Mean continuity for potentials of functions in Musielak-Orlicz spaces

By

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno*** and Tetsu Shimomura

Abstract

Our aim in this paper is to show mean continuity in a certain strong sense at points except in a small set for potentials of functions in Musielak-Orlicz spaces.

§ 1. Introduction

For the Riesz potential

$$I_{\alpha}f(x) := \int_{\mathbf{R}^N} |x - y|^{\alpha - N} f(y) \, dy,$$

where $0 < \alpha < N$ and $f \in L^p_{loc}(\mathbf{R}^N)$ $(1 \le p < \infty)$ is assumed to satisfy

$$\int_{\mathbf{R}^N} (1+|x|)^{\alpha-N} |f(x)| \, dx < \infty,$$

the following mean continuity is known (see, e.g., [1], [10] and [14]):

Received January 14, 2013. Revised February 18, 2013.

2000 Mathematics Subject Classification(s): Primary 46E35, 31B15

Key Words: Musielak-Orlicz space, mean continuity, potentials, capacity

 $^*4\text{-}24$ Furue-higashi-machi, Nishi-ku, Hiroshima 733-0872, Japan.

e-mail: fymaeda@h6.dion.ne.jp

**Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan.

e-mail: y.mizuta.5x@it-hiroshima.ac.jp

***Faculty of Education and Welfare Science, Oita University, Dannoharu Oita-city 870-1192, Japan. e-mail: t-ohno@oita-u.ac.jp

[†]Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan.

e-mail: tshimo@hiroshima-u.ac.jp

© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

If p > 1, $\alpha p < N$ and $1/p^{\sharp} = 1/p - \alpha/N$, then

$$\lim_{r \to 0+} \frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} |I_{\alpha} f(x) - I_{\alpha} f(x_0)|^{p^{\sharp}} dx = 0$$

for $x_0 \in \mathbf{R}^N \setminus E$ with a set E of (α, p) -capacity zero. $(|B(x_0, r)|$ denotes the Lebesgue measure of $B(x_0, r)$.)

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions. Mean continuity of Riesz potentials of functions in variable exponent Lebesgue spaces $L^{p(\cdot)}$ was investigated in [3] (also, cf. [2] and [4] for mean continuity of functions in variable exponent Sobolev spaces). For Riesz potentials on the two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, see [11]. These spaces are special cases of so-called Musielak-Orlicz spaces ([12]).

Our aim in this paper is to show mean continuity in a certain strong sense at points except in a small set for potentials of functions in Musielak-Orlicz spaces as an extension of the above results. Recently, a capacity defined by potentials of functions in Musielak-Orlicz spaces was introduced in [5]. We discuss the size of the exceptional sets using such capacity.

§ 2. Preliminaries

In this paper, we consider a function

$$\Phi(x,t) := t\phi(x,t) : \mathbf{R}^N \times [0,\infty) \to [0,\infty)$$

satisfying the following conditions $(\Phi 1) - (\Phi 4)$:

- (Φ 1) $\phi(\cdot,t)$ is measurable on \mathbf{R}^N for each $t \geq 0$ and $\phi(x,\cdot)$ is continuous on $[0,\infty)$ for each $x \in \mathbf{R}^N$;
- (Φ 2) there exists a constant $A_1 \geq 1$ such that

$$A_1^{-1} \le \phi(x,1) \le A_1$$
 for all $x \in \mathbf{R}^N$;

(Φ 3) $\phi(x,\cdot)$ is uniformly almost increasing, namely there exists a constant $A_2 \geq 1$ such that

$$\phi(x,t) \le A_2 \phi(x,s)$$
 for all $x \in \mathbf{R}^N$ whenever $0 \le t < s$;

($\Phi 4$) there exists a constant $A_3 \geq 1$ such that

$$\phi(x, 2t) \le A_3 \phi(x, t)$$
 for all $x \in \mathbf{R}^N$ and $t > 0$.

Note that $(\Phi 2)$, $(\Phi 3)$ and $(\Phi 4)$ imply

$$0 < \inf_{x \in \mathbf{R}^N} \phi(x, t) \le \sup_{x \in \mathbf{R}^N} \phi(x, t) < \infty$$

for each t > 0.

If $\Phi(x,\cdot)$ is convex for each $x \in \mathbf{R}^N$, then $(\Phi 3)$ holds with $A_2 = 1$; namely $\phi(x,\cdot)$ is non-decreasing for each $x \in \mathbf{R}^N$.

Let $\bar{\phi}(x,t) := \sup_{0 \le s \le t} \phi(x,s)$ and

$$\overline{\Phi}(x,t) := \int_0^t \bar{\phi}(x,r) \, dr$$

for $x \in \mathbf{R}^N$ and $t \geq 0$. Then $\overline{\Phi}(x,t)$ satisfies $(\Phi 1) - (\Phi 4)$. Furthermore, $\overline{\Phi}(x,\cdot)$ is convex and

(2.1)
$$\frac{1}{2A_3}\Phi(x,t) \le \overline{\Phi}(x,t) \le A_2\Phi(x,t)$$

for all $x \in \mathbf{R}^N$ and $t \ge 0$.

By $(\Phi 3)$, we see that

(2.2)
$$\Phi(x, at) \begin{cases} \leq A_2 a \Phi(x, t) & \text{if } 0 \leq a \leq 1 \\ \geq A_2^{-1} a \Phi(x, t) & \text{if } a \geq 1. \end{cases}$$

Example 2.1. Let $p(\cdot)$ and $q(\cdot)$ be measurable functions on \mathbb{R}^N such that

(P1)
$$1 \le p^- := \inf_{x \in \mathbf{R}^N} p(x) \le \sup_{x \in \mathbf{R}^N} p(x) =: p^+ < \infty$$
 and

 $(\mathrm{Q1}) \ -\infty < q^- := \inf_{x \in \mathbf{R}^N} q(x) \le \sup_{x \in \mathbf{R}^N} q(x) =: q^+ < \infty.$

Then, $\Phi_{p(\cdot),q(\cdot),a}(x,t) = t^{p(x)}(\log(a+t))^{q(x)}$ $(a \ge e)$ satisfies $(\Phi 1)$, $(\Phi 2)$ and $(\Phi 4)$. It satisfies $(\Phi 3)$ if $p^- > 1$ or $q^- \ge 0$. As a matter of fact, it satisfies $(\Phi 3)$ if and only if $q(x) \ge 0$ at points x where p(x) = 1 and

$$\sup_{x:p(x)>1,q(x)<0} q(x)\log(p(x)-1) < \infty$$

(see section 6: Appendix).

Given $\Phi(x,t)$ as above and an open set G in \mathbf{R}^N , the associated Musielak-Orlicz space on G is defined by

$$L^{\Phi}(G) = \left\{ f \in L^1_{\text{loc}}(G) \, ; \, \int_G \Phi(y, |f(y)|) \, dy < \infty \right\},$$

which is a Banach space with respect to the norm

$$||f||_{L^{\Phi}(G)} = \inf \left\{ \lambda > 0 ; \int_{G} \overline{\Phi}(y, |f(y)|/\lambda) dy \le 1 \right\}$$

(cf. [12]).

Lemma 2.2.

$$(2A_3)^{-1} \int_G \Phi(x, |f(x)|) \, dx \le ||f||_{L^{\Phi}(G)} \le 2 \left(A_2 \int_G \Phi(x, |f(x)|) \, dx \right)^{\sigma}$$

whenever $||f||_{L^{\Phi}(G)} \leq 1$, where $\sigma = \log 2/\log(2A_3) > 0$.

Proof. Let $f \in L^{\Phi}(G)$ and suppose $\lambda := ||f||_{L^{\Phi}(G)} \le 1$. Then by (2.1),

$$\int_{G} \Phi(x, |f(x)|) dx \leq 2A_{3} \int_{G} \overline{\Phi}(x, |f(x)|) dx \leq 2A_{3} \lambda \int_{G} \overline{\Phi}(x, |f(x)|/\lambda) dx \leq 2A_{3} \lambda.$$

On the other hand, suppose $\lambda^* := \int_G \Phi(x, |f(x)|) dx \le A_2^{-1}$. Choose $k \in \mathbb{N}$ such that $(2A_3)^{-k} < A_2\lambda^* \le (2A_3)^{-k+1}$. Then, by (2.1) and ($\Phi 4$)

$$\int_{G} \overline{\Phi}(x, 2^{k-1}|f(x)|) dx \le A_2 \int_{G} \Phi(x, 2^{k-1}|f(x)|) dx \le A_2 (2A_3)^{k-1} \lambda^* \le 1.$$

Hence $||f||_{L^{\Phi}(G)} \le 2^{1-k}$. Since $2^{-k} < (A_2\lambda^*)^{\sigma}$,

$$||f||_{L^{\Phi}(G)} \le 2 \left(A_2 \int_G \Phi(x, |f(x)|) \, dx \right)^{\sigma}.$$

We shall also consider the following conditions:

(Φ 5) for every $\gamma > 0$, there exists a constant $B_{\gamma} \geq 1$ such that

$$\phi(x,t) \leq B_{\gamma}\phi(y,t)$$

whenever $|x - y| \le \gamma t^{-1/N}$ and $t \ge 1$;

 $(\Phi 3^*)$ $t \mapsto t^{-\varepsilon_0}\phi(x,t)$ is uniformly almost increasing on $(0,\infty)$ for some $\varepsilon_0 > 0$, namely there exists a constant $A_{2,\varepsilon_0} \ge 1$ such that

$$t^{-\varepsilon_0}\phi(x,t) \le A_{2,\varepsilon_0} s^{-\varepsilon_0}\phi(x,s)$$
 for all $x \in \mathbf{R}^N$ whenever $0 < t < s$.

Example 2.3. Let $\Phi_{p(\cdot),q(\cdot),a}(x,t)$ be as in Example 2.1. It satisfies (Φ 5) if (P2) $p(\cdot)$ is log-Hölder continuous, namely

$$|p(x) - p(y)| \le \frac{C_p}{\log(1/|x - y|)}$$
 for $|x - y| \le \frac{1}{2}$

with a constant $C_p \geq 0$,

and

(Q2) $q(\cdot)$ is log-log-Hölder continuous, namely

$$|q(x) - q(y)| \le \frac{C_q}{\log(\log(1/|x - y|))}$$
 for $|x - y| \le e^{-2}$

with a constant $C_q \geq 0$.

It satisfies $(\Phi 3^*)$ if $p^- > 1$ with $0 < \varepsilon_0 < p^- - 1$.

In this paper, as a kernel function on \mathbf{R}^N , we consider k(x) = k(|x|) (with the abuse of notation) with a function $k(r): (0, \infty) \to (0, \infty)$ satisfying the following conditions:

- (k1) k(r) is non-increasing and lower semicontinuous on $(0, \infty)$;
- (k2) $\int_0^1 k(r) r^{N-1} dr < \infty;$
- (k3) there exists a constant $K_1 \ge 1$ such that $k(r) \le K_1 k(r+1)$ for all $r \ge 1$.

By (k2), $k(\cdot) \in L^1_{loc}(\mathbf{R}^N)$. We set $k(0) = \lim_{r \to 0+} k(r)$. Let

$$\bar{k}(r) := \frac{N}{r^N} \int_0^r k(\rho) \rho^{N-1} \, d\rho$$

for r > 0. Then $k(r) \leq \bar{k}(r)$, $\bar{k}(r)$ is non-increasing and

(2.3)
$$\lim_{r \to 0+} r^N \bar{k}(r) = 0.$$

For $0 < \alpha < N$, the Riesz kernel $I_{\alpha}(x) = |x|^{\alpha - N}$ and the Bessel kernel g_{α} of order α are typical examples of k(x) satisfying above conditions.

We define the k-potential of a locally integrable function f on \mathbf{R}^N by

$$k * f(x) = \int_{\mathbf{R}^N} k(x - y) f(y) \, dy.$$

Here it is natural to assume that

(2.4)
$$\int_{\mathbf{R}^{N}} k(1+|y|)|f(y)| \, dy < \infty,$$

which is equivalent to the condition that $k * |f| \not\equiv \infty$ by the conditions (k2) and (k3) (see [10, Theorem 1.1, Chapter 2]). Note that $k * f \in L^1_{loc}(\mathbf{R}^N)$ under this assumption.

Set

$$\Gamma(x,s) := s^{-1}\bar{k}(s^{-1/N})\Phi^{-1}(x,s) \quad (x \in \mathbf{R}^N, \ s > 0),$$

where $\Phi^{-1}(x,s) = \sup\{t > 0; \Phi(x,t) < s\}.$

Here we note:

(2.5)
$$\Gamma(x,\Phi(x,t)) \approx t\Phi(x,t)^{-1}\bar{k}(\Phi(x,t)^{-1/N}),$$

since $\Phi^{-1}(x,\Phi(x,t)) \approx t$ (cf. [7, Lemma 5.2 (4)]). (For two functions f and g, $f \approx g$ means that there is a constant $C \geq 1$ such that $C^{-1}g \leq f \leq Cg$.)

We shall consider the following condition (Φk) :

 (Φk) $s \mapsto s^{-\varepsilon_1}\Gamma(x,s)$ is uniformly almost increasing on $(0,\infty)$ for some $\varepsilon_1 > 0$, namely there exists a constant $A_{\Gamma} \geq 1$ such that

$$s_1^{-\varepsilon_1}\Gamma(x,s_1) \le A_{\Gamma}s_2^{-\varepsilon_1}\Gamma(x,s_2)$$

for all $x \in \mathbf{R}^N$ whenever $0 < s_1 < s_2$.

Example 2.4. If k is the Riesz kernel I_{α} , then $\Phi_{p(\cdot),q(\cdot),a}(x,t)$ in Example 2.1 satisfies (Φk) if $\alpha p^+ < N$.

We consider a function $\Psi(x,t): \mathbf{R}^N \times [0,\infty) \to [0,\infty)$ satisfying the following conditions:

- $(\Psi 1)$ $\Psi(\cdot,t)$ is measurable on \mathbf{R}^N for each $t\geq 0$ and $\Psi(x,\cdot)$ is continuous on $[0,\infty)$ for each $x\in\mathbf{R}^N$;
- $(\Psi 2)$ there is a constant $A_4 \geq 1$ such that

$$\Psi(x,at) \leq A_4 a \Psi(x,t)$$

for all $x \in \mathbf{R}^N$, t > 0 and $0 \le a \le 1$;

 $(\Psi\Phi k)$ there exists a constant $A_5 \geq 1$ such that

$$\Psi(x, \Gamma(x,s)) \le A_5 s$$

for all $x \in \mathbf{R}^N$ and s > 0.

Note: $(\Psi 2)$ implies that $\Psi(x,\cdot)$ is uniformly almost increasing on $[0,\infty)$; if we assume (Φk) , then $\Gamma(x,t) \to \infty$ uniformly as $t \to \infty$, and hence $(\Psi \Phi k)$ implies that $\Psi(\cdot,t)$ is bounded on \mathbf{R}^N for every t>0.

Example 2.5. For $\Phi_{p(\cdot),q(\cdot),a}(x,t)$ in Example 2.1 and the Riesz kernel I_{α} (0 < $\alpha < N$), if $\alpha p^{+} < N$, then

$$\Gamma(x,s) \approx s^{1/p^{\sharp}(x)} [\log(e+s)]^{-q(x)/p(x)}$$

with

$$\frac{1}{p^{\sharp}(x)} := \frac{1}{p(x)} - \frac{\alpha}{N},$$

so that we may take

$$\Psi(x,t) = t^{p^{\sharp}(x)} (\log(e+t))^{p^{\sharp}(x)q(x)/p(x)}.$$

We know the following result (see [6, Corollary 6.3]; also cf. [7, Corollary 6.5]; note that condition $(\Psi \Phi k)$ given there is essentially the same as the above one, in view of (2.5)).

Lemma 2.6. Suppose $\Phi(x,t)$ satisfies $(\Phi 3^*)$, $(\Phi 5)$ and (Φk) ; $\Psi(x,t)$ satisfies $(\Psi 1)$, $(\Psi 2)$ and $(\Psi \Phi k)$. Then there exists a constant $C^* > 0$, such that

$$\int_{B(0,1)} \Psi(x, k * f(x)/C^*) \, dx \le 1$$

for all $f \geq 0$ satisfying $||f||_{L^{\Phi}(B(0,1))} \leq 1$.

§ 3. Mean continuity

In this section, we prove our main theorem, which gives an extension of Meyers [9], Harjulehto-Hästö [4] and the authors [3, Theorem 4.5], [11, Theorem 3.4].

For a measurable function u on \mathbb{R}^N , we define the integral mean over a measurable set $E \subset \mathbb{R}^N$ of positive measure by

$$\oint_E u(x) \ dx := \frac{1}{|E|} \int_E u(x) \ dx.$$

Theorem 3.1. Let f be a nonnegative measurable function on \mathbf{R}^N satisfying (2.4) and set

$$E_{1} := \{ x \in \mathbf{R}^{N} : k * f(x) = \infty \},$$

$$E_{2} := \{ x \in \mathbf{R}^{N} : \limsup_{r \to 0+} f_{B(x,r)} \Phi(z, r^{N} \bar{k}(r) f(z)) dz > 0 \}.$$

(1) Suppose k(r) satisfies

(k4) there is a constant $K_2 > 0$ such that

$$k(r/2) \le K_2 k(r)$$
 for all $0 < r \le 1$.

Then

(3.1)
$$\lim_{r \to 0+} \int_{B(x_0, r)} |k * f(x) - k * f(x_0)| dx = 0$$

for all $x_0 \in \mathbf{R}^N \setminus (E_1 \cup E_2)$.

- (2) Besides the assumptions on k(r), $\Phi(x,t)$ and $\Psi(x,t)$ given in Lemma 2.6, assume further that k(r) satisfies
- (k5) there is a constant $K_3 > 0$ such that

$$k(rs) \le K_3 \bar{k}(r) k(s)$$
 for all $0 < r \le 1, \ 0 < s \le 1$.

Then

(3.2)
$$\lim_{r \to 0+} \int_{B(x_0,r)} \Psi(x, |k * f(x) - k * f(x_0)|) dx = 0$$

for all $x_0 \in \mathbf{R}^N \setminus (E_1 \cup E_2)$.

Note that (k5) implies (k4) with $K_2 = K_3 \bar{k}(1/2)$. The Riesz kernel I_{α} (0 < α < N) satisfies (k5).

Lemma 3.2. Let $x_0 \in \mathbb{R}^N$ and let f be a nonnegative measurable function on \mathbb{R}^N satisfying

$$\lim_{r\to 0+} \oint_{B(x_0,r)} \Phi\left(z, r^N \bar{k}(r) f(z)\right) dz = 0.$$

Then

$$\lim_{r \to 0+} \bar{k}(r) \int_{B(x_0, r)} f(y) \, dy = 0.$$

Proof. For $\varepsilon > 0$ ($\varepsilon \le 1$), we see from ($\Phi 3$), ($\Phi 2$) and ($\Phi 4$) that

$$\int_{B(x_{0},r)} f(y) \, dy \leq \int_{B(x_{0},r)} \varepsilon r^{-N} \bar{k}(r)^{-1} \, dy + A_{2} \int_{B(x_{0},r)} f(y) \frac{\phi(y,\varepsilon^{-1}r^{N}\bar{k}(r)f(y))}{\phi(y,1)} \, dy
\leq \nu_{N} \varepsilon \bar{k}(r)^{-1} + A_{1} A_{2} \varepsilon r^{-N} \bar{k}(r)^{-1} \int_{B(x_{0},r)} \Phi(y,\varepsilon^{-1}r^{N}\bar{k}(r)f(y)) \, dy
\leq \nu_{N} \varepsilon \bar{k}(r)^{-1} + A(\varepsilon)r^{-N}\bar{k}(r)^{-1} \int_{B(x_{0},r)} \Phi(y,r^{N}\bar{k}(r)f(y)) \, dy,$$

where $\nu_N = |B(0,1)|$, so that

$$\limsup_{r \to 0+} \bar{k}(r) \int_{B(x_0,r)} f(y) \, dy \le \nu_N \varepsilon.$$

Hence, we have the required result.

Proof of Theorem 3.1. Let $x_0 \in \mathbf{R}^N \setminus (E_1 \cup E_2)$ and write

$$k * f(x) - k * f(x_0) = \int_{B(x_0, 2|x - x_0|)} k(x - y) f(y) dy$$
$$+ \int_{\mathbf{R}^N \setminus B(x_0, 2|x - x_0|)} k(x - y) f(y) dy - k * f(x_0)$$
$$= I_1(x) + I_2(x).$$

(1) If $y \in \mathbf{R}^N \setminus B(x_0, 2|x - x_0|)$, then $|x_0 - y| \le 2|x - y|$. Hence, if $|x_0 - y| \le 1$, then $k(x - y) \le k(|x_0 - y|/2) \le K_2 k(x_0 - y)$ by (k1) and (k4); if $1 < |x_0 - y| \le 2$, then $|x - y| \ge |x_0 - y|/2 > 1/2$, so that $k(x - y) \le k(1/2) \le k(1/2)k(2)^{-1}k(x_0 - y)$ by (k1); if $|x_0 - y| > 2$ and $|x - x_0| \le 1$, then $k(x - y) \le k(|x_0 - y| - 1) \le K_1 k(x_0 - y)$ by (k1) and (k3). Thus,

$$(3.3) k(x-y) \le K'k(x_0-y)$$

with $K' = \max\{K_2, k(1/2)/k(2), K_1\}$, whenever $y \in \mathbf{R}^N \setminus B(x_0, 2|x-x_0|)$ and $|x-x_0| \le 1$.

By (k1), k(r) is continuous a.e. on $(0, \infty)$, so that $k(x-y) \to k(x_0-y)$ as $x \to x_0$ for almost every $y \in \mathbf{R}^N$. Since $k * f(x_0) < \infty$, noting (3.3) we can apply Lebesgue's dominated convergence theorem to obtain

(3.4)
$$\lim_{x \to x_0} I_2(x) = 0.$$

Hence

(3.5)
$$\lim_{r \to 0+} \int_{B(x_0, r)} |I_2(x)| \, dx = 0.$$

For I_1 , note that

$$0 \le I_1(x) \le \int_{B(x_0, r)} k(x - y) f(y) \, dy = k * f_r(x)$$

for $x \in B(x_0, r/2)$, where $f_r := f\chi_{B(x_0,r)}$ and χ_E is the characteristic function of E. Hence,

$$\int_{B(x_0, r/2)} I_1(x) dx \le \int_{B(x_0, r/2)} k * f_r(x) dx$$

$$= \int_{B(x_0, r)} \left(\int_{B(x_0, r/2)} k(x - y) dx \right) f(y) dy.$$

Since

$$\int_{B(x_0,r/2)} k(x-y) \, dx \le \int_{B(x_0,r/2)} k(x_0-x) \, dx = \bar{k}(r/2) \le 2^N \bar{k}(r),$$

we have

$$\lim_{r \to 0+} \int_{B(x_0, r)} I_1(x) \, dx = 0$$

by Lemma 3.2. Thus, together with (3.5), we obtain (3.1).

(2) Since (k5) implies (k4), (3.4) holds under our assumptions. Hence

(3.6)
$$\lim_{r \to 0+} \int_{B(x_0, r)} \Psi(x, 2|I_2(x)|) dx = 0$$

by $(\Psi 2)$ and the boundedness of $\Psi(x,1)$.

We will show that

(3.7)
$$\lim_{r \to 0+} \int_{B(x_0,r)} \Psi(x, 2k * f_r(x)) dx = 0.$$

Let $0 < r \le 1$, $x = x_0 + rz$ with |z| < 1. For $y \in B(x_0, r)$, write $y = x_0 + rw$ with |w| < 1. If $|z - w| \le 1$, then by (k5) $k(x - y) \le K_3 \bar{k}(r) k(z - w)$. If 1 < |z - w| < 2, then r < |x - y| < 2r, so that by (k1), (k5) and (k3)

$$k(x-y) \le k(r) \le K_3 \bar{k}(r) k(1) \le K_3 K_1 \bar{k}(r) k(2) \le K_1 K_3 \bar{k}(r) k(z-w)$$
.

Hence

$$k * f_r(x) = \int_{B(x_0, r)} k(x - y) f(y) \, dy \le K_1 K_3 \int_{B(0, 1)} r^N \bar{k}(r) k(z - w) f(x_0 + rw) \, dw$$

if $0 < r \le 1$. Thus, to prove (3.7) it is enough to show

(3.8)
$$\lim_{r \to 0+} \int_{B(0,1)} \Psi(x_0 + rz, 2k * g_r(z)) dz = 0,$$

where $g_r(w) = r^N \bar{k}(r) f_r(x_0 + rw)$.

Let

$$\Phi_{x_0,r}(x,t) = \Phi(x_0 + rx,t)$$
 and $\Psi_{x_0,r}(x,t) = \Psi(x_0 + rx,t)$.

Then, $\Phi_{x_0,r}$ satisfies $(\Phi 1)$, $(\Phi 2)$, $(\Phi 3^*)$, $(\Phi 4)$ and (Φk) with the same constants A_1 , ε_0 , A_{2,ε_0} , A_3 , ε_1 and A_{Γ} . Further, it satisfies $(\Phi 5)$ with the same B_{γ} whenever $0 < r \le 1$.

As to $\Psi_{x_0,r}$, it satisfies $(\Psi 1)$ and $(\Psi 2)$ with the same constant A_4 . The pair $(\Phi_{x_0,r}, \Psi_{x_0,r})$ satisfies $(\Psi \Phi k)$ with the same constant A_5 .

Therefore, by Lemma 2.6, there exists a constant $C^* > 0$ independent of x_0 and $0 < r \le 1$ such that

$$\int_{B(0,1)} \Psi_{x_0,r} \left(z, \frac{k * g_r(z)}{C^* \lambda_r} \right) dz \le 1,$$

or

$$\int_{B(0,1)} \Psi\left(x_0 + rz, \frac{k * g_r(z)}{C^* \lambda_r}\right) dz \le 1,$$

where $\lambda_r = ||g_r||_{L^{\Phi_{x_0,r}}(B(0,1))}$. Then, by (Ψ_2), we have

$$\int_{B(0,1)} \Psi(x_0 + rz, 2k * g_r(z)) dz \le 2A_4 C^* \lambda_r$$

whenever $2C^*\lambda_r \leq 1$. Now, $x_0 \notin E_2$ implies

$$\int_{B(0,1)} \Phi_{x_0,r}(z, g_r(z)) dz = \int_{B(0,1)} \Phi(x_0 + rz, r^N \bar{k}(r) f_r(x_0 + rz)) dz$$
$$= |B(0,1)| \int_{B(x_0,r)} \Phi(x, r^N \bar{k}(r) f(x)) dx \to 0 \quad \text{as } r \to 0 + .$$

Hence, by Lemma 2.2, $\lambda_r \to 0$ as $r \to 0+$. Thus (3.8), and hence (3.7) holds. Since

$$\Psi(x, |k * f(x) - k * f(x_0)|) \le A_4 \Psi(x, I_1(x) + |I_2(x)|)$$

$$\le A_4^2 (\Psi(x, 2I_1(x)) + \Psi(x, 2|I_2(x)|))$$

by $(\Psi 2)$, and

$$\int_{B(x_0,r/2)} \Psi(x, 2I_1(x)) dx \le A_4 \int_{B(x_0,r/2)} \Psi(x, 2k * f_r(x)) dx
\le 2^N A_4 \int_{B(x_0,r)} \Psi(x, 2k * f_r(x)) dx,$$

(3.2) follows from (3.6) and (3.7).

§ 4. Mean continuity (II)

Set

$$u_{B(x_0,r)} := \int_{B(x_0,r)} u(y) \, dy$$

for $u \in L^1_{loc}(\mathbf{R}^N)$.

Combining (3.1) and (3.2) in Theorem 3.1, we see that

(4.1)
$$\lim_{r \to 0+} \oint_{B(x_0,r)} \Psi(x, |k * f(x) - (k * f)_{B(x_0,r)}|) dx = 0$$

holds for $x_0 \in \mathbf{R}^N \setminus (E_1 \cup E_2)$. In this section, we shall show that this holds also for $x_0 \in E_1 \setminus E_2$ under the following additional condition for k:

(k6) there exists a constant $K_4 > 0$ such that

$$k(r) - k(s) \le K_4(s - r)r^{-1}k(r)$$

whenever 0 < r < s.

The Riesz kernel $I_{\alpha}(x) = |x|^{\alpha - N}$ (0 < α < N) satisfies this condition.

Note that if k satisfies (k6), then k is continuous and

(4.2)
$$d(-r^{-1}k(r)) \le (1+K_4)r^{-1}k(r)\frac{dr}{r}.$$

Theorem 4.1. Besides the assumptions on k(r), $\Phi(x,t)$ and $\Psi(x,t)$ given in Lemma 2.6, assume further that k(r) satisfies (k5) and (k6). Let f be a nonnegative measurable function on \mathbf{R}^N satisfying (2.4). Then (4.1) holds for all $x_0 \in \mathbf{R}^N \setminus E_2$, where

$$E_2 = \left\{ x \in \mathbf{R}^N : \limsup_{r \to 0+} f_{B(x,r)} \Phi\left(z, r^N \bar{k}(r) f(z)\right) dz > 0 \right\}.$$

Lemma 4.2. Let $x_0 \in \mathbf{R}^N$ and let f be a nonnegative measurable function on \mathbf{R}^N satisfying (2.4). Then

$$g(t) := k(t) \int_{B(x_0,t)} f(y) \, dy$$

is bounded on $[\delta, \infty)$ for $\delta > 0$.

Proof. It is enough to show that g(t) is bounded on $[1, \infty)$, since $\int_{B(x_0, 1)} f(y) dy < \infty$ by (2.4).

If $1 \le |x_0 - y| < t$, then $1 + |y| \le m + t$ for an integer m such that $m \ge 1 + |x_0|$. Hence, by (k3), $k(t) \le K_1^m k(m+t) \le K_1^m k(1+|y|)$. Therefore

$$g(t) \le k(1) \int_{B(x_0,1)} f(y) \, dy + K_1^m \int_{B(x_0,t) \setminus B(x_0,1)} k(1+|y|) f(y) \, dy$$

$$\le k(1) \int_{B(x_0,1)} f(y) \, dy + K_1^m \int_{\mathbf{R}^N} k(1+|y|) f(y) \, dy < \infty$$

for $t \geq 1$.

Lemma 4.3. Let $x_0 \in \mathbf{R}^N$ and let f be a nonnegative measurable function on \mathbf{R}^N satisfying (2.4) and

$$\lim_{r\to 0+} \oint_{B(x_0,r)} \Phi\left(z, r^N \bar{k}(r) f(z)\right) dz = 0.$$

Then

$$\lim_{r \to 0+} r \int_{2r}^{\infty} t^{-1} k(t) \left(\int_{B(x_0, t)} f(y) \, dy \right) \, \frac{dt}{t} = 0.$$

Proof. Let $\varepsilon > 0$. Then, by Lemma 3.2 and $k(t) \leq \bar{k}(t)$, there exists a constant $0 < \delta \leq 1$ such that

$$k(t) \int_{B(x_0,t)} f(y) \, dy \le \varepsilon$$

for all $t \in (0, \delta)$. By the previous lemma, there exists M > 0 such that

$$k(t) \int_{B(x_0,t)} f(y) \, dy \le M < \infty$$

for all $t \in [\delta, \infty)$. Hence, for $0 < r \le \delta/2$, we have

$$\int_{2r}^{\infty} t^{-1}k(t) \left(\int_{B(x_0,t)} f(y) \, dy \right) \, \frac{dt}{t} \le \varepsilon \int_{2r}^{\delta} t^{-1} \, \frac{dt}{t} + M \int_{\delta}^{\infty} t^{-1} \, \frac{dt}{t} \le \varepsilon r^{-1} + M \delta^{-1},$$

so that

$$\limsup_{r \to 0+} r \int_{2r}^{\infty} t^{-1}k(t) \left(\int_{B(x_0,t)} f(y) \, dy \right) \, \frac{dt}{t} \le \varepsilon.$$

Hence, we have the required result.

Proof of Theorem 4.1. Let $x_0 \in \mathbf{R}^N \setminus E_2$ and let $x \in B(x_0, r)$. Also, let $0 < r \le 1$. Write

$$k * f(x) - (k * f)_{B(x_0,r)} = \int_{B(x_0,2r)} k(x-y)f(y) dy$$

$$+ \int_{\mathbf{R}^N \setminus B(x_0,2r)} k(x-y)f(y) dy - (k * f)_{B(x_0,r)}$$

$$= \int_{B(x_0,2r)} k(x-y)f(y) dy$$

$$+ \int_{\mathbf{R}^N \setminus B(x_0,2r)} \left(\oint_{B(x_0,r)} (k(x-y) - k(y-z)) dz \right) f(y) dy$$

$$- \int_{B(x_0,2r)} \left(\oint_{B(x_0,r)} k(y-z) dz \right) f(y) dy$$

$$= I_1(x) + I_2(x) - I_3.$$

For I_2 , let $|x_0 - x| < r$, $|x_0 - z| < r$ and $|x_0 - y| \ge 2r$. Then, by (k6)

$$|k(x-y) - k(z-y)| \le 2K_4|x-z||x_0-y|^{-1}\max\{k(x-y), k(z-y)\}.$$

As in the proof of Theorem 3.1, we see that

$$k(x-y) \le K'k(x_0-y)$$
 and $k(z-y) \le K'k(x_0-y)$

with $K' = \max\{K_3\bar{k}(1/2), k(1/2)/k(2), K_1\}$. Hence

$$|I_2(x)| \le 2K_4 K' \left(\oint_{B(x_0,r)} |x - z| \, dz \right) \int_{\mathbf{R}^N \setminus B(x_0,2r)} |x_0 - y|^{-1} k(x_0 - y) f(y) \, dy$$

$$\le Cr \int_{2r}^{\infty} t^{-1} k(t) dF_{x_0}(t),$$

where $F_{x_0}(t) = \int_{B(x_0,t)} f(y) dy$. In view of (4.2) and Lemma 4.2, integration by parts yields

$$\int_{2r}^{\infty} t^{-1}k(t)dF_{x_0}(t) \le C \int_{2r}^{\infty} t^{-1}k(t)F_{x_0}(t)\frac{dt}{t}.$$

Therefore by Lemma 4.3,

$$\lim_{r \to 0+} \sup_{x \in B(x_0, r)} |I_2(x)| = 0.$$

As to I_3 , we have by Lemma 3.2

$$0 \le I_3 \le \bar{k}(r) \int_{B(x_0, 2r)} f(y) \, dy \le 2^N \bar{k}(2r) \int_{B(x_0, 2r)} f(y) \, dy \to 0$$

as $r \to 0+$.

Hence, by $(\Psi 2)$

$$\lim_{r \to 0+} \oint_{B(x_0, r)} \Psi(x, 2|I_2(x) - I_3|) \, dx = 0.$$

On the other hand, the arguments to obtain (3.7) in the proof of Theorem 3.1 show that

$$\lim_{r \to 0+} \int_{B(x_0, r)} \Psi(x, 2I_1(x)) \, dx = 0.$$

Hence again using $(\Psi 2)$ we see that

$$\lim_{r \to 0+} \int_{B(x_0,r)} \Psi(x, |k * f(x) - (k * f)_{B(x_0,r)}|) dx = 0.$$

§ 5. Size of exceptional sets

First, we introduce a notion of capacity (cf. [5]). For a set $E \subset \mathbf{R}^N$ and an open set $G \subset \mathbf{R}^N$, we define the (k, Φ) -capacity of E relative to G by

$$C_{k,\Phi}(E;G) = \inf_{f \in S_k(E;G)} \int_G \overline{\Phi}(y, f(y)) dy,$$

where $S_k(E;G)$ is the family of all nonnegative measurable functions f on \mathbf{R}^N such that f vanishes outside G and $k*f(x) \geq 1$ for every $x \in E$. Here, note that $E \subset G$ is not required.

Lemma 5.1 ([5, Proposition 3.1]). The set function $C_{k,\Phi}(\cdot;G)$ is countably subadditive and nondecreasing.

We say that E is of (k, Φ) -capacity zero, written as $C_{k,\Phi}(E) = 0$, if

 $C_{k,\Phi}(E \cap G; G) = 0$ for every bounded open set G.

Lemma 5.2 ([5, Proposition 3.3]). For $E \subset \mathbf{R}^N$, $C_{k,\Phi}(E) = 0$ if and only if there exists a nonnegative function $f \in L^{\Phi}(\mathbf{R}^N)$ such that $k * f \not\equiv \infty$ and

$$k * f(x) = \infty$$
 whenever $x \in E$.

By Lemma 5.2 we have

Proposition 5.3. If $f \in L^{\Phi}(\mathbf{R}^N)$, then E_1 in Theorem 3.1 has (k, Φ) -capacity zero.

To estimate the size of E_2 in Theorem 3.1, we introduce a Hausdorff measure defined by the (variable) measure function

$$h(r;x) = r^N \Phi(x, r^{-N} \bar{k}(r)^{-1})$$

for $x \in \mathbf{R}^N$ and r > 0.

We define the Hausdorff h-measure of $E \subset \mathbf{R}^N$ by

$$H_h(E) = \inf \left\{ \sum_j h(r_j; x_j) : \bigcup_j B(x_j, r_j) \supset E, \ 0 < r_j < 1 \right\}.$$

Here we note that

- (h1) there exists a constant A>0 such that $h(5r;x)\leq Ah(r;x)$ for all $x\in \mathbf{R}^N$ and r>0:
- (h2) $\lim_{r\to 0} r^{-N} (\inf_x h(r; x)) = \infty.$

We show the following result (cf. Meyers [8, 9]; also cf. [10, Chapter 5, Lemma 8.2]).

Lemma 5.4. If $f \in L^{\Phi}(\mathbf{R}^N)$, then $H_h(E_{h,f}) = 0$, where

$$E_{h,f} := \left\{ x \in \mathbf{R}^N : \limsup_{r \to 0+} \frac{1}{h(r;x)} \int_{B(x,r)} \Phi(y,|f(y)|) \, dy > 0 \right\}.$$

Proof. It suffices to show that $H_h(E(a)) = 0$ for each a > 0, where

$$E(a) := \left\{ x \in \mathbf{R}^N : \limsup_{r \to 0+} \frac{1}{h(r;x)} \int_{B(x,r)} \Phi(y,|f(y)|) \, dy > a \right\}.$$

For $\varepsilon > 0$, by (h2) we can find $\delta > 0$ ($\delta \leq 1$) such that

$$h(r;x) > \varepsilon^{-1}r^N$$

for all $x \in \mathbf{R}^N$ and $0 < r < \delta$. For each $x \in E(a)$, take B(x, r(x)) such that $0 < r(x) < \delta$ and

$$\frac{1}{h(r(x);x)} \int_{B(x,r)} \Phi(y,|f(y)|) \, dy > a.$$

By a covering lemma (see, e.g., [1, Theorem 1.4.1]), we can take a disjoint subfamily $\{B(x_j, r(x_j))\}\$ such that $E(a) \subset \bigcup_i B(x_j, 5r(x_j))$. Then

$$\begin{split} H_h(E(a)) &\leq \sum_j h(5r(x_j); x_j) \\ &\leq A \sum_j h(r(x_j); x_j) \\ &\leq A a^{-1} \int_{\bigcup_j B(x_j, r(x_j))} \Phi(y, |f(y)|) \, dy. \end{split}$$

Note here that

$$\varepsilon^{-1} \sum_{j} r(x_j)^N \le \sum_{j} h(r(x_j); x_j)$$

$$\le a^{-1} \int_{\bigcup_{j} B(x_j, r(x_j))} \Phi(y, |f(y)|) dy,$$

so that

$$\left| \bigcup_{j} B(x_{j}, r(x_{j})) \right| \leq Ca^{-1} \varepsilon \int_{\mathbf{R}^{N}} \Phi(y, |f(y)|) \, dy.$$

Since $f \in L^{\Phi}(\mathbf{R}^N)$, by the absolute continuity of integrals we see that $H_h(E(a)) = 0$, as required.

On the other hand, by [5, Corollary 4.8], we have the following result.

Lemma 5.5. Suppose $\Phi(x,t)$ satisfies $(\Phi 5)$. If $f \in L^{\Phi}(\mathbf{R}^N)$, then $C_{k,\Phi}(E_{h,f}) = 0$.

Here note that the condition

(5.1)
$$\limsup_{r \to 0+} \frac{\sup_{y \in B(x,r)} \Phi(y, r^{-N} \bar{k}(r)^{-1})}{\inf_{y \in B(x,r)} \Phi(y, r^{-N} \bar{k}(r)^{-1})} < \infty$$

in [5, Corollary 4.8] is satisfied by $(\Phi 5)$, since $r^N \bar{k}(r) \leq 1$ for small r > 0 by (2.3).

Now, we consider a further condition on $\Phi(x,t)$:

 $(\Phi 6)$ there exists a constant $A_6 > 0$ such that

$$\Phi(x,s) \Phi(x,t) < A_6 \Phi(x,st)$$

for all $x \in \mathbf{R}^N$, $s \ge 1$ and t > 0.

Example 5.6. Let $\Phi_{p(\cdot),q(\cdot),a}(x,t)$ be as in Example 2.1. It satisfies (Φ 6) if and only if $q^+ \leq 0$; cf. [11, Proposition 3.7].

Lemma 5.7. Suppose $\Phi(x,t)$ satisfies $(\Phi 5)$ and $(\Phi 6)$. Let f be a nonnegative measurable function on \mathbb{R}^N and let E_2 be as in Theorem 3.1. Then $E_2 \subset E_{h,f}$.

Proof. Let f be a nonnegative measurable function on \mathbf{R}^N and let $x \in \mathbf{R}^N$. By (2.3), there is $0 < r_1 \le 1$ such that $r_1^N \bar{k}(r_1) \le 1$. If $0 < r \le r_1$ and $y \in B(x, r)$, then by ($\Phi 6$) and ($\Phi 5$),

$$\Phi(y, r^N \bar{k}(r) f(y)) \le A_6 B_\gamma \frac{\Phi(y, f(y))}{\Phi(x, r^{-N} \bar{k}(r)^{-1})},$$

where $\gamma = \bar{k}(r_1)^{-1/N}$. Hence $E_2 \subset E_{h,f}$.

Combining this lemma with Lemmas 5.4 and 5.5, we obtain

Proposition 5.8. Assume that Φ satisfies $(\Phi 5)$ and $(\Phi 6)$. If $f \in L^{\Phi}(\mathbf{R}^N)$, then E_2 in Theorem 3.1 has Hausdorff h-measure zero, that is, $H_h(E_2) = 0$, and it has (k, Φ) -capacity zero.

Remark 1. The above definition of the Hausdorff measure is slightly different from the one in [5]. However, noting (5.1), we see that the proof of [5, Theorem 4.10] is valid for H_h and we have the following result:

Suppose $\Phi(x,t)$ satisfies ($\Phi 5$). If $H_h(E)=0$, then $C_{k,\Phi}(E)=0$.

Applying Theorem 3.1, Proposition 5.3 and Proposition 5.8 to $k = I_{\alpha}$, we can state:

Corollary 5.9. Let $0 < \alpha < N$ and let $f \in L^{\Phi}(\mathbf{R}^N)$ satisfy (2.4) with $k = I_{\alpha}$. Suppose $\Phi(x, t)$ satisfies $(\Phi 3^*)$, $(\Phi 5)$, $(\Phi 6)$ and

 (ΦI_{α}) $s \mapsto s^{-\varepsilon_1 - \alpha/N} \Phi^{-1}(x, s)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon_1 > 0$; $\Psi(x, t)$ satisfies $(\Psi 1)$, $(\Psi 2)$ and

 $(\Psi\Phi I_{\alpha})$ there exists a constant $A_5' \geq 1$ such that

$$\Psi\left(x, s^{-\alpha/N}\Phi^{-1}(x, s)\right) \le A_5' s$$

for all $x \in \mathbf{R}^N$ and s > 0.

Then

$$\lim_{r \to 0+} \int_{B(x_0, r)} \Psi(x, |I_\alpha * f(x) - I_\alpha * f(x_0)|) dx = 0$$

holds for all $x_0 \in \mathbf{R}^N \setminus E$ for a set E of (I_α, Φ) -capacity zero.

§ 6. Appendix: uniform almost-increasingness of $t^{p(\xi)} (\log(e+t))^{q(\xi)}$

In this section, we give an outline of a proof of the equivalence stated in the last part of Example 2.1.

For a positive function f(t) on $(0, \infty)$, set

$$A[f] := \sup_{t>0} \frac{f(t)}{f(\lambda t)}.$$

f is almost increasing on $(0, \infty)$ if and only if $A[f] < \infty$. Note that f is non-decreasing on $(0, \infty)$ iff A[f] = 1.

A family $\{f_{\xi}(t)\}_{\xi\in X}$ of positive functions on $(0,\infty)$ is uniformly almost increasing if and only if

$$\sup_{\xi \in X} A[f_{\xi}] < \infty.$$

For $p \geq 0$ and $q \in \mathbf{R}$, we consider the function

$$F_{p,q}(t) = t^p (\log(e+t))^q, \quad t \in [0, \infty).$$

Obviously, if $q \geq 0$, then $F_{p,q}(t)$ is non-decreasing on $(0, \infty)$. If p = 0 and q < 0, then $F_{0,q}(t)$ is not almost increasing. In case p > 0 and q < 0, it is easy to see that $F_{p,q}(t)$ is almost increasing. We are interested in the evaluation of $A[F_{p,q}]$ in this case. Since

$$A[F_{p,q}] = A[F_{p/(-q),-1}]^{-q},$$

we will evaluate $A[F_{r,-1}]$ for r > 0.

Let $c_0 := \log(e+1)$. We see that

$$\frac{1}{c_0}\log(e+\lambda) \leq \sup_{t>0} \frac{\log(e+\lambda t)}{\log(e+t)} \leq 1 + \log\lambda \leq 2\log(e+\lambda)$$

for $\lambda \geq 1$. Hence, letting

$$L(r) := \sup_{\lambda > 1} \lambda^{-r} \log(e + \lambda),$$

we have

(6.1)
$$\frac{1}{c_0}L(r) \le A[F_{r,-1}] \le 2L(r) \qquad (r > 0).$$

Here note that $\sup_{1 \le \lambda \le e} \lambda^{-r} \log(e + \lambda) \le 2$,

$$\sup_{\lambda > e} \lambda^{-r} \log(e + \lambda) \le 2 \sup_{\lambda > e} \lambda^{-r} \log \lambda \le \frac{2}{er},$$

 $L(r) \ge \log(e+1) = c_0$ and

$$L(r) \ge \frac{1}{e} \log \left(e + e^{1/r} \right) > \frac{1}{er},$$

so that

$$\max\left(\frac{1}{er}, c_0\right) \le L(r) \le 2\max\left(\frac{1}{er}, 1\right) \qquad (r > 0).$$

Hence, by (6.1),

$$\max\left(\frac{1}{c_0 e r}, 1\right) \le A[F_{r,-1}] \le 4 \max\left(\frac{1}{e r}, 1\right) \quad (r > 0).$$

Thus, for p > 0 and q < 0,

$$\left[\max\left(\frac{-q}{c_0ep},1\right)\right]^{-q} \le A[F_{p,q}] \le \left[4\max\left(\frac{-q}{p},1\right)\right]^{-q}.$$

Note that $e^{-1/e} \leq (-q)^{-q} \leq \max(1, (-q_0)^{-q_0})$ if $q_0 \leq q < 0$. Then from the above inequalities we have:

Proposition 6.1. Let X be a nonepmty set and let $p(\cdot)$ and $q(\cdot)$ be real valued functions on X such that $p(\xi) \geq 0$ for all $\xi \in X$ and $\inf_{\xi \in X} q(\xi) > -\infty$. Then, the following (1) and (2) are equivalent to each other:

- (1) The family $\{F_{p(\xi),q(\xi)}(t)\}_{\xi\in X}$ is uniformly almost increasing on $(0,\infty)$;
- (2) $q(\xi) \ge 0$ at points $\xi \in X$ where $p(\xi) = 0$, and

$$\sup_{\xi \in X, \ p(\xi) > 0, \ q(\xi) < 0} q(\xi) \log p(\xi) < \infty.$$

References

- [1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer, 1996.
- [2] A. Fiorenza, A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math. 4 (2002), no. 3, 587–605.
- [3] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr. 279 (2006), 1463–1473.
- [4] P. Harjulehto and P. Hästö, Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn. Math. **29** (2004), 295–306.
- [5] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Capacity for potentials of functions in Musielak-Orlicz spaces, Nonlinear Anal. **74** (2011), 6231–6243.
- [6] _____, Boundedness of maximal operator and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Research on potential theory 2010, Ohita Univ., 17–30.
- [7] _____, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), 76–96.
- [8] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255–292.
- [9] ______, Continuity properties of potentials, Duke Math. J. **42** (1975), 157–166.
- [10] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [11] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. **345** (2008), 70–85.
- [12] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
- [13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
- [14] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117–128.