemma, we present all possible forms of 7,.

S w(z) z—x

Lemma 3.3.  Let Réas = Rzeg, [(B(z) — A'(2))/(A(2)(z — x))] be a residue at the

point ¢ € CU{oc}. For each L € 1L, corresponding to the choice of the closed curve v,
there exist at most two or four types of function n,(x).

e For any pair of nonzero polynomial A of degree at most 2, and linear polynomial B,

(i) 1 =0, (ii) mri(z) = —Res = (A'(z) — B(x))/A(z).
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Only the following two cases admit additional two types of n:

e For any pair of polynomials A, B such that A = ap(x—a1)(z—asz) # 0 with a; # a9,
deg B =1, and B — A’ has no common root with A,
(iii) 71 = Res, (iv) mrv = Res.
al az

e For any pair of polynomials A, B such that A = ag(x — ay) # 0, deg B = 1, and
B — A’ has no common root with A, then
(iii)” mir = Res, (iv)” mv = Res.
al o

Proof of Proposition 1. First we show that the equation (3.9) for £ is satisfied
with (3.8). Let

(3.15) L=¢1Le—p.

From (3.8), £ can be expressed in the following form:

(3.16) L = A(x)9* + B(z)0,

where A(x) and B(z) are polynomials of deg A(z) < 2 and deg B(z) = 1, respectively.
Comparing (3.15) and (3.16) we obtain

(3.17) A=A, B=B+2A¢/¢, LlE] = e,

which lead us to find a Riccati type equation with respect to &'/¢:

(3.18) A((E/)e) +(€/€)?) +BE /¢ = .

The second equation in (3.17) shows that £’/ is the rational function such that
(3.19) ¢ /¢ = (B - B)/24 = i/q,

where numerator ¢ and denominator g are both polynomials and their degrees are
(3.20) deg(q) <1, 0<deg(q) <2.

Let ag,a1,as be points in C such that a; # as and ag # 0 and let b; be the
nonzero leading coefficient of B. We assume that A(z) takes one of the four possible
forms without loss of generality: ag,ao(x — a1),ao(x — a1)?,ao(x — ay)(xz — az). Let us
introduce

B—A
A

é-/
. h= =
(3.21) T3
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In the case when B = B, it is easy to see from (3.7) that h = (B — A’)/A. If B # B,
by using (3.17)—(3.20), we can rewrite h in several forms:

:B—A'+B—B:2u—(B—B)’_u—(Aﬁ’/ﬁ)"

(3.22) h I o 25 - Aejt

Taking into account the degrees of polynomials A, B and B, we can read (3.22) that
the degree of denominator polynomial of A is less than or equal to 1, and the possible
pole must be taken from the zero of A, necessarily, the function A must be proportional
to one of the following functions: 0, 1, 1/(z —a1) and 1/(x — az). We consider all cases
to solve (3.18) for ¢’'/¢ and unknown spectral parameter p under the conditions (3.7).

(1) B =B.
Putting B = B to (3.7), we have ¢ /¢ = 0 which leads to u = 0. This case
corresponds to the case (i) in Lemma 3.3.

(2) B# B and h=0.
In this case, from the definition of h, it is obvious that &' /¢ = (A’ — B)/A, which
corresponds to the case (ii) in Lemma 3.3.

(3) B#Band h =k #0.
Putting h = x to (3.21) and (3.22), it is easy to see that ¢’/ = k+ (A" — B)/A and
that B — B is some nonzero constant, denoted by 2&, that is B—B =2 #£ 0, from
which £’ /§ = /A follows. These two expressions of ' /€ lead us to

k=rA+ A — B,

which shows that possible degree of A is only one (k(# 0), & € C,deg B = 1). Thus
we take A as ag(z — a1) here. If the polynomial A’ — B has a common root with

B-B _ I
2A T ap(z—a1)
be satisfied only in the case when & = 0, but this contradicts the assumption that

the polynomial A, then =K — % for any € C\{a1} which can

B # B. Therefore, if ¢ /€ exists in this case, A must be a linear polynomial which
has no common root with A’ — B. As a consequence we obtain

§(x) R B 1/ —fkdz
11

€(x)  aolw—a1) 2w Jyp ao(z —ay)(z — )

= QLm /HI/ {—/1 + B(Z)A_(Z;l(z)/] Zd_zx = nur ()

where III' is a closed curve which encloses a1, but not z and oo, which corresponds

to the case (iii)’ in Lemma 3.3.

(4) B# B and h = r/(z — ay) # 0.
From the assumption on A, the point as is appeared only in the case when A =
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ap(z — a1)(x — ag) with a3 # as,a¢ # 0. Putting h = k/(x — az) and A = ap(x —
ay)(z —az) to (3.21) and (3.22), it is easy to see that A’ /€ = kap(x —ay) + A’ — B
and that B — B is a linear polynomial, from which we can see that the degree of
polynomial A{’/€ is just one. Then we introduce a constant by & = (A¢'/€)" which
is not equal to u, otherwise x becomes 0. Thus we have A¢'/{ = R(x — az) which
can be rewritten as £'/§ = //(ap(xz — a1)). These two expressions of £'/¢ leads us
to k(x — ag) = kag(x —a1) + A” — B. As a consequence we obtain

() _ K _ L/ _ide
5(37) CEO(CE'—CH) 271 111 aO(Z_Cbl)(Z—a‘;)
! | B(2) AR _dz _
2mi L—Cbz AR ]Z_x = (@),

where III is a closed curve which encloses a;, but not x and as. This is the case

271 111

(iii) in Lemma 3.3.

B#Band h=k/(z —a1) #0.

From (3.22), if A¢’'/€ has a factor © —aq, A is also required to have a factor x — a;.
Putting h = k/(x —ay) to (3.22), it is easy to see that deg(B — B) = deg(A£'/€) =1
and A¢'/€ = (z — a1)(n — (AE'/E)")/k = R(x — a1) with some nonzero constant &.
Hence we have only three cases as follows:

(A,¢'/8) € {(ao(z — a1), k), (ao(z — a1)?, &/ (z — a1)), (ao(z — ar)(x — az), &/ (x — az))} .

(A,€'/€) = (ao(z — a1)(x — az), i/ (z — az))

@) & 1 —kdz

) z—ay 2mi /IV (z —az)(z — )
1 —K B(z) = A'(2)] dz
27 iy lz —ay + A(z) ] z

= nrv(z),

where we have used £’/ = &/(x — a2) = k/(x — a1) + (A’ — B)/A which follows
from (3.21), and IV is a closed curve which encloses as, but not  and ay. This is
the case (iv) in Lemma 3.3.

(4,¢'/€) = (ao(z — a1), k)

&' (x) 1 —fkdz 1 { —K B(z) = A'(2)] d=z

&(x) — T om W z—2 2w Ju z—a1+ A(2) z—x:nlvl(x)’

where we have used ¢'/€ = & = k/(z —a1) + (A’ — B) /A which follows from (3.21),
and IV’ is a closed curve which encloses oo, but not = and a;. This is the case (iv)’
in Lemma 3.3.
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- (A,€/€) = (ao(z — a1)?, &/ (x — a1))
Putting h = k/(x — a1), A = ag(x — a1)?,¢' /€ = k/(x — ay) and B = bo(z — by)
to (3.21), and equating coefficients of ™ on both sides, we obtain B = (k — k +
2)ag(z — ay). This is the case when (A, B) = (ao(z — a1)?,bo(z — ay)), in which,
&'/€ is allowed to contain an arbitrary constant, 4. (The case & = 0 is considered
in the case (1))

Conversely, if (3.9) holds, then it follows (3.8) from Lemma 3.2. O

For later use, we introduce polynomials A, (z) and A, 5(x) for 7,4 € G4 p such
that

Al(x) 1 /A’(z) dz Al (@) 1 /A;(Z)i
Y ¥

(3.23) A, () T 2mi Alz) x— 2" Ay5(z) 2mi Ay(2)x =2

Note that A, is a factor of A and A 5 is the greatest common divisor of A, and Ay,
which are uniquely determined up to the scaling constants.

For a given v € G4, g, there exists 7* € G4, p such that &« = rk(wg,) ! with some
nonzero constant k. Here and hereafter we take integration constants so as to satisfy
Ar=A1, =A, , A, = A, » = AAJA=A, Ay ,JA, = 46w = 1. Clearly
&y = & holds. Hence v* can be considered as the dual of 7. Correspondingly, we say
that &, is the dual of £,. For the elements of G4 p defined before Lemma 3.3, one can
find that II is the dual of I, i.e. II = I* and, if exists, IV is the one of III, i.e. IV = III".
Employing these normalizations, we obtain following corollary.

Corollary 3.4. It holds that for v € Ga, B,
& ()éy- (v)w(x) = 1.

In particular, £1(x) = 1,&n(x) = w(z) L &(x) Enw(x) = 1,&m(x) &vz)w(z) = 1.
Analogously,

Ay(x)Ays(z) = A(x), Ay p(2) Ay (2) = Ay(z), Ar(z) =1, An(z) = A(z).
We give several examples of £, A, and A, , under some normalized constant factor:

e Jacobi polynomials case: Let A = 1—22, B = b—a—(a+b+2)zanda; = 1,a2 = —1.
Then

=1, a=01-2)*1+2)" &u=>_01-2% &Gv=>1+2)",
Ar=1, An=1-2°, Am=1-2 Anv=1+uz,
App=Arn=A1m = Ay = Amv =1, Apn=1-2%

Anm = Amn = Amm =1—2, Amwv =Awvn=Awviv =1+
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e Laguerre polynomials case: Let A=2,B=—x+a+ 1 and a; = 0,as = co. Then

&G=1, {u=e"27% &Gu=2% §&v=c¢",
Ar=1, An=2 Am=2z Awv=1,

Ann = AnmAmn = Amm =2, Api=---=Aiv=4wv1=--=Awvv =1

e Hermite polynomials case: Let A =1, B = —2x, then

2
G=1, &{u=¢e", Ai=An=1, An=An=Amn1=A4nn=1

§4. Orthogonal polynomials with jump in degree

In this section we give a method to construct orthogonal polynomials with jump in
degree by using the results of §2 and §3. First we consider the Darboux transformation
of the quasi-polynomial eigenfunction ¢, (z) for o € I. Let us fix a operator L =
AD? + BO € L. Then we can determine all possible sequences of quasi-polynomial
eigenfunctions. Set I = Ga,p X Z>¢. For simplicity, we assume that for each a =
(v,n) € I, a quasi-polynomial eigenfunction ¢ () = & (2)p, is uniquely determined
up to the multiplier constant and these quasi-polynomial eigenfunctions are mutually
independent. Note that, if v = I, then ¢ ) (2; A, B) for n € Z> is a polynomial of
degree n, since & = 1.

Now we apply the Darboux transformation (2.14) to the system of quasi-polynomial
eigenfunctions of £. By taking the Darboux parameter as d = (p,j) € L, then the seed
function () (x) is given by ¢q4(x). For our purpose we choose the normalization factor
as r(1) = X(l)Ap /&,, and we obtain Darboux transformed eigenfunctions from (2.14):

& AW (XM, ¢a) if ad

4.1 (1) :T(l) al =
( ) ¢o¢ d [¢ ] Ap(Awé-p)—l — é-p* A;*l = é-’)’* A;*l otherwise ’

where Y1) = ¢4 and W(f,g9) = fg' — f'g. If W(xW,¢a) # 0, this transformed
eigenfunction can be divided into the gauge factor part 5&1) and the polynomial factor
part P, 4 as ¢§3)(a:) = él)(x)Pa,d(x) where

42 -Pe
ApAy | Pd ba Pd Pa
(43) Foud = A%,:é,jéw N I L R
where we have used that the rational function
! B(z) = A'(2) d=z
e = o —p A(z) zZ—x
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multiplied by A, A, = A,A,/(A,,,)? is a polynomial in . From this expression
and {1 = Ay = Ar, = 1, one can easy to see that ¢Ell)n) is a polynomial in z, if (I, n) # d.

Proposition 4.1.  The Darbouz transformed eigenfunction ¢&1)(aj) of LY for
a=(v,n) € Gap X L is the following type of quasi-polynomial:

(4.4) oW () = £V (2) Paa(w),

whose gauge factor f&l) is gien in terms of the original gauge factor & (x) or &y« (x)

with shifted parameters:

g(l)(x) _ { gl)(x) ifa #d

(1) .
4 () otherwise

where 5%1) and fgi) are respectively given by Sf(yl) =¢(x; A, B(l),’y) and SS) =¢(x; A, B(l),ﬂy*).
Here the linear polynomial BW can be presented as,

BO(2) = B(x) + W(Ay(), Ay ().

Proof. From (3.23) and (4.2), we obtain

V@) @) A @) A () 1 [ (B(z)-A(2)
: 5 [ (P

f(yl)(w) & (@) Ay p Ay pr A(z)
. Ap(@)  Ap@)\ dz 1 / BW(z2) = A'(z) dz |
Ap- A, ) z—x  2miJ, A(z) z—x

Recall that the degree of polynomial A, is less than or equal to the degree of A and
the degree of A,- is given by deg(A) — deg(A4,). Then W(A,, A,«) must be a linear
polynomial or a constant. Clearly B (z) and B(z) are both linear polynomials in z.
Thus we have §§1) = ¢(2; A, BD 4). Tt follows that 5%1) can be expressed by &, =
&(x; A, B, ) with shifted parameters. O

Here we explicitly present the transformed Sturm-Liouville operator. By construc-
tion, qﬁ&l) satisfies E(l)[¢8)] = Ao (al), which can be rewritten as

(D g ADy 1) 8] = (e = Aa)gL
or, equivalently,
(D AD)BD/6L — (D AD)S1/65 = Ao = Aa,
for a,d € 1. In addition the coefficients of

LY =D oy AD+0W = AWd% 4 BWg 4 cW),
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where w1 = Aw/ (r(l))2 = (A,-/Ap) (§p/x(1))2 w , are given by

AW(z) = A(z), BW(z) = B(x) + A(x) <log <(>f<”1§2)> ip,:(%))) ’

CO (@) =AY = (Dy AD)[6f @)/} (@).

It is easy to calculate the degree of polynomial P, 4(z) as follows,

(4.5) deg (Paa(z)) <n+j+e(y,p),
where

—lify=p
(4.6) e(v,p) =4 1ify=p* forv,peGas.

0 otherwise

As a consequence we can divide I = G4 p X Z>¢ according to the corresponding
gauge factor. Let us define

X0 ={(rnm) | ne oo}, X ={(\m) el D, =M},

for v € G4,p. From the proposition 4.1, it follows that

XO\(d=(v,5)} ify=p

(47) XP =3 xPuld= (v, j)}ify=p*
X 50) otherwise
If o € X; (1) , then &, (D — (1) = 1. Hence we obtain a sequence of polynomial eigenfunc-

tions with jump in degree:
P} = {Poale) | o € X{'),

such that LMD[P, d) = A Pa.d-

It is well-known that the Darboux transformation can be classified into three states:
delete-state, add-state and isospectral-state. In the following, we will look into the
Darboux transformed polynomial eigenfunctions, P%)’ and give the list of degrees of
polynomial eigenfunctions

deg(X{V) = {deg(Pa.q) | @ € X}

in each case. GKM have already discussed these situations in their several papers for
explicit examples. In contrast to their approach, our method provides a systematic way
in construction of all these cases.
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e Delete-state: d = (1, 7).

deg(Xi"W) = {j —1.4,...,2j — 2,25,2j +1,...}

e Add-state: d = (II,j). We obtain several definite orthogonal polynomial systems
with jump in degree as in the case which has been discussed by DEK]5].

deg(X1™M) ={0,j+1L,j+2.5+3,...}

Here the constant eigenfunction is coming from the Darboux transformation of
¢a = ¢1,5), that is, ¢&1) x 1, and the (j +1+n)th degree polynomial eigenfunction
is given by ¢E11 )n).

e Isospectral-state: d = (III,j) or (IV,j). The exceptional orthogonal polynomials
introduced by GKM|6] are classified into this case.

deg(XiM) ={j,j+1,7+2,7+3,...}

To be a system of positive definite orthogonal polynomials on the real line, it is required
to hold additional conditions, which are discussed in the following subsection.
§4.1. List of the orthogonal polynomials with jump(s) in degree

Here we will present the list of Darboux transformed polynomial eigenfunctions
which has a positive finite weight function w(z) on the real line. We consider the cases
that all the moments are finite, that is, for all n, the integral

/ x"w(x)dz

1

exists. We divide the cases with the leading coefficient A(z) of the second order deriva-
tive term of £ € L, which is a polynomial of degree at most two:

1) deg A(xz) = 2 and A(zx) has two distinct real zeros. (Jacobi polynomials)
2) deg A(x) =2 and A(x) has a double root. (Bessel polynomials)

3) A(z) = ap(r — a)? and B(x) = bo(z — a) with nonzero constants ag, by. (Power
functions)

4) deg A(x) = 1. (Laguerre polynomials)
5) deg A(x) = 0. (Hermite polynomials)

In order to obtain the positive weight function w)(z), the following conditions are
required to be fulfilled:
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e There exist two distinct points a, b on the real line such that w(:v)A(x)Q(aj)|w=a =

w(a:)A(a:)Q(a;)|m=b = 0 for any polynomial Q(x). The interval (a,b) is either finite
or infinite.

e The zero of Y1) in the interval (a,b) causes the singularity of w(®). All zeros of )
lie outside the interval (a,b).

e The function w(z) is non-negative in the interval (a,b): w(z) > 0 for z € (a,b).

In the following we only present the case which has a positive weight obtained from
the Darboux transformation of £ = A9* 4+ B9. In each case we give &, w® and Pg;l)
Here and hereafter we may denote (v,n) € Ga,g X Z>¢ by n,.

Jacobi polynomials case Let A(z) = 1— 2% B(z) = b—a — (a + b+ 2)z and
J,ga’b)(x) = P, (z; A, B). For a,b > —1, we have

1
/ w(z; a,b)J0 (2)J@0) (2)dz = heD§, .,
~1

a ,b 201D (4 a+ 1T (n+b+1
where w(z;a,b) = (1 —2)*(1 + x)b and hg’a )= (2n+a+b(+$n—!|}‘()n—i(-a—|—i—-b—-||—-1))'

e Case . d = (1,5): &(x) =1, w = w(z;a+1,b+ 1)/(Jj(a’b) (x))2. Orthogonality
for j =0,1,2 and m,n € Z>o\{j} under the following choice of parameters a, b:

P,

/1 w(z;a+1,b+1)

SR e

s (23 A, BYdx = %Y 6, .

When j = 0, P, o, returns to the original Jacobi polynomial with shifted parame-
ters: Py o, = J,(L‘l_tl’bﬂ)(@.

Whenj=1land{-2<a< —-1,-1<b}or{-1<a,—2<b< —1}witha+b # -2,
then { P, 1, }n=023.4,.. is an orthogonal system: the ground state eigenfunction is
Py, 1; = 1, and the next eigenfunction is given by the quadratic polynomial P, 1,
which has 1 zero in the orthogonal interval (—1,1).

When j = 2 and —2 < a,b < —1 with a + b # —3, then {P,, 2, }n=013.4,.. is
an orthogonal system: the ground state eigenfunction is given by the quadratic
polynomial P;, 9 () which has no zero in the orthogonal interval (—1,1). The
second eigenfunction is given by the linear polynomial Py, o, (z) which has 1 zero
€ (—1,1). The third one is given by the quartic polynomial Ps, o (z) which has 2
zeros € (—1,1), and so on. In this case, we have following inequality with respect
to the value of spectral parameters:

Ay =—(a+b+2)> X, =0> A3 = =3(a+b+4) > Ay >+,
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Laguerre polynomials case Let A(x)
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where the largest value of spectral parameter is given by A;, which corresponds to
the ground state.

CaseIL. d; = (I,5): &u(z) = (1—2)~*(142) 7%, w = w(x;a—1, b—l)/(J;_a’_b)(a:))Q.
Orthogonality relations for n, m € Z>( and
(a,b) € U (G = w15 +1=p1), (= p2,j +1—p2)) or

1<pi+pe<j
11, €ENU{0}, py+puo+i€2Z
p1 or pg €2Z+1

(a,b) or (b,a) € U(‘7 1)/2(2u,2u—|— 1), (4, oo)> if j is odd
(a,b) or (b,a) € u”Q {20,200+ 1) U (j,0), (7, 00) ) if j s even

with Hizl(a +b—j—p) #0:

1w(w;a—l,b—l) (ab)
n m d _h 5nm;
/. T g e 0

where

¢ (IL') = PjHajII(aj;A,B) ~ 1 n = 0
: Py ju(;A,B) n=1,2,...

Case III (Exceptional Jacobi polynomial, J2 family). d = (III, j): III encloses 1.
fm(z) = 1—2)% w = w(z;a—1, b+1)/(J;_a’b)(x))2. The positive weight w)
isgiveninj—1<a<j,—-2<b< —lorj<a,—1<b,with H‘Lzl(a—b—j—,u) #0.

Case IV (Exceptional Jacobi polynomial, J1 family). d = (IV,j): IV encloses —1.
fiviz) = (1+2)7% v = w(x;a+1,b— 1)/(J;a’_b) (z))2. The positive weight w(!)
isgivenin —2<a< —1,j—1<b<jor—1<a,j<b, with Hizl(b—a—j—,u) #0.

B(x) = —x 4+ a+1 and L,(f)(g;) =

g x,
P,(x;A,B). For a > -1, [ w(z;a) L( )( )L%)(aj)dx = h%a)én’m, where w(x;a) =

e~

229 and h{" = F(n+a+1)/nl.

Case I. d = (L j): &(z) = 1, wV) = w(z;a + 1)/(L§~a)(aj))2. One can find the
positive weight only at j = 0,1. When j = 0, P, o, is the original Laguerre
polynomial with shifted parameter: P, o, = L(GH) When j = 1, we obtain

< w(x;a+1) "
[ P P =

for m,n € Z>¢\{1} and -2 < a < —1.
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o CaseIl. d = (I,5): &u(z) = ez~ w) = w(z;a — 1)/(L§._a)(—aj))2. Orthogonal-
a€(0,1)U(2,3)U---U(j—1,j)if j is odd

ity for j,m,n € Z>¢ and ,
yiord 20 {ae(O,l)U(2,3)U---U(j,oo) if 7 is even

* w(x;a—1) (@)

where

¢ (IL') = PjHajII(aj;A,B) ~ 1 n = 0
: Py ju(;A,B) n=1,2,...

e Case IIT (Exceptional Laguerre polynomial, L2 family). d = (IIL, j): III encloses 0.
fin(z) = 27w = w(z;a — 1)/(L§._a) (x))%. Orthogonality for j,m,n € Z>( and

. [ w(r;a—1) “
a>7, /0 mpnl,jlll (x)PmI,jIII (x)dx = h§,35n,m~

e Case IV (Exceptional Laguerre polynomial, L1 family). d = (IV,j): IV encloses
00. &v(z) = e, wh) = w(z;a + 1)/(L§a)(—aj))2. Orthogonality for j,m,n € Zxq

* w(z;a+1) L (a)
and a > —]., /0 mpnl’jlv (:C)mew (x)dil’f = hj’nfsn’m.
Hermite polynomials case Let A(x) =1, B(x) = —2x and H,(x) = P,(x; A, B).
For n,m € Z>o [, w(z)Hy(z)Hp(x)dz = hprpm, where w(z) = e and h, =
2"nl\/T.
e Case L. d = (Lj): &(x) =1, w = w(x)/(H;(x))?. Only j =0 case exists: Py, n,
is the ordinary Hermite polynomial H,, ().

2

o Case II. d = (ILj): ¢u(x) = e, w) = w(x)/(H;(ix))?. Orthogonality for
m,n € Z>o and j = 2k € 27>y,

T _w@® g ()de
/_OO (sz(ix))2¢”( )b (2)d hok n0n.m.

where
¢ (IL') e PjHajII(aj; A,B) e 1 n = 0 |
n Pn—].I,QkH(x) n = 1,2,...
§5. Application to the superintegrable Hamiltonians

All known superintegrable Hamiltonians are closely related to the classical orthog-
onal polynomials. It is quite natural to expect that new superintegrable Hamiltonian
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can be constructed from the exceptional orthogonal polynomials. The superintegrable
system admits more integrals of motion than degrees of freedom. The energy values
can be calculated algebraically and the wave functions can be written in terms of the
classical orthogonal polynomials multiplied by the ground state.

In this section, we review the superintegrable Hamiltonian, which is constructed
from the exceptional Jacobi polynomials [14]. Let us consider the following Hamiltonian
given in polar coordinates:

1 1 k2 [ a?—1 N 82— 1 N 4(1+ beos(2ke))
sin®(kg)  cos?2(k¢)  (b+ cos(2ke))?

where b = (8 + «) /(8 — &), which can be considered as a generalization of the Tremblay-
Turbiner-Winternitz system, known as a superintegrable system,

1 1 B2 a b
gTTW _ 2 (2 2 2 2,2 N )
5 (pr + 7“2p9> Twirt A+ r2 (cosz(ké’) + sin2(k9)>

By using the separation of variables in polar coordinates ¥ = ®(¢)R(r), the Schrédinger

equation associated with this Hamiltonian, Hy;¥ — EV = 0, can be rewritten into the
radial part equation

1 1 k2 A2
(52) (—Z&,r& + —(_,L)T2 +

. T E) R(r) =0,

and the angular part equation

1, a? — B2 -1 4(1+Dbcos(2ke)) 2 B
(5.3) ( 505+ ) +— o) + (b7 oo (ko) A7 | (¢) = 0.

Here we note that the radial equation is exactly that of a two-dimensional oscillator and
the angular part is a deformation of a Darboux-Poschl-Teller potential[13]. Both parts
can be solved as follows.

Radial part Let R(r) = Yn(zA")(y),y = wr?. Then

2 B\ yan
(5.4) Yo, + (1 + kA, —y)9, + o Y 2 (y) =0,
whose solutions are given in terms of Laguerre polynomials

YA (y) = Gy L) (),

where G = yAn/2e=y/2,
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Angular part Let ®(¢) = X,,(x),z = cos(2k¢). Then we obtain
(5.5) (G.T*PG,T — A%) X, (2) =0,
where G, = (1 — 2)8+4(1 4+ 2)2+% /(z — b) and

4(8 — a)(1 —bx)
b—=x

Since the eigenfunctions of the operator (5.6) are given by the exceptional Jacobi poly-

(5.6) TP = 4(2? — 1)9% + (x+0)0 — 1)+ (a+ B+ 1)%

nomials, the solutions of (5.5) can be presented as X, (z) = Gy Py, 1,y (x;1—22,). Thus
corresponding eigenvalues are given by A2 = A2 = (2n — 1+ a + 3)? (n > 1). To show
the superintegrability of this example, we employed the method developed by Kalnins,
Kress and Miller, which make use of ladder operators for the wavefunctions to construct
additional integrals of motion. The key to the method is to utilize ladder operators,
which transform the wave functions but leave the energy fixed. Please refer to [14] for
the detail discussions.

This method of constructing Hamiltonians and their integrals of motion can be
extended in a straightforward manner to other families of exceptional polynomials.
Additionally, other families of Hamiltonians, say separable in Cartesian coordinates, can
be obtained in a similar way from the Sturm-Liouville equations for other exceptional
polynomials, e.g. extensions of the singular harmonic oscillator via exceptional Laguerre
polynomials[9, 10].
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