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Two sided global estimates of heat kernels
in Lipschitz domains

By

Kentaro HIRATA®

Abstract

This note presents sharp upper and lower bound estimates of the heat kernel in a bounded
Lipschitz domain. To this end, we introduce an auxiliary set which is different from Bogdan’s
set used in the study of the Green function for the Laplace operator. Also, we give global
estimates of kernel functions with pole at parabolic boundary points.

§1. Introduction

Let (x,t) denote a typical point in R” x R, where z € R and ¢t € R, and let (x, t)
stand for the fundamental solution of the heat equation given by

;exp _||a;||2 ift>0
(1.1) y(x,t) = ¢ (4mt)n/2 4t ’
0 if t <0.

Let © be a domain in R™. We denote by I' the Green function for 2 X R and the heat
operator. If (y,s) € Q x R is fixed, then it is represented as

[(z,t;y,5) =v(®—y,t —s) = hys(x,t) forall (z,t) € QA xR,

where h, ) is the greatest thermic minorant of y(- —y,- —s) on 2 x R (see [19]). In
the case s = 0, the Green function I'(-,-;y,0) is also referred to as the heat kernel for
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Q. It is well known that I'(x,t;y,0) < y(z — y,t) for all (z,t) € 2 x R, and moreover
that if x and y are apart from the boundary 02 and if they are close to each other, then
[(x,t;y,0) > (Ct) "2 exp(—C|lz — y||>/t) for some constant C' > 1 (see [4, Theorem
8] for instance). But the global behavior, particularly the boundary behavior, is not
well known because it is influenced by the shape of a domain. For the last few decades,
many researchers have studied two sided global estimates of heat kernels. The large
time behavior of the heat kernel on a bounded Lipschitz domain 2 was established by
Davies [8, Theorem 4.2.5]: for any £ > 0, there exists T' > 0 such that for all x,y € Q
and t > T,

(1—e)p(x)p(y)e P <T(z,t;9,0) < (1+e)p(x)p(y)e ¥,

where ¢ is the eigenfunction corresponding to the first eigenvalue E of the minus Lapla-
cian —A. The small time behavior is more delicate. For simplicity, we use the notations
a Ab=min{a,b}, a Vb= max{a,b} and

el ) = 2oy expd D
TR ct [

The symbol C' stands for an absolute positive constant whose value is unimportant and
may vary at each occurrence. Writing C(a,b,...) means that a constant C' depends
only on a,b,.... By d(x), we denote the Euclidean distance in R™ from a point x to the
boundary 0. Davies [7, Theorem 3] proved that if 2 is a bounded Lipschitz domain,
then there exists C'= C(n,Q2,T) > 1 such that for all z,y € Qand 0 <t < T,

0) < ¢(x)9(y)
tCY

where o > 1 is a constant satisfying ¢(z) > Cé(x)® for all z € Q and some C' > 0. If

0%} is smooth, then we can take o = 1. In this case, the following sharper estimate was

(1.2) I'(z,t;y, Yo (r —y,t),

obtained by Hui [12, Lemma 1.3] (upper estimate) and Zhang [21, Theorem 1.1] (lower
estimate):

(13) Dz, t:,0) < (&f; A 1) (i\/yg A 1>w<x ),
(1.4) T(z,ty,0) > (%‘? A 1) (%) A 1>7% (z -y, 1).

Also, Cho [6] obtained these estimates in a bounded C1* domain with 0 < a < 1.

The purpose of this note is to establish lower and upper bound estimates sharper
than (1.2) when €2 is a bounded Lipschitz domain. To this end, we introduce an auxiliary
set. Let k >1and T > 0. Forz € Q and 0 < t < T, we define

B, (z,t) = {be Q: %Hb—x“ <Vi< n&(b)}.
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Here the subscript “p” means “parabolic” in order to distinguish from the elliptic case.

This set is nonempty if x > k(2,7 (see Lemma 2.1). We fix some x = x(Q2,T) in
arguments below. Let g be a fixed point in € (which is away from 0Q) and let G(z,y)
denote the Green function for 2 and the Laplace operator. Instead of the eigenfunction
¢, we use the truncated Green function

The main result is as follows.

Theorem 1.1.  Let Q be a bounded Lipschitz domain in R™ (n > 2) and let
T > 0. Then there exists C = C(n,Q,T) > 1 such that for all z,y € Q and 0 <t < T,

. )9 (y
(1.5) I(z,t;y,0) < g(bx)g(by)%(az —y,1),
, 9(x)g(y)

where by € By(x,t) and by € By(y, t).

Estimates of this kind in the elliptic case were given by Aikawa [1, Section 3] and
Bogdan [5]. For each pair of points z,y € €2, we let

) Bulea) = {be @ L all v Iyl < o - ol < w30)

Here the subscript “e” means “elliptic”. This definition is slightly different from theirs,
but is essentially the same (see [11]). Then there exists C' = C'(n,Q) > 1 such that for
each z,y € Q and b € B.(x,y),

(18) ZG6(r.) < Glr.y) < CG(r,y),
where
9(x)9(y) opt 0@ NN
BN (1“ S P > fn=2
R PEY 9)9) )y j2n it n >3
g(b)? -

Here log® f = (log f) V 0. Note that the auxiliary sets are quite different between the
elliptic and parabolic cases, because Be(z,y) is determined by two points x,y € €2,
whereas By (z,t) by only one point (z,t) € Q x (0,7).

Remark 1. Recently, Gyrya and Saloff-Coste [16] obtained two sided estimates
of heat kernels in “unbounded” inner uniform domains. They used the quantity

\// h(z)? dz/ h(z)?dz
B(z,V/1)NQ B(y,V/t)NQ
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with a harmonic profile h instead of our t"/2g(b,)g(b,). Also, this quantity is comparable
to t"/2h (b, )h(b,), where By (x,t) is defined with respect to the internal metric. (see [16,
pp. 103-104]). Our proof is based merely on the so-called local comparison principle
for temperatures and the boundary Harnack principle for harmonic functions, and is
simpler than theirs.

As a consequence of Theorem 1.1, we obtain the following improvement of (1.2).

Corollary 1.2.  Let Q be a bounded Lipschitz domain in R™ (n > 2) and let
T > 0. Then there exist C = C(n,Q,T) > 1, a = a(n,Q) > 0 and 8 = S(n,Q) >0
with B <1 < « such that for all x,y € Q and 0 <t < T,

(1.9) D(,t:9,0) < (&f; A 1)5(%) A 1)%@ — ),

(1.10) D(x,ty,0) > (Kf; A 1)(%) A 1>“7

Moreover, if Q is a Liapunov-Dini domain, we can take o = 3 = 1.

(il'} - yat)'

al~

Remark 2. See Widman [20] for the definition of Liapunov-Dini domains. Note
that bounded C!** domains with 0 < a@ < 1 are Liapunov-Dini domains.

This note is organized as follows. Section 2 collects some elementary lemmas con-
cerning the set By,(x,t) and the function g. Proofs of Theorem 1.1 and Corollary 1.2 are
given in Sections 3 and 4, respectively. As a consequence of Theorem 1.1, we establish
upper and lower bound estimates of kernel functions with pole at parabolic boundary
points in Section 5.

§2. Preliminaries

A bounded domain €2 in R"™ is called a Lipschitz domain with localization radius
ro > 0 and Lipschitz constant L > 0 if for each £ € 02 there exist a local Cartesian
coordinate system (v1,...,7,) = (z/,2,) and a function ¥ : R*~! — R satisfying the
Lipschitz condition |¢(z") — ¥(y)| < L||2’ — || such that

QN B ro) = {2, 2) : x> (2} N B(E,70).

Then we see that for each £ € 0f2, there is a point z € R™ such that the truncated
circular cone {z : Zz€z < 0, ||x — || < ro} is contained in 2, where § = arctan(1/L).
Therefore, if 0 < r < ro/2, then the point, denoted by &, in the intersection of the axis
2€ and OB(&,7) N satisfies §(£,) > rsinf. Also, the notation C(Q) (which has already
used in the introduction) means C(L, ro, diam €2).
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In the rest of this note, we suppose that € is a bounded Lipschitz domain in
R™ (n > 2) with localization radius 79 > 0 and Lipschitz constant L > 0 and that
d(zg) > ro/2. Also, T > 0 is fixed. We start with some elementary lemmas.

Lemma 2.1.  Let 0 = arctan(1/L). If & > (ro/VT) V (2T /rosin®), then the
set By(z,t) is nonempty for any pair x € Q and 0 <t < T.

Proof. Letxz € Qand 0 < t < T. Put r = (rg/2)\/t/T. If §(x) > r, then
x € By(x,t) whenever > 2v/T /ry. Consider the case §(z) < r < ro/2. Let £ € 9Q be
a point such that || — x| = é(x). As mentioned above, we find &, € 0B(&,r) N Q such
that §(&,.) > rsind. Then

16 —zll < 16 =Sl + 11§ — | < 2r.
Therefore, if & > (ro/VT) V (2VT [rosinf), then &, € By(x,t). O

For two positive functions f; and fa, we write f; ~ f5 if there is a constant C > 1
such that f1/C < fo < Cf1. Then the constant C is called the constant of comparison.
The next lemma follows from the Harnack inequality for the Green function G (see [11,
Lemma 3.3]).

Lemma 2.2.  Let A > 0. If x,y € Q satisfy ||z —y|| < A(d(z) Ad(y)), then

where the constant of comparison depends only on A\, n and 2.
Lemma 2.3. Let A>0. Ifz € Q and 0 <t < T satisfy 6(z) > A1, then
g(b) = g(x) for allb € By(x,1t),
where the constant of comparison depends only on A\, n, Q and T.
Proof. Let b € By(x,t). The assumption and the definition of B,(x,t) imply that
Ib— 2| < #VE< m(ﬁ v %) (5(6) A 8()).
Hence the conclusion follows from Lemma 2.2. O
The following three lemmas will be used in Section 5.

Lemma 2.4.  There exists C = C(n,Q,T) > 0 such that if 0 <t < T, then

g(b) > C  for all b € By(xo,1t).
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Proof. Let b € By(xo,t). Then

2 diam €
\/ -

|w—mns(ﬁ
To

)(6(0) A a(ea))
and so g(b) ~ g(xp) = 1 by Lemma 2.2. O

Lemma 2.5.  There exists C = C(n,Q,T) > 0 such that ifx € Q and 0 <t < T,
then
g(b) > C  forallbe By(x, T +1—1).

Proof. This follows from 6(b) > 1"+ 1 —t/k > 1/k and the Harnack inequality.
O

Lemma 2.6. Letx € Q and0<t<T. Then
g(b1) = g(ba) for all by,by € By(x,1),
where the constant of comparison depends only on n, Q and T'.

Proof. Since ||by — ba|| < ||by — | + ||z — ba|| < 26Vt < 2k2(0(by) A 6(bg)), the
conclusion follows from Lemma 2.2. O

§3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. A solution of the heat equation on a
domain D C R™*! is called a temperature on D. The following lemma, is a consequence
of the parabolic Harnack inequality established by Moser [15].

Lemma 3.1.  Let A > 0. Then there exists C = C(A\,n,Q) > 0 such that if u is
a nonnegative temperature on £ x (0,00), then

(3.1) u(z,t/2) < Culy,t) exp{ M}

for any x,y € Q and t > 0 satisfying 6(z) A 5(y) > AVt

Proof. For t > 0, we write » = M\/t. Let =,y € Q satisfy 6(z) Ad(y) > r. If
|z —y|| < r/2, then (3.1) holds by the parabolic Harnack inequality. Consider the case
|z —yl| > r/2. Since  is Lipschitz, we find a Harnack chain {B(z;,7/C)}T" in Q such
that zo = x, 2, = y and 2z;_1 € B(z;,7/2C) (j = 1,--- ,m), where C = C(Q) > 2.
Moreover, the number m satisfies

< Cllz=3l
r
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for some C = C(Q). Let t; = (t/2) + (jt/2m). Then, by the parabolic Harnack
inequality, there is C' = C(A\,n,Q) > 0 such that

w(zj—1,tj—1) < CMu(z,t;) forj=1,--- ,m.
Therefore ,
Cllz —
u(@,1/2) < C™u(y,1) < Culy, 1) exp{M}'
Thus the lemma is proved. U

The following lemma is elementary and well known.
Lemma 3.2. Let A > 0. Then there exists C = C(\,n,Q) > 1 such that if
r € Q and t > 0 satisfy 5(x) > \/t, then

1

Proof. For the convenience sake of the reader, we give a proof. Let z €  and
t > 0 satisfy d(z) > M/t, and let ¢ be a continuous function on R™ such that 0 < ¢ < 1
and

1 on B(z, \W1t/3),

“Z0 on B\ Bl AvES2)

Consider the function u defined on 2 x R by
[ TGy tDody its> 12,
u(z,s) = ¢ Ja
1 if s < /2.

Observe that, on B(z,\vt/3) x R, it is continuous and satisfies the parabolic mean
value equality, and so u is a nonnegative temperature on there (see [18, Theorem 15]).
The parabolic Harnack inequality gives

1 =wu(z,t/2) < Cu(x,t).
Also, the adjoint version of the parabolic Harnack inequality gives
T(x,t;y,t/2) < CT(x,t;2,0) for all y € B(z, \W1t/2).
Hence

1 < Cu(x,t) < C’/ D(z,t;y,t/2)dy < C’t"/QI‘(x,t;a:,O),
B(z, Vt/2)

and so (3.2) follows. O
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Lemma 3.3. Let A\ > 0. Then there exists C = C(\,n,Q) > 1 such that if
z,y € Q and t > 0 satisfy 6(x) Ad(y) > AWt then

1
c

Proof. 'The upper bound estimate always holds. The lower bound estimate follows
from Lemmas 3.1 and 3.2:

%F(y, t/2;y,0) exp {—

oL Clz—ul?
— Ctn/2 t '

I'(z,t;y,0) > -

Cllx—yllz}

In what follows, we let

(3.3) Az%(l/\%).

By Lemmas 2.3 and 3.3, we see that (1.5) and (1.6) hold whenever z,y € € and
0 < t < T satisfy §(z) A d(y) > A/t. To complete the proof of Theorem 1.1, we
consider the case d(x) A 6(y) < AVt in the rest of this section. We use the following
local comparison estimate (see Fabes et al. [9, Theorem 1.6]). For £ € 09, s € R and
r >0, let

U, s) = {(z.t) € xR flw =&l < |t — s <r?},
Ap(€,8) ={(z,t) €A X R : ||z —£&|| < |t — s] <r?}).
Lemma 3.4 (Local comparison estimate). Let{ € 00, s >0 and 0 < r < 1/2.

Suppose that uy and us are positive temperatures on Va,.(,s) vanishing continuously
on Agr(§,s). Then there exists C = C(n, ) > 1 such that

up(zx,t) < uy (&, s + 2r?)
ug(x,t) = ua(&r, s — 212)

where &, is the point stated in the first paragraph of Section 2.

fOT’ all (J?, t) € \IIT/S(é.a 8)7

Also, we recall the boundary Harnack principle for harmonic functions (see [2]).

Lemma 3.5 (Boundary Harnack principle).  Let & € 9Q and 0 < r < 19/2.
Suppose that hy and he are positive harmonic functions on QN B(&,2r) vanishing con-
tinuously on 02N B(&,2r). Then there exists C = C(n, Q) > 1 such that

hi(x) hi(y)
ha(z) = CW

forall z,y € QN B(&, ).
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Lemma 3.6.  There exists a constant C = C(n,Q,T) > 1 such that if x,y € Q
and 0 < t < T satisfy 5(x) Ad(y) < AWt then the upper bound estimate (1.5) holds.

Proof. Since I'(z,t;y,0) = I'(y,t;2,0), we may assume that 6(x) < §(y). Let
r = 8\t. Then r < r9/6 and t — 47?2 > 0. Let £ € 0 be a point such that
|€ — x| = d(z) < r/8. Since the function v(z,t) = v(z) = G(x,&s,) is a positive
temperature on Ws,.(£,t) vanishing continuously on As,.(&,t), it follows from Lemmas
3.4 and 3.5 that

['(z,t;y,0) . v(z, t) _C G(z, &) ~ g(x)
F(£T7t + 2T2; Y, O) - v(£T7t - 2T2) G(£T7 £3T) g(é'l‘) '

Let b, € By(x,t). Then

(3.4)

& = boll < & — all + 1z — b,l| < Cr < C(5(&,) A 6(b.)).
and so Lemma 2.2 gives

(3.5) 9(&) = g(bz).

By (3.4) and (3.5), we have

L(&,t+2r%y,0).

(3.6) I'(z,t;y,0) < Cg

We consider two cases: §(y) > r/16 and 6(y) < r/16.
Case 1: 6(y) > r/16. Let b, € By(y,t). Then, by Lemma 2.3,

g(by) ~ g(y).

Since ] 1
& —yl* > §||93 —yl? =& —=|* > §||36 —y|I* = Ct,
we have
1 ||£r - y||2
D&, t+2r%y,0) < — o o
(&t 2%, 0) < oy eXp{ At +2r?)

C |z —yl?
< WeXp{_—C’t )

These, together with (3.6), yields (1.5).

Case 2: §(y) < r/16. Let n € 02 be a point such that ||n — y|| = d(y) and let
by € By(y,t). Applying the adjoint version of the local comparison estimate to I'(§,,t +
2r2; . +) and G(n3,, ), we have by the same reasoning as for (3.6) that

(&t +2r%y,0) <C Glnsry) . _9y) _ 9()
F(&Tat + 2T2; Mr/2s _T2/2) N G(n?ﬂ‘a 771"/2) 9(%/2) g(by)

~

(3.7)
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Since
1 1
I~ mojal® 2 Ll — yl ~ & — 2+~ nogall® 2 e~ ol* — O,
we have
¢ |z —y|?
2. 2
(38) F(£T7t+2r vnr/Qa_T /2) S Wexp{_T .
Hence (1.5) follows from (3.6), (3.7) and (3.8). Thus Lemma 3.6 is proved. O

Lemma 3.7.  There exists C = C(n,Q,T) > 1 such that if x,y € Q and 0 <t <
T satisfy 6(x) A S(y) < AWt then the lower bound estimate (1.6) holds.

Proof. The proof is almost the same as that of Lemma 3.6, and we will use the
same notations. Replacing the position of v = G(-,&3,) and T'(-,-;y,0) in (3.4), we have

L 1G@&)  gl)

C G(€r7€31") ~ g(ba}),
where b, € By(x,t). If §(y) > r/16, then g(b,) = g(y) for b, € B,(y,t). Since [|&—yl]* <
2|z — y||* + Ct, we obtain (1.6) from (3.9) and Lemma 3.3.

If 6(y) < r/16, then we can apply the adjoint version of the local comparison
estimate to I'(§,,t —2r?;-,-) and G(n3, -) because t —2r? > r2. Let b, € B,(y,t). Then

L&t =2r%y,0) 1 Glmry)  90y)
F(érat_QTQ;nr/27r2/2) N CG(n?ﬂ’)nr/Q) g(by)

Since F(grat_QTQ;nr/Qarz/z) = P(frat—57“2/2§77r/27 0) and ||£1‘_771"/2||2 S 2||x—y||2—|—C't,
we obtain (1.6) from (3.9), (3.10) and Lemma 3.3. O

I'(z,t;y,0)

(3.9) P(Sra t—2r2y, 0)

(3.10)

Proof of Theorem 1.1. Let X be as in (3.3). As mentioned above, Lemmas 2.3 and
3.3 show that (1.5) and (1.6) hold when §(x) A 6(y) > AV/t. Another case was discussed
in Lemmas 3.6 and 3.7. Thus the proof is complete. O

Since T'(x, t;y,s) = I'(x,t — s;y,0), we obtain the following corollary.

Corollary 3.8.  There ezists C = C(n,Q,T) > 1 such that the following lower
and upper bound estimates hold for all x,y € Q and 0 < s <t <T:

, 9(x)g(y)
[(z,t;y,s) < m’yc(x —y,t—s),
. 9(x)g(y)
P02 = gl #7000 2
where by € By(x,t —s) and by € By(y,t — s).
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§4. Proof of Corollary 1.2

As stated in Section 2, we observe that for each £ € 9€) there are circular cones V;
and Vo with vertex £ and aperture 8 and 7 — 6, respectively, such that

i ﬂB(f,To) C QﬂB(f,?‘o) C V.

The both of V; and V5 have the same axis. It is well known that there exists a unique
positive harmonic function h; on V; with pole at co which vanishes continuously on 0V}
and h;(&§1) = 1, where &, is the point in the intersection of the axis of V4 and 0B(&, r)NSD.
This function has the form

T r—¢
(4.1) hi(x) = [lo — &[[™ fi(€ +

[z =€l

) forall x € V,

where f; is a positive function on 0B(&, 1) NV, satisfying fi(z) ~ dist(z,9V;) and 7; > 0
is a constant depending only on # and n. Note that 75 < 1 < 7. It is well known that
1

55(33)” <g(x) <Cé(x)™ forall x € Q,

and so 5(z)m 5(2)2
1@ _ gle) _ o)

Co(y)™ ~ gly) = oy

Properties of 7; and the above estimate of g can be found in [14]. We need the follow-

for all z,y € Q.

ing sharper estimate, which is also known as a consequence of the boundary Harnack
principle.

Lemma 4.1. Let £ € 092 and 0 < r < ro/6. Then there exist C = C(n,§) > 1,
a=a(n,N) >0 andp=pF(n,0) >0 with o < <1<a<m such that

o 8
%(;) < ggg% < C’(;) forall0 <t <r.

Proof. For the convenience sake of the reader, we give a proof. We use a reduced

function of a nonnegative superharmonic function u on D relative to a set £ C D
defined by
PRE(z) = inf{v(z)},

where the infimum is taken over all nonnegative superharmonic functions v on D such
that v > u on E. Note that PRE <wu on D. See [3, Section 5.3] for details.

Let £ € 0Q and 0 < r < 1¢/6. Now, we adopt D = ViNB({, 1), E = B(&3,,7sin0)
and u = g/g(&.). Then PRE is a positive harmonic function on D \ E vanishing con-
tinuously on 9D such that PRE(¢.) ~ 1. The boundary Harnack principle implies
that

hi(€) o PRE(&)

hi(&r) DRE (¢, < CPRE(&) < Cul&) forall0<t<r.
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Using (4.1), we can estimate the left hand side from below by a constant multiple of
(t/r)™. Thus the lower bound estimate follows.

To prove the upper bound estimate, we substitute D = Q N B(,79) and u =
ha/ho(&,) in the above. Then the boundary Harnack principle gives

9(&) _ PRy (&)
9(&) —  PRE(&)

Thus the lemma is proved. O

Remark 3. If Q is a Liapunov-Dini domain, then we can take a« = § = 1 in
Lemma 4.1. Indeed, we know from [17] that the Poisson kernel satisfies
P(x,§) ~ % for all x € 2 and £ € 092.
xr — n
Let z € Q and let £ € 092 be a point such that || — x| = d(x). Since g(x)P(z,§)
§(x)?>~™ (see [10, Theorems 1.3 and 1.6]), we have

Q

g(x) = o(x) for all x € Q.

Hence we can take o = 8 = 1. Also, when €2 is a bounded Lipschitz domain, there may
exist noncircular cones W; and Wy with vertex &, whose shapes are independent of &,
such that

VinB(&,mo) CWiNB(§m) CQNB(E o) CWanB(§,10) C Va.
Therefore we may take a < 7 and 8 > 5.

Lemma 4.2.  Leta and (3 be as in Lemma 4.1. Then there ezists C = C(n,Q,T) >
1 such that if x € Q and 0 < t < T satisfy §(x) < V/t, then

1 5<x>)“ 9(z) (6@))5
4.2 — < <Ccl—=),
2 (7)==
where b € By(x,t). Moreover, there exists C = C(n,Q) > 1 such that
(4.3) %5(3{;)0‘ < g(x) < C8(z)? for all x € Q.

Proof. Let r = v/t and b € By(z,t). Then §(b) > r/k. Take £ € 0Q with
1€ = af| = d(x) <.
If r < 7¢/6, then we have by Lemma 4.1

i(&@>a§gu)§0(ﬁﬂ>é

C r r
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Since

1€ = bl < 1[& = &l + 1€ — 2] + Iz = bl < Cr < C(3(&) A6(D)),

it follows from Lemma 2.2 that g(&,) ~ ¢g(b). Thus (4.2) holds in this case.
If 6(xz) < ro/6 <r, then Lemma 4.1 gives

1 g(z)
—6(x)* < < Cs(x)P.
C ( ) o g(gro/G) - ( )
Since §(b) > r¢/6k, we have g(&,,/6) = 1 ~ g(b), and so (4.2) follows.
If 6(x) > 10/6, then g(z) ~ 1 ~ g(b). Therefore we can obtain (4.2) easily.
Also, the similar consideration to the last two cases yields (4.3). Thus the lemma
is proved. O

Proof of Corollary 1.2. Let z,y € Q and 0 < t < T. Consider four cases: d(x) V
S(y) < VE §(x) < Vit < 8(y); d(y) < Vit < 8(x); 6(x) Ad(y) > V. Then (1.9) and
(1.10) follows from Theorem 1.1 and Lemmas 2.3 and 4.2. O

8§5. Global estimates for kernel functions with pole at boundary points

This section presents global estimates of kernel functions with pole at parabolic
boundary points. We write Qp = Q x (0,7) and 0,Qr = (0Q x [0,T)) U (2 x {0})
the parabolic boundary of Q7. Let (y,s) € 0p€2oc. We say that a nonnegative function
K(-,-;y,s) on Q is a kernel function at (y,s) normalized at (zg,7p) if the following
conditions are fulfilled:

(i) K(-,-;y,s) is temperature on Qo;
(ii) for each (z,q) € 0pQo \ {(v, )},

I K(x,t;y,s) = 0;
Qma(xl,glﬁ(z,q) (@89, 5)

(iii) K(zo,To;y,s) = 1.

In arguments below, we let Top = T + 1. As shown in [9, 13], there exists a unique
kernel function at each point of 9,0 if €2 is a bounded Lipschitz domain. Also, in these
papers, the kernel function was obtained by considering quotients of caloric measures.
The following lemma shows that the kernel function can be obtained as a limit function
of quotients of the Green functions.

Lemma 5.1. Lety € 022 and 0 < s <T. Then there exists a sequence {y;} in
Q converging to y such that

‘ [(x,t;y;, )
5.1 K(z,t;y,s) = lim e
(5.1) (@, ty,8) = M 0 s)
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Proof. Let y € 0Q and 0 < s < T'. In view of [19, Theorem 6], we find a sequence
{y;} in © converging to y such that the ratio I'(z, t; y;, s)/T'(zo, To; yj, §) converges to a
nonnegative temperature h(x,t) in Qo with h(zg, To) = 1. If t < s, then h(z,t) = 0 for
all z € Q. We show that h vanishes continuously at (z,q) € 9,20 \{(v, s)}, where ¢ > s.
Let r > 0 be sufficiently small such that (z,q) & U10,(y, s) and let (z,t) € VU,(z,q). The
adjoint version of the local comparison estimate implies that for sufficiently large 7,

I'(x,t;y;,5) <C T(z,t;yp, 8 — 212)
I(zo, To;yj.s) —  T'(zo,To;yr,s +21%)

Letting 7 — oo, we have

T(z,t;yp, s — 2r?)
h(xz,t) <C :
(z,1) < T(xo, To; Yry S + 212)

If (z,t) — (z,q), then I'(z, t; 4, s—2r2) — 0, and so h(x,t) — 0. Therefore h is a kernel
function at (y, s) normalized at (xg,Tp). The uniqueness implies that h = K (-, -y, s).
Thus the lemma is proved. O

As a consequence of Corollary 3.8, we obtain the following estimates.

Theorem 5.2.  There exists C = C(n,Q,T) > 1 such that for all (y,s) € 0,87
and (z,t) € Qp with t > s,

. g9(z)

(52) K(ajatvyas) S g(bx)g(by)fyC(x _yat_ 8)7
. 9(z)

(53) K(ajatvyas) > g(bx)g(by)fy%(x_yat_s)a

where by € By(x,t —s) and by € By(y,t — s).

Proof. We show (5.2) only, because the proof of (5.3) is similar. We first consider
the case y € 00 and 0 < s < T'. Let (x,t) € Qp with t > s and let {y;} be a sequence
in ) converging to y such that (5.1) holds. Observe from Corollary 3.8 that the ratio
I(x,t;y5,5)/T (20, To; Y5, s) is bounded above by

g(@) g(bo) 909) (To —s\"* [ Jle =yl
o) glz0) 9(b5) ( t—s ) p{

L Cllzo =y
C(t—s) To— s

g(x) 1 { llx—yjIIQ}
<C eXPy — = (
9(b2)g(bj) (t — )/ Clt—s)
where b, € By(x,t —s), by € Bp(xo,TH — $), b? € By(y;,To — s) and b; € By(y;,t — s).
Here the last inequality follows by Lemmas 2.4, 2.5 and ||z¢ —y;|| < diam Q. Since there

is a subsequence of {b;} converging to some b, € B,(y,t —s), we obtain from (5.1) that

- g(x) L O et
K(a:,t,y, ) < Cg(bx)g(by) (t _ S)n/2 p{ C(t - 3) } '
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Note from Lemma 2.6 that this inequality is valid for any b, € B,(y,t —s). Hence (5.2)
holds when y € 0 and 0 < s < T. If y € Q and s = 0, then

I'(x,t;y,0)

Kz, ty,0) = ————————
(z,£:4,0) I'(zo,To;y,0)’

and so (5.2) follows from Theorem 1.1. O

Corollary 5.3.  There exists C = C(n,Q,T) > 1 such that for all (y,s) € 0,Qr
and (z,t) € Qp with t > s,

. 5(x) g 1 L
. o(x) “ 1 .
laﬁty”’z(vfrzAl><&mxuﬂt?w”%@‘yj‘s”

where o and B are the constants given in Lemma 4.1. Moreover, if Q) is a Liapunov-Dini
domain, we can take o = p = 1.

Proof. Let (y,s) € 0pQr and let (x,t) € Qp with ¢ > s. Let b, € By(x,t —s). By
Lemma 2.3 and (4.2), we have

(5.4) é(;%/\l)ag 9(x) gc( Ofx) /\l)ﬁ.

Let by € By(y,t —s). If y € 0Q, then

5(by) < ||by —yl| <KVt -5 < “zé(by)a

and so (4.3) gives

1

—(+ — )2 <«
(t—8)"" < 5

d(by)* < g(by) < 05(by)ﬁ <C(t- S)B/z-
Consider the case y € Q. Then s = 0. If §(y) < v/, then

1

—VE<3(by) <3(y) + lly = byll < (14 R)VE,

and so .
6150‘/2 < g(b,) < CtP/2.

If §(y) > V/t, then g(b,) ~ g(y) by Lemma 2.3, and so

Z00)° < g(by) < CO)°.
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Therefore, combining all cases gives

1
(5.5) SOV VE=5)* <g(by) < C6y) Vv VE=5)".
Hence the corollary follows from Theorem 5.2, (5.4) and (5.5). O
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