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Gradient estimate for Markov kernels, Wasserstein

control and Hopf‐Lax formula

By

Kazumasa Kuwada *

Abstract

We extend the duality between gradient estimates of the Markov kernel and Wasserstein

controls of that studied by the author (2010). Especially, the gauge norm‐Orlicz norm type

duality holds on Polish geodesic space without any assumption on the Markov kernel. For the

proof of the duality, we proceed analysis of Hopf‐Lax semigroups. Some sorts of stability of

these estimates are also studied. As an application of a stability result, we show a gradient
estimate for a semigroup of Markov kernels yields the corresponding estimate for subordinated

semigroups.

§1. Introduction

As an effective way of measuring the rate of convergence to equilibrium of (pos‐
sibly nonlinear) diffusions, Wasserstein distances have been used in the literature (see
e.g. [10, 27, 28] and references therein). Among them, an exponential control in time

of Wasserstein distances between heat distributions ((6.4) below) has been investigated

extensively since it is deeply interacted with other research fields such as differential

geometry, partial differential equations, functional inequalities and probability theory.
As a part of such connections, a control of the L^{2} ‐Wasserstein distance links the pres‐

ence of a lower Ricci curvature bound in the sense of Sturm and Lott‐Villani [21, 25]
with \mathrm{B}\mathrm{a}\mathrm{k}\mathrm{r}\mathrm{y}-\acute{\mathrm{E}} mery�s gradient estimate [5, 11, 16]. Moreover, those two conditions are

equivalent to the Wasserstein control [2, 5, 29]. Such an equivalence as well as Bakry‐

Émery�s gradient estimate was known mostly on essentially smooth spaces and hence

the Wasserstein distance played a prominent role to extend the theory to more singular
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spaces than Riemannian manifolds. As those results explain, a control of the Wasser‐

stein distance now possesses other significant meanings even apart from the convergence

rate. As one of such researches, the article [17] formulates and establishes a duality be‐

tween a control of the Wasserstein distance for Markov kernels and a gradient estimate

of the \mathrm{B}\mathrm{a}\mathrm{k}\mathrm{r}\mathrm{y}-\acute{\mathrm{E}}mery type in a fairly general framework. As pointed out there, those

duality holds not only for heat semigroups and it does not rely on any curvature bounds.

Thus it might provide us new tools to proceed geometric analysis even in the absence

of uniform lower curvature bounds.

The main purpose of this article is to extend the duality result in [17]. The primal

emphasis is put on removing technical assumptions. As a consequence, the same result

always holds on geodesic metric spaces without any further assumptions on the Markov

kernel or on the underlying space. Among others, we do not require the local Poincaré

inequality, the volume doubling condition and moreover any reference measure on the

underlying space. These conditions are rather weak in the sense that those spaces which

satisfy them are sufficiently ample even in the class of singular spaces. However, even

on a smooth space as Riemannian manifolds without boundary, those conditions are not

always satisfied. We also extend the result in other three respects. First, we weaken the

assumption on the distance function. Our new condition fits well with analysis on (\mathrm{a}
class of) infinite dimensional spaces. Second, we replace L^{p}-L^{q} type duality with more

general gauge norm‐Orlicz norm type duality (See [23] for these norms. See [26] for the

Orlicz‐Wasserstein distance). It enables us to deal with more subtle situations where L^{p_{-}}

spaces are not sufficient. Third, we separate the parameter space of the Markov kernel

from the underlying space. Though it is a rather minor extension from a technical point
of view, it broadens the range of the theory, as we will see in examples. While the

proof goes along the same line as in [17], we must modify some arguments because of

the generality of our framework. For instance, according to these extensions, we also

extend the theory of Hopf‐Lax or Hamilton‐Jacobi semigroups from that in [3, 4, 12]. to

the one which fits with our framework. In [3, 4], they only consider the L^{p}‐case, and

in [12], their (topological) condition on the underlying space is more restrictive. Such

an extension would be of independent interest since the Hopf‐Lax semigroup has several

applications in analysis on metric spaces (see e.g. [3, 4, 6, 8, 9, 12 Note that the local

Poincaré inequality and the volume doubling condition are used in [17] to employ the

existing theory of Hopf‐Lax semigroups in [9, 20]. However, we does not require them

already in [3, 4, 12].
As another achievement of this article, we provide some remarks on stability results.

Compared with the gradient estimate, the Wasserstein control is more stable under

several operations such as convergence of Markov kernels, tensorization and averaging.

Thus, based on our duality, we can obtain the same stability for the corresponding gradi‐
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ent estimates. Though each stability result seems rather elementary from the viewpoint
of analysis of Wasserstein distances, it seems non‐trivial for the gradient estimate if we

cannot employ our duality. For instance, we can use a gradient estimate for a semigroup
of Markov kernels to obtain a gradient estimate for subordinated semigroups.

We now mention some of related results which are not discussed yet. Ollivier [22]
initiated geometric analysis based on a control of the (L^{1}-) Wasserstein distance for

Markov kernels by regarding it as a definition of generalized lower Ricci curvature bound.

We also refer to [14, 15] and references therein for further developments and related

results. Our gradient estimate is originally studied by Bakry and Émery for diffusion

semigroups, and it has been a source of several important functional inequalities such as

Poincaré, \log‐Sobolev and isoperimetric inequalities (see e.g. [7, 8]). Note that a similar

but different approach as ours to our duality result is provided in [8].
Now we demonstrate the organization of the paper. In the next section, we will

state our framework, notations and the main result (Theorem 2.2). In section 3, we

study the Hopf‐Lax semigroup along with the same line as in [3, 12]. Here we prove that

the Hopf‐Lax semigroup solves the Hamilton‐Jacobi equation in an appropriate sense

even in our general framework (Theorem 3.7 and Theorem 3.8). Note that, in the proof
of Theorem 2.2, we only use a partial result (a part of the assertion of Theorem 3.6).
Theorem 2.2 will be proved in section 4. In section 5, we will exhibit stability results.

In section 6, we provide three examples. Two of them explain that the separation of the

parameter space of the Markov kernel from the underlying space is meaningful. The last

example is an application of our stability result to a gradient estimate for subordinated

semigroups.

§2. Framework and the main result

Let  X be a Polish topological space. Let d : X\times X\rightarrow[0, \infty] be an extended

distance in the sense of [3]. That is, d satisfies all properties of distance function

except for finiteness, it is lower semi‐continuous and the convergence with respect to

d implies the convergence in X . Let  $\Phi$ : [0, \infty ) \rightarrow[0, \infty ) be a  C^{1} ‐convex increasing
function satisfying  $\Phi$(0)=0,  $\Phi$(x)>0 for x>0 and \displaystyle \lim_{u\rightarrow\infty} $\Phi$(u)/u=\infty . We denote

the Legendre conjugate of  $\Phi$ by  $\Phi$^{*} . That is, $\Phi$^{*}(v) :=\displaystyle \sup_{u\geq 0}[uv- $\Phi$(u)] for v\geq 0.

Note that $\Phi$^{*}(v)<\infty for any  v\in[0, \infty ). We set $\Phi$_{p}(u) :=p^{-1}u^{p} for  p\in[1, \infty ) and

$\Phi$_{\infty}(u) :=\displaystyle \lim_{p\rightarrow\infty}$\Phi$_{p}(u) . Note that $\Phi$_{p}^{*}=$\Phi$_{p_{*}} holds for p\in[1, \infty] ,
where p_{*} is the Hölder

conjugate of p ,
i.e. p^{-1}+p_{*}^{-1}=1 . We can easily verify that $\Phi$_{p} satisfies the assumption

on  $\Phi$ if and only if  p\in(1, \infty) . In what follows, p always stands for a real number in

[ 1, \infty] and p_{*} is the Hölder conjugate of p otherwise stated explicitly.
We denote the space of probability measures on X by \mathscr{P}(X) . For  $\mu$, v\in \mathscr{P}(X) ,

we denote the set of couplings of  $\mu$ and  v by  $\Pi$( $\mu$, v) . For  $\mu$, v\in \mathscr{P}(X) ,
let us define
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L^{ $\Phi$} ‐Wasserstein distance W_{ $\Phi$}(, v) as follows:

(2.1) W_{ $\Phi$} (, v ) :=\displaystyle \inf_{ $\pi$\in $\Pi$( $\mu,\ \nu$)}\Vert d\Vert_{L^{ $\Phi$}( $\pi$)}.
Here \Vert \Vert_{L^{ $\Phi$}( $\pi$)} means the gauge norm. That is,

\displaystyle \Vert d\Vert_{L^{ $\Phi$}( $\pi$)}=\inf\{ $\lambda$>0 \int_{X\times X} $\Phi$(\frac{d}{ $\lambda$})d $\pi$\leq 1\}
For simplicity of notations, we denote p^{1/p}W_{$\Phi$_{p}} and W_{$\Phi$_{\infty}} by W_{p} and W_{\infty} respectively.
Note that W_{p} coincides with the usual L^{p}‐Wasserstein (extended) distance. More pre‐

cisely, W_{p}(, v)=\displaystyle \inf_{ $\pi$\in $\Pi$($\mu$_{l} $\nu$)}\Vert d\Vert_{L( $\pi$)}p holds. For a measurable function f : X\rightarrow \mathbb{R}
,

let

us denote the local Lipschitz constant of f with respect to d by |\nabla f|\in \mathscr{B}(X) . That is,

(2.2)

|\displaystyle \nabla f|(x) :=\lim_{r\rightarrow 0} \sup_{y\in X,d(x,y)\in(0,r)} [\displaystyle \frac{|f(y)-f(x)|}{d(y,x)}]
Note that |\nabla f| is universally measurable (see [3, Lemma 2.4]). Let \tilde{X} be another Polish

space and \tilde{d} : \tilde{X}\times\tilde{X}\rightarrow[0, \infty] an extended distance on \tilde{X} . We also use the notations

\tilde{W}_{ $\Phi$}(\tilde{ $\mu$},\tilde{v}) for \tilde{ $\mu$}, \tilde{v}\in P(X) or |\tilde{\nabla}\tilde{f}| for \tilde{f}:\tilde{X}\rightarrow \mathbb{R} defined similarly as in (2.1) and (2.2).
We assume the following in some occasions. We state it explicitly when we do so.

Assumption 2.1.

(i) The extended distance d is a geodesic extended distance. It means that, for every

x, y\in X with  d(x, y)<\infty ,
there is a curve  $\gamma$ : [0, 1]\rightarrow X with  $\gamma$(0)=x and

 $\gamma$(1)=y such that d( $\gamma$(s),  $\gamma$(t))=|t-s|d(x, y)

(ii) The extended distance \tilde{d} is a geodesic extended distance.

Remark 1. In Assumption 2.1, we can weaken �geodesic extended distance� to

length extended distance in all our results except Remark 4 (See [3] for length extended

distance). We assumed the stronger �geodesic� assumption just for simplicity of pre‐

sentation.

We call the curve  $\gamma$ appeared in the definition of Assumption 2.1 (i) a  d‐minimal

geodesic. We also use the term \tilde{d}‐minimal geodesic� under Assumption 2.1 (ii).
For each \tilde{x}\in\tilde{X} ,

let P_{\overline{x}}\in \mathscr{P}(X) . We suppose that P is a Markov kernel, that is,
for each A\in \mathscr{B}(X) , \tilde{x}\mapsto P(A) is measurable. For a measurable function f : X\rightarrow \mathbb{R}

and \tilde{ $\mu$}\in \mathscr{P}(\tilde{X}) ,
we denote the action of P to f and the dual action to \tilde{m}u by Pf and

P^{*}\tilde{ $\mu$} respectively. We denote the space of bounded measurable functions on X which

are Lipschitz with respect to d by Lip(X). Note that Lip(X) \subset C(X) may not hold

if d is not continuous.

We are interested in the relation between the following two properties:
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(i) For every \tilde{x}, \tilde{y}\in\tilde{X},

(W( $\Phi$)) W_{ $\Phi$}(P_{\overline{x}}, P_{\overline{y}})\leq\tilde{d}(\tilde{x},\tilde{y}) .

(ii) For every \tilde{x}\in\tilde{X} and f\in \mathrm{L}\mathrm{i}\mathrm{p}_{b}(X) ,

(G($\Phi$^{*})) |\tilde{\nabla}Pf|(\tilde{x})\leq\Vert|\nabla f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\overline{x}})},
where \Vert \Vert_{\overline{L}^{$\Phi$^{*}}( $\mu$)} is the Orlicz norm associated with $\Phi$^{*} for  $\mu$\in \mathscr{P}(X) . That is,

\displaystyle \Vert f\Vert_{\overline{L}^{$\Phi$^{*}}( $\mu$)}=\sup\{\int_{X}fgd $\mu$  g : X\rightarrow \mathbb{R} measurable, \displaystyle \int_{X} $\Phi$(g)d $\mu$\leq 1\}
We sometimes consider a similar condition where W_{ $\Phi$} is replaced with W_{p} . We denote

it by (W) instead of (W( $\Phi$)) . Similarly, when p>1 ,
we denote the condition where

\Vert|\nabla f|\Vert_{\overline{L}^{$\Phi$^{*}}(P_{\overline{x}})} in (G($\Phi$^{*})) is replaced with P(|\nabla f|^{p_{*}})^{1/p_{*}} by (Gp). When p=1 ,
the

condition (G) is given in the following:

(G_{\infty}) \displaystyle \sup_{\tilde{x}\neq\tilde{y}}[\frac{Pf(\tilde{x})-Pf(\tilde{y})}{\tilde{d}(\tilde{x},\tilde{y})}]\leq\sup_{x\neq y}[\frac{f(x)-f(y)}{d(x,y)}]
Now we are ready to state our main theorem.

Theorem 2.2.

(i) (W( $\Phi$)) implies (G($\Phi$^{*})) .

(ii) Suppose Assumption 2.1. Then (G($\Phi$^{*})) implies (W( $\Phi$)) .

Note that we can slightly extend the result in Theorem 2.2 in different ways. For

simplicity of presentation, we will state them separately in remarks below. See Re‐

mark 2, Remark 3 and Remark 4. A typical and well‐studied situation in Theorem 2.2

is the case \tilde{X}=X and \tilde{d}=Cd with a constant C>0(\mathrm{c}\mathrm{f}.(6.4)) . We can easily see that

Theorem 2.2 also asserts the duality between (W) and (G_{p_{*}}) for p\in(1, \infty) .

Remark 2. As for the duality between (W) and (G_{p_{*}}) ,
the cases p=1, \infty does

not seem to be dealt in Theorem 2.2. However, we can easily deduce them. When  p=1,
the same proof as in [17] works. Note that, unlike Theorem 2.2 (ii), we do not require

Assumption 2.1 (i) in this case. When  p=\infty ,
it is reduced to the case  p\in(1, \infty) as we

did in [17]. The key ingredient there is [17, Lemma 3.3] and the corresponding result

(Lemma 4.1 (iii) below) also holds in our framework.
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§3. Hopf‐Lax semigroups

In this section, we fix f : X\rightarrow \mathbb{R}\cup\{\infty\} . Let us consider the Hopf‐Lax semigroup

Qf associated with  $\Phi$ . For  x, y\in X and t>0 ,
we define F(t, x, y) and  Q_{t}f(x)\in

\mathbb{R}\cup\{\pm\infty\} by

(3.1) F(t, x, y):=f(y)+t $\Phi$(\displaystyle \frac{d(x,y)}{t}) , Q_{t}f(x):=\inf_{y\in X}F(t, x, y) .

Conventionally, we use the notation Qf :=f . Note that Qf(x) is non‐increasing in t

since  $\Phi$ is convex and  $\Phi$(0)=0 . Set \mathcal{D}(f) := {  x\in X|F(1, x, y)<\infty for some  y\in X }
and t_{*}(x) :=\displaystyle \sup\{t>0| Qf(x)>-\infty\} . Then x\in \mathcal{D}(f) and 0<t<t(x) imply

Qf(x) \in \mathbb{R} . For x\in \mathcal{D}(f) and 0<t<t_{*}(x) ,
let us define D^{+}(x, t) and D^{-}(x, t) by

D^{+}(x, t) :=\displaystyle \sup\lim\sup d(x, y_{n}) , D^{-}(x, t) := \mathrm{i}\mathrm{n}\mathrm{f}\lim\inf d(x, y_{n}) .

(y_{n})_{n}n\rightarrow\infty (y_{n})_{n}n\rightarrow\infty

where (y_{n})_{n} in the above supremum or infimum runs over all minimizing sequences of

F(t, x, \cdot) . Note that these supremum or infimum is attained. Indeed, it follows from a

diagonal argument. We begin with basic properties of t_{*} and D^{\pm}.

Lemma 3.1.

(i) t_{*}(x)=t(y) holds for x, y\in X with d(x, y)<\infty.

(ii) D^{+} is locally bounded in the sense that for x\in X, R>0 and t_{0}\in(0, t_{*}(x)) ,
there

is M>0 such that D^{+}(y, s)\leq M for y\in X with d(x, y)\leq R and s\in(0, t_{0} ].

Proof. By the convexity of  $\Phi$
,

for  z\in X and s<t,

(3.2) t $\Phi$(\displaystyle \frac{d(x,z)}{t})\leq s $\Phi$(\frac{d(y,z)}{s})+(t-s) $\Phi$(\frac{d(x,y)}{t-s})
It easily implies Qf(x) \leq Q_{s}f(y)+(t-s) $\Phi$(d(x, y)/(t-s)) . Thus t_{*}(y)\leq t(x) follows

by taking s<t(x) arbitrarily and t\in(s, t_{*}(x)) . The opposite inequality also follows

in a symmetric way and hence the first assertion holds.

For the second assertion, take y\in X with d(x, y)\leq R, s\in(0, t_{0} ] and t_{0}<t_{1}<

t_{2}<t_{*}(x) . Then, by using (3.2) with s=t_{1} and t=t_{2} ,
for z\in X with d(y, z)<\infty,

F(s, y, z)\displaystyle \geq s $\Phi$(\frac{d(y,z)}{s})-t_{1} $\Phi$(\frac{d(y,z)}{t_{1}})+Q_{t_{2}}f(x)-(t_{2}-t_{1}) $\Phi$(\frac{R}{t_{2}-t_{1}})
Take z_{0}\in X so that it satisfies  d(x, z_{0})<\infty and  f(z_{0})<\infty (such  z_{0} exists since

x\in \mathcal{D}(f)) . Note that t' $\Phi$(u/t')-t_{1} $\Phi$(u/t_{1}) is non‐decreasing when t'<t_{1} since  $\Phi$ is
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convex (cf. (3.8) below). Thus the last inequality yields

(3.3)  s $\Phi$(\displaystyle \frac{D^{+}(y,s)}{s})-t_{1} $\Phi$(\frac{D^{+}(y,s)}{t_{1}})\leq Qf(y) —Qf (x)+(t_{2}-t_{1}) $\Phi$(\displaystyle \frac{R}{t_{2}-t_{1}})
\displaystyle \leq f(z_{0})+s $\Phi$(\frac{R+d(x,z_{0})}{s})-Q_{t_{2}}f(x)+(t_{2}-t_{1}) $\Phi$(\frac{R}{t_{2}-t_{1}})

We claim that there is  $\delta$>0 being independent of y and s such that  D^{+}(y, s)\leq
 R+d(x, z_{0})+1 holds when  0<s< $\delta$ . Indeed, if it is not the case, there is a sequence

(S)_{N} in \mathbb{R} with s_{1}<t_{0}, s_{n}\downarrow 0 and D^{+}(y, s_{n})>R+d(x, z_{0})+1 for each n\in \mathbb{N}.

Since s_{n} $\Phi$(u/s_{n})-t_{1} $\Phi$(u/t_{1}) and u^{-1} $\Phi$(u) are non‐decreasing in u
, (3.3) yields

(R+d(x, z_{0})+1)\displaystyle \frac{s_{n}}{R+d(x,z_{0})} $\Phi$(\frac{R+d(x,z_{0})}{s_{n}})\leq s_{n} $\Phi$(\frac{R+d(x,z_{0})}{s_{n}})+C_{1},
where C_{1}>0 is a constant independent of n\in \mathbb{N} . Since  $\Phi$ is superlinear at infinity,
the last inequality implies the contradiction by tending  n\rightarrow\infty . Hence the claim holds.

Thus it suffices to show the assertion only when  s\geq $\delta$ . In this case, we can replace  s in

the right hand side of (3.3) with  $\delta$ and  s in the left hand side of (3.3) with t_{0} . Therefore,
the proof will be completed once we show  t_{0} $\Phi$(u/t_{0})-t_{1} $\Phi$(u/t_{1})\rightarrow\infty as  u\rightarrow\infty . Since

 $\Phi$ is convex and superlinear at infinity,  $\Phi$'(u)\rightarrow\infty as  u\rightarrow\infty . Thus we can apply
Lemma 3.2 below with  $\alpha$=t_{1}^{-1},  $\beta$=t_{0}^{-1} and g=$\Phi$' to conclude the assertion. \square 

Lemma 3.2. Let  g:[0, \infty ) \rightarrow[0, \infty ) be a non‐decreasing with \displaystyle \lim_{u\rightarrow\infty}g(u)=\infty.
Then, for  $\beta$> $\alpha$>0,

\displaystyle \int_{1}^{\infty}(g( $\beta$ u)-g( $\alpha$ u))du=\infty.
Proof. Note that the integrand is non‐negative by assumption. Set  $\eta$:= $\beta$/ $\alpha$ and

 $\eta$_{k}:=$\beta$^{k}/$\alpha$^{k-1} . Then, by the Abel method on summation by parts,

\displaystyle \int_{1}^{$\eta$^{n}}(g( $\beta$ u)-g( $\alpha$ u))du=\sum_{k=1}^{n}\int_{$\eta$^{k-1}}^{$\eta$^{k}}(g( $\beta$ u)-g( $\alpha$ u))du
=\displaystyle \sum_{k=1}^{n}$\eta$^{k-1}\int_{1}^{ $\eta$}(g($\eta$_{k}u)-g($\eta$_{k-1}u))du
=$\eta$^{n-1}\displaystyle \int_{1}^{ $\eta$}g($\eta$_{n}u)du-\int_{1}^{ $\eta$}g( $\alpha$ u)du-( $\eta$-1)\sum_{k=2}^{n}$\eta$^{k-2}\int_{1}^{ $\eta$}g($\eta$_{k-1}u)du
=\displaystyle \int_{1}^{ $\eta$}g($\eta$_{n}u)du-\int_{1}^{ $\eta$}g( $\alpha$ u)du+( $\eta$-1)\sum_{k=2}^{n}$\eta$^{k-2}\int_{1}^{ $\eta$}(g($\eta$_{n}u)-g($\eta$_{k-1}u))du
\displaystyle \geq\int_{1}^{ $\eta$}g($\eta$_{n-1}u)du-\int_{1}^{ $\eta$}g( $\alpha$ u)du.

Therefore the conclusion follows by tending n\rightarrow\infty. \square 
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Lemma 3.3. Let x\in \mathcal{D}(f) and t\in(0, t_{*}(x)) . For x_{n}\in X and t_{n}\in(0, t(x))
with d(x, x_{n})\rightarrow 0 and t_{n}\rightarrow t as  n\rightarrow\infty

,
we have

 D^{-}(x, t)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}D^{-}(x_{n}, t_{n}) , D^{+}(x, t)\geq\lim_{n\rightarrow}\sup_{\infty}D^{+}(x_{n}, t_{n}) .

Proof. For each n\in \mathbb{N} ,
let (y_{n,k})_{k\in \mathbb{N}} be a minimizing sequence of F(t_{n}, x_{n}, \cdot) such

that \displaystyle \lim_{k\rightarrow\infty}d(x_{n}, y_{n,k})=D^{+}(x_{n}, t_{n}) . Then, for each n\in \mathbb{N} ,
we can take k_{n}\in \mathbb{N} such

that k_{n+1}>k_{n} and

(3.4) F(t_{n}, x_{n}, y_{n,k_{n}})\displaystyle \leq Q_{t_{n}}f(x_{n})+\frac{1}{n}, |d(x_{n}, y_{n,k_{n}})-D^{+}(x_{n}, t_{n})|\displaystyle \leq\frac{1}{n}.
By virtue of Lemma 3.1 (ii), (3.4) yields

\displaystyle \lim_{n\rightarrow\infty}|t_{n} $\Phi$(\frac{d(x_{n},y_{n,k_{n}})}{t_{n}})-t $\Phi$(\frac{d(x,y_{n,k_{n}})}{t})|=0.
This fact together with the upper semi‐continuity \displaystyle \lim\sup_{n\rightarrow\infty}Q_{t_{n}}f(x_{n})\leq Q_{t}f(x) and

(3.4) yields that (y_{n,k_{n}})_{n\in \mathbb{N}} is a minimizing sequence of F(t, x, \cdot) . Then we have

D^{+}(x, t)\displaystyle \geq\lim_{n\rightarrow}\sup_{\infty}d(x, y_{n,k_{n}})=\lim_{n\rightarrow}\sup_{\infty}d(x_{n}, y_{n,k_{n}})\geq\lim_{n\rightarrow}\sup_{\infty}D^{+}(x_{n}, t_{n}) ,

where the last inequality comes from (3.4). Hence the assertion for D^{+} is proved. We

can show the assertion for D^{-} in a similar way. \square 

From now on, we will turn to discuss the Hamilton‐Jacobi equation associated with

Qf. Our first goal is to show the sub‐solution property of Qf (Theorem 3.6).

Proposition 3.4. For x\in \mathcal{D}(f) and t\in(0, t_{*}(x)) ,
we have

\displaystyle \frac{d^{+}}{dt}Q_{t}f(x)=-$\Phi$^{*}($\Phi$'(\frac{D^{+}(x,t)}{t})) , \displaystyle \frac{d^{-}}{dt}Q_{t}f(x)=-$\Phi$^{*}($\Phi$'(\frac{D^{-}(x,t)}{t}))
In particular, Qf(x) is differentiable at t if and only if D^{+}(x, t)=D^{-}(x, t) .

Proof. Take s\in(0, t_{*}(x)) . Let (y_{n})_{n} be a minimizing sequence of F(t, x, \cdot) . Then

Qf (x)-Q_{t}f(x)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}[F(s, x, y_{n})-F(t, x, y)]

=\displaystyle \lim_{n\rightarrow}\inf_{\infty}[(s-t) $\Phi$(\frac{d(x,y_{n})}{t})+s( $\Phi$(\frac{d(x,y_{n})}{s})- $\Phi$(\frac{d(x,y_{n})}{t}))]
It yields

Q_{s}f(x)-Q_{t}f(x)\displaystyle \leq(s-t) $\Phi$(\frac{D^{+}(x,t)}{t})+s( $\Phi$(\frac{D^{+}(x,t)}{s})- $\Phi$(\frac{D^{+}(x,t)}{t}))
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Note that the Legendre duality implies $\Phi$^{*}($\Phi$'(w))=$\Phi$'(w)w- $\Phi$(w) for w\geq 0 . Hence

we obtain the upper bound of the right derivative in t of Qf(x) from the last inequality.
For the corresponding lower bound, for s>t ,

let us take a minimizing sequence (y_{n}')_{n\in \mathbb{N}}
of F(s, x, \cdot) satisfying d(x, y_{n}')\rightarrow D^{+}(x, s) as  n\rightarrow\infty . By a similar argument as above

but using (y_{n}')_{n} instead,

(3.5) Q_{s}f(x)-Q_{t}f(x)\displaystyle \geq s $\Phi$(\frac{D^{+}(x,s)}{s})-t $\Phi$(\frac{D^{+}(x,s)}{t})
Take  $\epsilon$>0 . Since D^{+}(x, \cdot) is upper semi‐continuous by Lemma 3.3,  D^{+}(x, s)\leq
 D^{+}(x, t)+ $\epsilon$ holds if  s-t>0 is sufficiently small. In addition, the convexity of  $\Phi$

yields that  s $\Phi$(u/s)-t $\Phi$(u/t) is non‐increasing in u if s>t (cf. (3.8) below). Thus,
we can replace D^{+}(x, s) in (3.5) with  D^{+}(x, t)+ $\epsilon$ if  s-t>0 is sufficiently small.

It yields the lower bound of the right derivative by obtaining a bound from the last

inequality and tending  $\epsilon$\downarrow 0 after that. The result for the left derivative can be shown

similarly. \square 

Proposition 3.5. For x\in \mathcal{D}(f) and t\in(0, t_{*}(x)) ,

|\displaystyle \nabla Q_{t}f|(x)\leq$\Phi$'(\frac{D^{+}(x,t)}{t}) , |\nabla^{+}Q_{t}f|(x)\leq$\Phi$'(\frac{D^{-}(x,t)}{t}) ,

where |\nabla^{+}f| is defined by replacing |f(y)-f(x)| in the definition of|\nabla f| in (2.2) with

[f(y)-f(x)]_{+}.

Proof. Let x'\in X and (y)_{N} a minimizing sequence of F(t, x
,

Then the

convexity of  $\Phi$ yields

 Qf (x')-Q_{t}f(x)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}[F(t, x', y_{n})-F(t, x, y)]

=\displaystyle \lim_{n\rightarrow}\inf_{\infty}[t $\Phi$(\frac{d(x',y_{n})}{t})-t $\Phi$(\frac{d(x,y_{n})}{t})]
\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}(d(x', y_{n})-d(x, y_{n}))$\Phi$'(\frac{d(x',y_{n})}{t})
\displaystyle \leq d(x', x)\lim_{n\rightarrow}\inf_{\infty}$\Phi$'(\frac{d(x,y_{n}')}{t})

Thus we obtain

Q_{t}f(x')-Q_{t}f(x)\displaystyle \leq d(x', x)$\Phi$'(\frac{D^{-}(x,t)}{t})
This estimate easily implies the latter assertion. For the former one, by the same

argument with the exchange of the role of x' and x,

|Q_{t}f(x)-Q_{t}f(x')|\displaystyle \leq d(x, x')$\Phi$'(\frac{\max\{D^{+}(x,t),D^{+}(x',t)\}}{t})
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Since D^{+} t) is upper semi‐continuous by Lemma 3.3, the conclusion follows. \square 

Now the following immediately follows from Proposition 3.4 and Proposition 3.5.

Theorem 3.6. For x\in \mathcal{D}(f) and t\in(0, t_{*}(x)) ,

(3.6) \displaystyle \frac{d^{+}}{dt} Qf (x)+$\Phi$^{*}(Qf|(x))\leq 0, \displaystyle \frac{d^{-}}{dt} Qf (x)+$\Phi$^{*}(|\nabla^{+}Q_{t}f|(x))\leq 0.

The rest of this section is devoted to the differentiability in t of Qf and the equality
in (3.6).

Theorem 3.7. Suppose that  $\Phi$ is strictly convex. Then  D^{+}(x, t)\leq D^{-}(x, s)
holds forx\in \mathcal{D}(f) and 0<t<s<t_{*}(x) . In particular, D^{+}(x, t)=D^{-}(x, t) holds

and hence Qf(x) is differentiable in t with at most countably many exceptions for each

fixed x\in X.

Proof. Let us take minimizing sequences (y_{n})_{n} and (y_{n}')_{n} of F(s, x, \cdot) and F(t, x, \cdot)
respectively satisfying d(x, y_{n})\rightarrow D^{-}(x, s) and d(x, y_{n}')\rightarrow D^{+}(x, t) as  n\rightarrow\infty . We

may assume  f(y_{n})<\infty and  f(y_{n}')<\infty for all  n\in \mathbb{N} . Take  $\epsilon$>0 arbitrary. Then, for

sufficiently large n\in \mathbb{N},

F(s, x, y_{n})\leq Q_{s}f(x)+ $\epsilon$\leq F(s, x, y_{n}')+ $\epsilon$,

F(t, x, y_{n}')\leq Q_{t}f(x)+ $\epsilon$\leq F(t, x, y_{n})+ $\epsilon$.

By summing them up, letting  n\rightarrow\infty and  $\epsilon$\downarrow 0 ,
we obtain

(3.7) t( $\Phi$(\displaystyle \frac{D^{+}(x,t)}{t})- $\Phi$(\frac{D^{-}(x,s)}{t}))\leq s( $\Phi$(\frac{D^{+}(x,t)}{s})- $\Phi$(\frac{D^{-}(x,s)}{s}))
Here we implicitly used Lemma 3.1 (ii) to ensure the finiteness of D^{\pm} . Now we prove

the assertion by contradiction. Suppose that D^{-}(x, s)<D^{+}(x, t) holds. Since  $\Phi$ is

convex,  D^{-}(x, s)/t>D^{-}(x, s)/s and D^{+}(x, t)/t>D^{+}(x, t)/s yield

(3.8) (\displaystyle \frac{D^{+}(x,t)-D^{-}(x,s)}{s})^{-1}( $\Phi$(\frac{D^{+}(x,t)}{s})- $\Phi$(\frac{D^{-}(x,s)}{s}))
\displaystyle \leq(\frac{D^{+}(x,t)-D^{-}(x,s)}{t})^{-1}( $\Phi$(\frac{D^{+}(x,t)}{t})- $\Phi$(\frac{D^{-}(x,s)}{t}))

Thus the equality must hold in (3.7), but it is absurd since  $\Phi$ is strictly convex. Hence

 D^{+}(x, s)\leq D^{-}(x, t) . The assertion for the coincidence of D^{+} and D^{-} is easy because

 D^{-}(x, t)\leq D^{+}(x, t)<\infty . Then the assertion for the differentiability of  Qf(x) in t is

immediate from Proposition 3.4. \square 
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Theorem 3.8. Suppose Assumption 2.1 (i). Then

|\displaystyle \nabla^{-}Q_{t}f|(x)=|\nabla Q_{t}f|(x)=$\Phi$'(\frac{D^{+}(x,t)}{t}) ,

where |\nabla^{-}f| is defined by replacing |f(y)-f(x)| in the definition of|\nabla f| in (2.2) with

[f(y)-f(x)]_{-} . As a result, the equality holds in the first inequality of (3.6) for every

t\in(0, t_{*}(x)) .

Proof. It suffices to consider the case D^{+}(x, t)>0 since the conclusion immedi‐

ately follows from Proposition 3.5 if D^{+}(x, t)=0 . Take a minimizing sequence (y)_{N}
of F(t, x, \cdot) satisfying d(x, y_{n})\rightarrow D^{+}(x, t) as  n\rightarrow\infty . We may assume  d(x, y_{n})>0 for

all n\in \mathbb{N} . Take a d‐minimal geodesic $\gamma$_{n} : [0, 1]\rightarrow X with $\gamma$_{n}(0)=x, $\gamma$_{n}(1)=y_{n} for

each n\in \mathbb{N} . Then d(x, $\gamma$_{n}(1/n))\rightarrow 0 as  n\rightarrow\infty . Thus the mean value theorem yields

|\displaystyle \nabla^{-}Q_{t}f|(x)\geq\lim_{n\rightarrow}\sup_{\infty}\frac{Q_{t}f(x)-Q_{t}f($\gamma$_{n}(1/n))}{d(x,$\gamma$_{n}(1/n))}
\displaystyle \geq\lim_{n\rightarrow}\sup_{\infty}\frac{F(t,x,y_{n})-F(t,$\gamma$_{n}(1/n),y_{n})}{d(x,$\gamma$_{n}(1/n))}
=\displaystyle \lim_{n\rightarrow}\sup_{\infty}\frac{nt}{d(x,y_{n})}( $\Phi$(\frac{d(x,y_{n})}{t})- $\Phi$(\frac{(1-n^{-1})d(x,y_{n})}{t}))
=$\Phi$'(\displaystyle \frac{D^{+}(x,t)}{t})

Therefore the conclusion follows from this estimate and Proposition 3.5. \square 

§4. Proof of Theorem 2.2

To begin with, we gather extensions of well known properties for L^{p}‐Wasserstein

distance to W_{ $\Phi$} associated with the extended distance d . We refer to [28, Chapter 4]
for basic properties of optimal transportation costs which is used in the proof of the

following auxiliary lemma.

Lemma 4.1.

(i) W_{ $\Phi$} is sequentially lower semi‐continuous with respect to the weak convergence of

probability measures. That is, for sequences ($\mu$_{n})_{n\in \mathbb{N}} and (v_{n})_{n\in \mathbb{N}} in P(X) which

weakly converge to  $\mu$\in P(X) and v\in P(X) respectively,

W_{ $\Phi$}(, v)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}W_{ $\Phi$}($\mu$_{n}, v_{n}) .

(ii) For each  $\mu$, v\in \mathscr{P}(X) ,
a minimizer of W_{ $\Phi$}(, v) exists. That is, there is  $\pi$\in $\Pi$( $\mu$, v)

such that W_{ $\Phi$}(, v)=\Vert d\Vert_{L^{ $\Phi$}( $\pi$)} holds.
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(iii) For each  $\mu$, v\in \mathscr{P}(X) , \displaystyle \lim_{p\rightarrow\infty}W_{p}(, v)=W_{\infty}(, v) .

Proof. (i) For $\lambda$'>0 and $\mu$', v'\in \mathscr{P}(X) ,
let us define A($\mu$', v', $\lambda$') by

A($\mu$', v', $\lambda$') := $\pi$\displaystyle \in $\Pi$( $\mu$'' $\nu$')\inf_{l}\int_{X\times X} $\Phi$(\frac{d}{ $\lambda$})d $\pi$.
Since  $\Phi$(d/$\lambda$') is non‐negative and lower semi‐continuous, a minimizer of A($\mu$', v', $\lambda$')
always exists. Note that A($\mu$', v', $\lambda$')\leq 1 is equivalent to W_{ $\Phi$}($\mu$', v')\leq$\lambda$' ,

which follows

from the corresponding fact for the gauge norm (see [23]).
Let us take  $\lambda$>0 so that A( $\mu$, v,  $\lambda$)>1 . By the lower semi‐continuity of optimal

transportation cost for the cost function  $\Phi$(d/ $\lambda$) ,

(4.1) A( $\mu$, v,  $\lambda$)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}A($\mu$_{n}, v_{n},  $\lambda$) .

Thus we have A($\mu$_{n}, v_{n},  $\lambda$)>1 for sufficiently large n\in \mathbb{N} . As a result, we obtain

 $\lambda$\displaystyle \leq\lim\inf_{n\rightarrow\infty}W_{ $\Phi$}(, v_{n}) and hence the conclusion follows by letting  $\lambda$\uparrow W_{ $\Phi$}(, v) .

(ii) It directly follows from (i) and the fact that  $\Pi$( $\mu$, v) is compact with respect to

the topology of weak convergence inherited from \mathscr{P}(X\times X) .

(iii) We can show it in the same way as [17, Lemma 3.2] by using the lower semi‐

continuity of the optimal transportation cost (cf. (4.1)). \square 

In the sequel, we will enter the proof of Theorem 2.2. We refer to [23] for basic

facts on the gauge norm and the Orlicz norm which are used in the proof.

Proof. of Theorem 2.2 (i). Let \tilde{y}\in\tilde{X} with  0<\tilde{d}(\tilde{x},\tilde{y})<\infty and  $\pi$\in $\Pi$(P_{\overline{x}}, P_{\overline{y}})\mathrm{a}
minimizer of W_{ $\Phi$} ( P_{\overline{x}} , Py‐). For r>0 ,

we define G_{r}f : X\rightarrow \mathbb{R} by

G_{r}f(z) :=\displaystyle \sup\{\frac{|f(z)-f(w)|}{d(z,w)} w\in X, d(z, w)\in(0, r)\}
Then we have

\displaystyle \frac{|Pf(\tilde{x})-Pf(\tilde{y})|}{\tilde{d}(\tilde{x},\tilde{y})}=\frac{1}{\tilde{d}(\tilde{x},\tilde{y})}|\int_{X\times X}(f(z)-f(w)) $\pi$(dzdw)|
(4.2) \displaystyle \leq\int_{X\times X}\frac{G_{r}f(z)d(z,w)}{\tilde{d}(\tilde{x},\tilde{y})} $\pi$(dzdw)+\frac{2\Vert f\Vert_{\infty} $\pi$(d\geq r)}{\tilde{d}(\tilde{x},\tilde{y})}.
For the second term of the right hand side of (4.2), The Chebyshev inequality together
with the choice of  $\pi$ and (W( $\Phi$)) implies

(4.3)  $\pi$(d\displaystyle \geq r)\leq $\Phi$(\frac{r}{\Vert d\Vert_{L^{ $\Phi$}( $\pi$)}})^{-1}\int_{X\times X} $\Phi$(\frac{d}{\Vert d\Vert_{L^{ $\Phi$}( $\pi$)}})d $\pi$
\displaystyle \leq $\Phi$(\frac{r}{\Vert d\Vert_{L^{ $\Phi$}( $\pi$)}})^{-1}= $\Phi$(\frac{r}{W_{ $\Phi$}(P_{\tilde{x}},P_{\overline{y}})})^{-1}\leq $\Phi$(\frac{r}{\tilde{d}(\tilde{x},\tilde{y})})^{-1}
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For the first term in the right hand side of (4.2), the Hölder inequality for the gauge

norm and the Orlicz norm together with (W( $\Phi$)) yields

(4.4) \displaystyle \int_{X\times X}\frac{G_{r}f(z)d(z,w)}{\tilde{d}(\tilde{x},\tilde{y})} $\pi$(dzdw)\leq(\Vert|\nabla f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\overline{x}})}+\Vert G_{r}f-|\nabla f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\overline{x}})})
Note that we have

\displaystyle \lim_{r\downarrow}\sup_{0}\Vert G_{r}f-|\nabla f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\overline{x}})}\leq 2\lim_{r\downarrow}\sup_{0}\Vert G_{r}f-|\nabla f|\Vert_{L^{$\Phi$^{*}}(P_{\overline{x}})}=0.
Here the first inequality comes from the general relation between the Orlicz norm and

the gauge norm, and the second follows from the usual monotone convergence theorem

for a decreasing sequence of functions. Take  $\epsilon$>0 and set r=\tilde{d}(\tilde{x},\tilde{y})$\Phi$^{-1}($\epsilon$^{-1}\tilde{d}(\tilde{x},\tilde{y})^{-1}) .

Note that r tends to 0 as \tilde{d}(\tilde{x},\tilde{y})\rightarrow 0 since  $\Phi$ is superlinear at infinity. Thus, with this

choice of  r
, by plugging (4.3) and (4.4) into (4.2) and by letting \tilde{y}\rightarrow\tilde{x} with respect to

\tilde{d}
,

we obtain the conclusion since  $\epsilon$>0 is arbitrary. \square 

For proving the opposite implication, we prepare some additional properties of the

Hopf‐Lax semigroup Qf.

Lemma 4.2. Under Assumption 2.1 (i), for f\in \mathrm{L}\mathrm{i}\mathrm{p}_{b}(X) , x, y\in X and t, s>0,

|Q_{t}f(x)-Q_{t}f(y)|\leq \mathrm{L}\mathrm{i}\mathrm{p}(f)d(x, y) , |Q_{t}f(x)-Q_{s}f(x)|\leq$\Phi$^{*} (Lip (f)) |t-s|,

where Lip (f) is the (global) Lipschitz constant of f with respect to d.

We can prove this assertion in the same way as in the proof of [9, Theorem 2.1

(iv)]. Thus we omit the proof.

Lemma 4.3. Suppose Assumption 2.1 (i) and (G($\Phi$^{*})) . Let  f\in Lip(X) and

\tilde{ $\gamma$} : [0, 1]\rightarrow\tilde{X} a \tilde{d}‐minimal geodesic. Then PQf(\tilde{ $\gamma$}(t)) is Lipschitz in t\in[0 ,
1 ].

Proof. Note that |\nabla f| is a d‐upper gradient if f : X\rightarrow \mathbb{R} is Lipschitz with respect

to d (see [3, Section 2.3], for instance). Thus, under Assumption 2.1 (i), (G($\Phi$^{*})) and

Lemma 4.2 yield that PQf is Lipschitz with respect to \tilde{d} if  f\in Lip(X). Moreover,

|\nabla PQ_{t}f| is bounded uniformly in t . Thus we can easily show PQf(\tilde{ $\gamma$}(t)) is Lipschitz
in t\in(0,1] (cf. the proof of [17, Proposition 3.7]). Thus only the continuity at t=0

is left. Since the pointwise convergence of Qf to f follows in the same way as [12,
Proposition A.3 (3)], we can show PQf(\tilde{ $\gamma$}(0))\rightarrow Pf(\tilde{ $\gamma$}(0)) as t\rightarrow 0 and it implies the

conclusion. \square 

Now we are ready to finish the proof of Theorem 2.2 (ii).
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Proof. of Theorem 2.2 (ii). Set  $\lambda$:=\tilde{d}(\tilde{x},\tilde{y}) . By the Kantorovich duality,

\displaystyle \inf_{ $\pi$\in $\Pi$(P_{\overline{x}}P_{\overline{y}})},\int_{X\times X} $\Phi$(\frac{d}{ $\lambda$})d $\pi$=f\sup_{\in C_{b}(X)} [PQf (\tilde{y})-Pf(\tilde{x})]

(4.5) = \displaystyle \sup [PQf (\tilde{y})-Pf(\tilde{x})],
\mathrm{f}^{\mathrm{L}\mathrm{i}\mathrm{p}(\mathrm{X})}

where Qf is the Hopf‐Lax semigroup associated with  $\Phi$(\cdot/ $\lambda$) instead of  $\Phi$ in (3.1).
For the second equality, see [13] or the proof of [28, Theorem 5.11], for instance. Let

 f\in Lip(X). By Assumption 2.1 (ii), there exists a \tilde{d}‐geodesic \tilde{ $\gamma$} : [0, 1]\rightarrow\tilde{X} with

\tilde{ $\gamma$}(0)=\tilde{x} and \tilde{ $\gamma$}(1)=\tilde{y} . By Lemma 4.3, PQ_{t}\tilde{f}(\tilde{ $\gamma$}(t)) is differentiable in t a.e. with

respect to the Lebesgue measure and the derivative is bounded. Thus we have

(4.6) PQf (\displaystyle \tilde{y})-Pf(\tilde{x})=PQf(\tilde{ $\gamma$}(1))-PQf(\tilde{ $\gamma$}(0))=\int_{0}^{1}\frac{\partial}{\partial t} PQf (\tilde{ $\gamma$}(t))dt.

By virtue of Lemma 4.2, we can apply [6, Lemma 4.3.4] to obtain

(4.7) \displaystyle \frac{\partial}{\partial t}PQ_{t}f(\tilde{ $\gamma$}(t))\leq\lim_{h\downarrow}\sup_{0}\frac{PQ_{t+h}f(\tilde{ $\gamma$}(t))-PQ_{t}f(\tilde{ $\gamma$}(t))}{h}
+\displaystyle \lim_{h\downarrow}\sup_{0}\frac{PQ_{t}f(\tilde{ $\gamma$}(t))-PQ_{t}f(\tilde{ $\gamma$}(t-h))}{h}

for a.e. t\in(0,1) . Our assumption (G($\Phi$^{*})) yields

\displaystyle \lim_{h\downarrow}\sup_{0}\frac{PQ_{t}f(\tilde{ $\gamma$}(t))-PQ_{t}f(\tilde{ $\gamma$}(t-h))}{h}\leq $\lambda$|\tilde{\nabla}PQ_{t}f|(\tilde{ $\gamma$}(t))(4.8)

\leq\Vert $\lambda$|\nabla Q_{t}f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\sim(t)})}.
For the first term in the right hand side of (4.7), Theorem 3.6 yields

(4.9) \displaystyle \lim_{h\downarrow}\sup_{0}\frac{PQ_{t+h}f(\tilde{ $\gamma$}(t))-PQ_{t}f(\tilde{ $\gamma$}(t))}{h}\leq-P($\Phi$^{*}( $\lambda$|\nabla Q_{t}f|))(\tilde{ $\gamma$}(t))
by the Dominated convergence theorem and Lemma 4.2. By plugging (4.8) and (4.9)
into (4.7),

(4.10) \displaystyle \frac{\partial}{\partial t} PQf (\tilde{ $\gamma$}(t))\leq\Vert $\lambda$|\nabla Q_{t}f|\Vert_{\overline{L}^{$\Phi$^{*}}(P_{\sim(t)})}-P($\Phi$^{*}( $\lambda$|\nabla Q_{t}f|))(\tilde{ $\gamma$}(t)) .

By virtue of the definition of the Orlicz norm, the Hausdorff‐Young inequality yields

\Vert $\lambda$|\nabla Q_{t}f|\Vert_{\tilde{L}^{$\Phi$^{*}}(P_{\sim(t)})}\leq P($\Phi$^{*}( $\lambda$|\nabla Q_{t}f|))(\tilde{ $\gamma$}(t))+1
By combining this estimate with (4.10), (4.6) and (4.5), we obtain

\displaystyle \inf_{ $\pi$\in $\Pi$(P_{\overline{x}}P_{\overline{y}})},\int_{X\times X} $\Phi$(\frac{d}{ $\lambda$})d $\pi$\leq 1.
It means  W_{ $\Phi$}(P_{\overline{x}}, P_{\overline{y}})\leq $\lambda$ and hence the conclusion holds. \square 



Gradient estimate and Wasserstein control 75

Remark 3. We can easily show that (W) implies

(4.11) W_{p}(P^{*}\sim, P^{*}\tilde{v})\leq\tilde{W}_{p} \tilde{v})

for any \tilde{ $\mu$}, \tilde{v}\in \mathscr{P}(\tilde{X}) by applying [28, Lemma 4.8] (see [17, Lemma 3.3] also). In partic‐

ular, if \tilde{X}=X and \tilde{d}=Cd for some constant C>0 ,
we can obtain the corresponding

estimate for the iteration P^{n} of the Markov kernel P . It is not clear whether the same

argument works for W_{ $\Phi$} or not.

Remark 4. When we can obtain (W_{p_{*}}) in a functional analytic way, it sometimes

occurs that it holds only \tilde{\mathfrak{m}}-\mathrm{a}.\mathrm{e} . for some base measure \tilde{\mathfrak{m}} with \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tilde{\mathfrak{m}})=\tilde{X} . Even in

such a case, we can obtain (4.11) if the following additional assumption holds: There

exists a probability measure \tilde{ $\pi$}^{*} on the space of \tilde{d}‐minimal geodesics in \tilde{X} such that

(e_{0}\times e_{1})_{\#}\tilde{ $\pi$}^{*}\in $\Pi$(\tilde{ $\mu$},\tilde{v}) is optimal and (e_{t})_{\#}\tilde{ $\pi$}^{*}\ll\tilde{\mathfrak{m}} for each t>0 ,
where e_{t}(\tilde{ $\gamma$}) :=\tilde{ $\gamma$}(t) is

the evaluation map. Indeed, the Fubini theorem implies that, for \tilde{ $\pi$}^{*}-\mathrm{a}.\mathrm{e}.\tilde{ $\gamma$}, (W_{p_{*}}) holds

at \tilde{ $\gamma$}(t) for a.e. t . Thus we can apply the same argument as in the proof of Theorem 2.2

(ii) for \tilde{ $\pi$}^{*}-\mathrm{a}.\mathrm{e}.\tilde{ $\gamma$} instead of just one \tilde{d}‐minimal geodesic. For example, if \tilde{d} is a genuine
distance being compatible with the topology of \tilde{X} and the Ricci curvature is bounded

from below on \tilde{X} in a generalized sense, then this additional assumption holds whenever

\tilde{ $\mu$}, \tilde{v}\ll\tilde{\mathfrak{m}} (see [21, 25]).

Remark 5. As we can observe in the proof of Theorem 2.2, the duality between

(W( $\Phi$)) and (G($\Phi$^{*})) is local. More precisely, in order to obtain (G($\Phi$^{*})) at \tilde{x}
,

we

requires (W( $\Phi$)) for \tilde{y}\in\tilde{X} where \tilde{d}(\tilde{x},\tilde{y}) is small. Similarly, the proof of (W( $\Phi$))
requires (G($\Phi$^{*})) only on a \tilde{d}‐minimal geodesic joining \tilde{x} and \tilde{y}.

§5. Stabilities

We begin with the stability of (W( $\Phi$)) or (G($\Phi$^{*})) for weak convergence of Markov

kernels. It immediately follows from Theorem 2.2 and Lemma 4.1 (i).

Corollary 5.1. Let P_{\frac{(}{x}}^{n)} be a sequence of Markov kernels on X parametrized

by \tilde{x}\in\tilde{X} . Suppose that, for each \tilde{x}\in\tilde{X}, P_{\frac{(}{x}}^{n)} converges to a Markov kernel P_{\overline{x}} as

 n\rightarrow\infty with respect to the topology of the weak convergence of probability measures. If

(W( $\Phi$)) holds for P^{(n)} for each n\in \mathbb{N} , then the same holds for P_{\overline{x}} . In particular, under

Assumption 2.1, if (G($\Phi$^{*})) holds for P^{(n)} for each n\in \mathbb{N} , then the same holds for P_{\overline{x}}.

Remark 6. It could be possible to extend Corollary 5.1 to the case the underlying

space is varying. Let (X_{n}, d_{n}) be a sequence of compact metric spaces which converges

to a metric space (X, d) in the Gromov‐Hausdorff sense. If a sequence of Markov

kernels P_{\frac{(}{x}}^{n)}\in P(X) converges to a Markov kernel P_{\overline{x}}\in P(X) associated with the

convergence of spaces, then the same stability should hold (cf. [2] or [19, Section 7]).



76 Kazumasa Kuwada

For Theorem 5.3 below which deals with the tensorization property, we state the

following lemma. It asserts the stability for a push‐forward by a 1‐Lipschitz map.

Lemma 5.2. Let \hat{X} be a Polish space equipped with an extended distance \hat{d} and

 $\varphi$ :  X\rightarrow\hat{X} a1‐Lipschitz map with respect to \hat{d} and d . We define a new Markov kernel

\hat{P}_{\overline{x}} on \hat{X} by the push‐forward: \hat{P}_{\overline{x}}:= $\varphi$\#^{P_{\overline{x}}} . Suppose that (W( $\Phi$)) or (G($\Phi$^{*})) holds.

Then \hat{P} also enjoys the corresponding property.

We omit the proof of Lemma 5.2 since we can show it by a simple straightforward

argument. Note that we do not require Theorem 2.2 for the proof.

Theorem 5.3. Let  $\Lambda$ be an at most countable set. For each  i\in $\Lambda$ ,
let  X_{i} and

\tilde{X}_{i} be Polish spaces equipped with extended distances d_{i} and \tilde{d}_{i} . Let P_{x_{i}^{\frac{(}{}}}^{i)} be a Markov

kernel on X_{i} parametrized by \tilde{x}_{i}\in\tilde{X}_{i} . Set X:=\displaystyle \prod_{i\in $\Lambda$}X_{i} and \displaystyle \tilde{X}:=\prod_{i\in $\Lambda$}\tilde{X}_{i} . Let

d_{(p)} and \tilde{d}_{(p)} be l^{p} ‐product extended distances on X and \tilde{X} respectively. That is, for

x=(x_{i})_{i\in $\Lambda$} and y=(y_{i})_{i\in \mathbb{N}},

d_{(p)}(x, y):=\Vert(d_{i}(x_{i}, y_{i}))_{i\in $\Lambda$}\Vert_{l^{p}}.

Let P_{\overline{x}}:=\displaystyle \otimes_{i\in $\Lambda$}P_{i}^{i)}\frac{(}{x} be the product Markov kernel on X parametrized by \tilde{x}=(\tilde{x}_{i})_{i\in $\Lambda$}\in
\tilde{X} . Then the following are equivalent:

(i) P^{(i)} enjoys (W_{p}) for each i\in $\Lambda$.

(ii) P enjoys (W) with respect to d_{(p)} and \tilde{d}_{(p)} . That is,

W_{p}(P_{\tilde{x}}, P_{\overline{y}})\leq\tilde{d}_{(p)}(\tilde{x},\tilde{y})

for any \tilde{x}, \tilde{y}\in\tilde{X} , where W_{p} is defined on X with respect to d_{(p)}.

In particular, the corresponding equivalence holds for the gradient estimate (W_{p_{*}}) under

Assumption 2.1 for X_{i} and \tilde{X}_{i}(i\in $\Lambda$) .

We remark that d_{(p)} can become an extended distance even if all of (d_{i})_{i\in $\Lambda$} are

genuine distances when  $\Lambda$ is not finite.

Proof. By virtue of Remark 2, it suffices to consider the case  p\in[1, \infty ). The

implication from (ii) to (i) immediately follows from Lemma 5.2 since the canonical

projection $\eta$_{i}:X\rightarrow X_{i}(i\in $\Lambda$) is 1‐Lipschitz with respect to d_{(p)} and d_{i}.
Let us consider the implication from (i) to (ii). Let \tilde{x}=(\tilde{x}_{i})_{i\in $\Lambda$}, \mathrm{y}=(\tilde{y}_{i})_{i\in $\Lambda$}\in\tilde{X}

and take an optimal $\pi$_{i}\in $\Pi$(P_{\overline{x}_{i}}, P_{\overline{y}_{i}}) for each  i\in $\Lambda$ and set  $\pi$:=\otimes_{i\in $\Lambda$}$\pi$_{i} . Note that  $\pi$

can be interpreted as an element of  $\Pi$ (  P_{\overline{x}} , Py‐). Under this interpretation,

W_{p}(P_{\tilde{x}}, P_{\overline{y}})^{p}\displaystyle \leq\int_{X\times X}d_{(p)}^{p}d $\pi$=\sum_{i\in $\Lambda$}\int_{X_{i}\times X_{i}}d_{i}^{p}d$\pi$_{i}=\sum_{i\in $\Lambda$}W_{p}(P_{\tilde{x}_{i}}, P_{\tilde{y}_{i}})^{p}\leq d_{(p)}(\tilde{x},\tilde{y})^{p}
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by using the condition (i). Hence the assertion holds. \square 

The last result in this section is the stability for averaging. It follows similarly as

in Remark 3 when  p<\infty . The case  p=\infty will be dealt according to Remark 2.

Corollary 5.4. Let (S, \mathscr{S},  $\xi$) be a probability space and (P^{( $\alpha$)})_{ $\alpha$\in S} a family of
Markov kernels parametrized on \tilde{X} . Let (\tilde{d}_{ $\alpha$})_{ $\alpha$\in S} be a family of extended distances

on \tilde{X} . Assume that, for each A\in \mathscr{B}(X) , (\tilde{x},  $\alpha$)\mapsto P_{\frac{(}{x}}^{ $\alpha$)}(A) is a measurable map fr om

(\tilde{X}\times S, \mathscr{B}(\tilde{X})\otimes \mathscr{S}) to ([0,1], \mathscr{B}([0,1 We define the Markov kernel P and the extended

distance \tilde{d} on \tilde{X} by

P_{\overline{x}}(A):=\displaystyle \int_{S}P_{\frac{(}{x}}^{ $\alpha$)}(A) $\xi$(d $\alpha$) , \tilde{d}(\tilde{x},\tilde{y}):=\Vert\tilde{d}.(\tilde{x},\tilde{y})\Vert_{L( $\xi$)}p.
(i) Suppose (W_{p}) for P^{ $\alpha$} and \tilde{d}_{ $\alpha$} for a.e.  $\alpha$\in S . Then (W) holds for P and \tilde{d}.

(ii) Suppose Assumption 2.1 (i) and Assumption 2.1 (ii) for \tilde{d}_{ $\alpha$} for a.e.  $\alpha$\in S . Suppose

(W_{p_{*}}) for P^{( $\alpha$)} and \tilde{d}_{ $\alpha$} for a.e.  $\alpha$\in S . Then (W_{p_{*}}) holds for P and \tilde{d}.

We remark that Assumption 2.1 (ii) for \tilde{d} is not required in Corollary 5.4 (ii).

§6. Examples

We first demonstrate that the Hölder continuity estimate for solutions to the Dirich‐

let problem falls into our framework.

Example 6.1. Let D be a regular bounded domain in \mathbb{R}^{m}, m\geq 2 . We denote

the Euclidean distance by  $\rho$ . Let us denote the harmonic measure over  D by (H_{\overline{x}})_{\overline{x}\in D}.
That is, H_{\overline{x}} is a Markov kernel on \partial D parametrized by \tilde{x}\in D such that, given f : \partial D\rightarrow

\mathbb{R} bounded and measurable, Hf gives a solution to the Dirichlet problem \triangle u=0 on D

and u|_{\partial D}=f . Let  $\alpha$\in(0,1) . In [1], the following property is studied in detail: there

exists a constant C>0 such that, for any bounded measurable function f : \partial D\rightarrow \mathbb{R},

(6.1) \Vert Hf\Vert_{\infty}+\Vert Hf\Vert_{C^{0, $\alpha$}}\leq C(\Vert f\Vert_{\infty}+\Vert f\Vert_{C^{0, $\alpha$}}) ,

where \Vert \Vert_{C^{0, $\alpha$}} is the Hölder constant of the exponent  $\alpha$ . We show that (6.1) can be

interpreted as a variant of (G) under an appropriate choice of  X, \tilde{X}, d, \tilde{d} and P . Let \star

and \sim be points separated from \mathbb{R}^{m} and set X=\partial D\cup\{\star\} and \tilde{X}=D\cup We define

a distance function  d on X respectively by d|_{\partial D\times\partial D}:=$\rho$^{ $\alpha$} and d(x, \star) :=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\partial D)^{ $\alpha$}
for x\in\partial D . We also define a distance function \tilde{d}' on \tilde{X} in the same manner. Let C'>0

be a constant and set \tilde{d}:=C'\tilde{d}' . A Markov kernel (P_{\overline{x}})_{\overline{x}\in\overline{X}} on X is defined by P_{\overline{x}}=H_{\overline{x}}
when \tilde{x}\in D and P_{\star}\sim=$\delta$_{\star} . Now we claim that (6.1) is equivalent to (G) up to a choice
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of constants. For f : \partial D\rightarrow \mathbb{R} ,
we extend it to \hat{f} : X\rightarrow \mathbb{R} by \hat{f}|_{\partial D}=f|_{\partial D} and \hat{f}(\star)=0.

Then (G) for \hat{f} means

(6.2) \displaystyle \max\{\frac{1}{\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(D)}\Vert Hf\Vert_{\infty}, \Vert Hf\Vert_{C^{0, $\alpha$}}\}\leq C'\max\{\frac{1}{\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\partial D)}\Vert f\Vert_{\infty}, \Vert f\Vert_{C^{0, $\alpha$}}\}
Obviously, (6.2) is equivalent to (6.1) up to a choice of C and C' . Note that (G) is

invariant under adding a constant to f . Thus if (G) holds for those f : X\rightarrow \mathbb{R} with

f(\star)=0 ,
then (G) holds for all f : X\rightarrow \mathbb{R} . These observations easily imply the

claim. Though both d and \tilde{d} do not satisfy Assumption 2.1 in this case, we can employ
the duality since p=1 ; See Remark 2.

Example 6.2. Let \tilde{X} be a complete Riemannian manifold of \dim\tilde{X}\geq 2 without

boundary. We denote the Riemannian distance on \tilde{X} by \tilde{d}. Suppose that the Ricci

curvature on \tilde{X} is bounded from below by a constant K\in \mathbb{R} . It is well‐known that for

each \tilde{x}_{1}, \tilde{x}_{2}\in\tilde{X} there is a coupling of Brownian motions (B^{(1)}(t), B^{(2)}(t))_{t\geq 0} starting
from (\tilde{x}_{1},\tilde{x}_{2}) such that

(6.3) \tilde{d}(B^{(1)}(t), B^{(2)}(t))\leq \mathrm{e}^{-Kt}\tilde{d}(\tilde{x},\tilde{y})

almost surely for each t\geq 0 (see e.g. [18, 30]). Let X:=C([0, \infty)\rightarrow\tilde{X}) with the

topology of compact uniform convergence. We define an (extended) distance d on X

by d(w, w') :=\displaystyle \sup_{t\geq 0}\mathrm{e}^{Kt}\tilde{d}(w(t), w'(t)) . Let us define a Markov kernel (P_{\overline{x}})_{\overline{x}\in\overline{X}} as a

Wiener measure. That is, P_{\overline{x}}\in P(X) is the law of the Brownian motion on \tilde{X} starting
from \tilde{x} . Then we can easily verify that (6.3) yields (W) with p=\infty.

Example 6.3. The following estimate for a diffusion semigroup P^{(t)} of Markov

kernels on X is studied well in the literature (e.g. [5, 18,29]): There is a constant K\in \mathbb{R}

and p\in(1, \infty) such that, for x, y\in X and t>0,

(6.4) W_{p}(P_{x}^{(t)}, P_{y}^{(t)})\leq \mathrm{e}^{-Kt}d(x, y) .

It is regarded as a characterization of the presence of a lower Ricci curvature bound by
K (Actually, (6.3) easily implies (6.4)). A subordination of (P^{(t)})_{t\geq 0} by a subordinator

$\zeta$_{t}\in \mathscr{P}([0, \infty  t\geq 0 (see e.g. [24]) is an example of the averaging of (6.4) in the sense

of Corollary 5.4. Actually, this estimate falls into the framework of Corollary 5.4 by

choosing \tilde{X}=X and \tilde{d}_{t}:=\mathrm{e}^{-Kt}d . Thus we immediately obtain the following result.

Corollary 6.4. Let X, d and P_{x}^{(t)} be as in Example 6.3 and suppose (6.4). Let

$\zeta$_{t}\in \mathscr{P}([0, \infty  t\geq 0 be a subordinator with the Laplace exponent  $\psi$ . That is,  forz\geq 0,

(6.5) \displaystyle \int_{0}^{\infty}\mathrm{e}^{-zs}$\zeta$_{t}(ds) =\exp(-t $\psi$(z)) .
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Let P_{x}^{ $\zeta$,(t)} be the subordination of (P_{x}^{(t)})_{t\geq 0} by ($\zeta$_{t})_{t\geq 0} . That is, fort\geq 0,

P_{x}^{ $\zeta$,(t)}:=\displaystyle \int_{0}^{\infty}P_{x}^{(s)}$\zeta$_{t}(ds) .

When K<0 ,
we assume that the left hand side of (6.5) is finite even when z=pK and

we denote the right hand side of it by using the same symbol  $\psi$(pK) . Then we have

W_{p}(P_{x}^{ $\zeta$,(t)}, P_{y}^{ $\zeta$,(t)})\leq \mathrm{e}^{-t $\psi$(pK)/p}d(x, y) .

In particular, for  $\beta$ ‐resolvent kernel  R_{x}^{( $\beta$)} :=\displaystyle \int_{0}^{\infty}\mathrm{e}^{- $\beta$ s}P_{x}^{(s)}ds with  $\beta$>-pK,

W_{p}( $\beta$ R_{x}^{( $\beta$)},  $\beta$ R_{y}^{( $\beta$)})\displaystyle \leq(\frac{ $\beta$}{ $\beta$+pK})^{1/p}d(x, y) .

Note that the corresponding stability of the gradient estimate (W_{p_{*}}) under subor‐

dination does not seem obvious when K\neq 0 in (6.4).
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