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Accumulation of periodic points for local uniformly
quasiregular mappings

By

Yûsuke OKUYAMA * and Pekka PANKKA**

Abstract

We consider accumulation of periodic points in local uniformly quasiregular dynamics.
Given a local uniformly quasiregular mapping f with a countable and closed set of isolated

essential singularities and their accumulation points on a closed Riemannian manifold, we show

that points in the Julia set are accumulated by periodic points. If, in addition, the Fatou set

is non‐empty and connected, the accumulation is by periodic points in the Julia set itself. We

also give sufficient conditions for the density of repelling periodic points.

§1. Introduction

Let M and N be oriented Riemannian n‐manifolds for n\geq 2 . A continuous map‐

ping f:M\rightarrow N is called K ‐quasiregular, K\geq 1 ,
if f belongs to the Sobolev space

W_{1\mathrm{o}\mathrm{c}}^{1,n}(M, N) and satisfies the distortion inequality

\Vert df\Vert^{n}\leq KJ_{f} a.e. on M,

where \Vert df\Vert is the operator norm of the differential  df of f and J_{f} the Jacobian deter‐

minant of f satisfying f^{*}(\mathrm{v}\mathrm{o}1_{N})=J_{f}\mathrm{v}\mathrm{o}1_{M} ,
where \mathrm{v}\mathrm{o}1_{M} and \mathrm{v}\mathrm{o}1_{N} are the Riemannian

volume forms on M and N
, respectively.

A quasiregular self‐map f:M\rightarrow M is called uniformly K ‐quasiregular (K ‐UQR)
if all iterates f^{k} for k\geq 1 are K‐quasiregular. Similarly as quasiregular mappings have
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the rôle of holomorphic mappings in the n‐dimensional Euclidean conformal geometry
for n\geq 3 ,

the dynamics of uniformly quasiregular mappings can be viewed as the

counterpart of holomorphic dynamics in the n‐dimensional conformal geometry. We

refer to the seminal paper of Iwaniec and Martin [12] and Hinkkanen, Martin, Mayer

[9] for the fundamentals in this theory.
In this article we consider dynamics of local UQR‐mappings. Let M be an oriented

Riemannian n‐manifold and  $\Omega$\subset M an open set. Following the terminology in [9], we

say a mapping f: $\Omega$\rightarrow M is a local uniformly K ‐quasiregular, K\geq 1 ,
if for every k\in \mathbb{N},

\displaystyle \bigcap_{j=0}^{k-1}f^{-j}( $\Omega$)\neq\emptyset and  f^{k}:\displaystyle \bigcap_{j=0}^{k-1}f^{-j}( $\Omega$)\rightarrow M is K‐quasiregular.
With slight modifications, the standard terminology from dynamics is at our dis‐

posal also in this local setting. Let

D_{f}:= the interior of \displaystyle \bigcap_{k\geq 0}f^{-k}() =M\displaystyle \backslash \bigcup_{k\geq 0}f^{-k}(M\backslash  $\Omega$) .

As usual, the Fatou set F(f) of f is the maximal open subset in D_{f} where the family

\{f^{k};k\in \mathbb{N}\} is normal, the Julia set of f is the set

J(f):=M\backslash F(f) ,

and the exceptional set of f is

\displaystyle \mathcal{E}(f):=\{x\in M;\#\bigcup_{k\geq 0}f^{-k}(x)<\infty\}.
A point x\in M is a periodic point of f in M if x\displaystyle \in\bigcap_{j=0}^{p-1}f^{-j}() and f^{p}(x)=x for

some p\in \mathbb{N} . We call p a period of x (under f). Note that periodic points always belong
to the set \overline{D_{f}}.

A periodic point x\in M with period p\in \mathbb{N} is (topologically) repelling if  f:U\rightarrow

 f^{p}(U) is univalent and U\subset f^{p}(U) for some open neighborhood U of x in \displaystyle \bigcap_{j=0}^{p-1}f^{-j}
Note that, then x\in J(f) ; see [9, §4].

In [9], Hinkkanen, Martin and Mayer gave a classification of cyclic Fatou compo‐

nents of f (see Theorem 2.12) as well as periodic points. We study both J(f) and \mathcal{E}(f)
for a non‐constant local uniformly quasiregular mapping

f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M},

where \mathrm{M} is a closed, oriented, and connected Riemannian n‐manifold, n\geq 2 ,
and S_{f}

is a countable and closed subset in \mathrm{M} consisting of isolated essential singularities of f
and their accumulation points in M. In our first main theorem, we also consider a sub‐

class of non‐elementary UQR‐mappings. A non‐constant local uniformly quasiregular

mapping f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} is non‐elementary if it is non‐injective and satisfies

J(f)\not\subset \mathcal{E}(f) .
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For comments on the non‐injectivity and non‐elementarity, see Section 5.

Recall that a point x in a topological space X is accumulated by a subset S in X if

for every neighborhood N of x,  S\cap(N\backslash \{x\})\neq\emptyset ,
and that a subset  S in X is perfe ct

if S is non‐empty, compact, and has no isolated points in X.

Theorem 1. Let \mathrm{M} be a closed, oriented, and connected Riemannian n ‐manifold,
n\geq 2 ,

and f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} a non‐constant local uniformly K ‐quasiregular mapping,

K\geq 1 ,
where S_{f} is a countable and closed subset in \mathrm{M} and consists of isolated essential

singularities of f and their accumulation points in M. Then J(f) is nowhere dense in

\mathrm{M} unless J(f)=\mathrm{M} . Furthermore, the following hold:

(a) If f is non‐injective, then  J(f)\neq\emptyset and \#\mathcal{E}(f)<\infty . Moreover, for every  x\in

\mathrm{M}\backslash \mathcal{E}(f) , points in J(f) are accumulated by \displaystyle \bigcup_{k\geq 0}f^{-k}(x) .

(b) If f is non‐injective and  S_{f}=\emptyset , then \mathcal{E}(f)\subset F(f) and f is non‐elementary.

(c) If f is a priori non‐elementary, then J(f) is perfe ct and points in J(f) are accu‐

mulated by periodic points of f.

For non‐constant and non‐injective uniformly quasiregular endomorphisms of the

n‐sphere \mathrm{S}^{n}
,
the accumulation of periodic points to J(f) in Theorem 1 is due to Siebert

[21, 3.3.6 Theorem]; note that by a theorem of Fletcher and Nicks [6], J(f) is in fact

uniformly perfect in this case.

The proof of the accumulation of periodic points to the Julia set for non‐elementary

f is based on two rescaling principles (see Section 2). It is a generalization of Schwick�s

argument [19] (see also Bargmann [2] and BertelootDuval [3]), which is a reminiscent to

Julia�s construction of (expanding) homoclinic orbits for rational functions ([14, §14
Our argument simultaneously treats all the cases S_{f}=\emptyset, 0<\displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty,
and \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty ,

which are typically studied separately.
In the final assertion in Theorem 1, it would be natural and desirable to obtain the

density of (repelling) periodic points in  J(f) .

Our second main theorem gives sufficient conditions for those density results. The

topological dimension of a subset E in \mathrm{M} is denoted by \dim E and the branch set of f

by B_{f} ; the branch set B_{f} is the set of points at which f is not a local homeomorphism.

Theorem 2. Let \mathrm{M} be a closed, oriented, and connected Riemannian n ‐manifold,
n\geq 2 ,

and f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} be a non‐elementary local uniformly K ‐quasiregular map‐

ping, K\geq 1 ,
where S_{f} is a countable and closed subset in \mathrm{M} and consists of isolated

essential singularities of f and their accumulation points in M. Then

(a) If F(f) is non‐empty and connected, then points in J(f) are accumulated by periodic

points of f contained in J(f) .
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(b) If one of the following four conditions

(i) \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty and \dim J(f)>n-2,

(ii) f has a repelling periodic point in D_{f}\displaystyle \backslash (\mathcal{E}(f)\cup\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}
(iii) J(f)\displaystyle \not\subset\bigcap_{j\in \mathbb{N}}\overline{\bigcup_{k\geq j}f^{k}(B_{f^{k}})} , or

(iv) n=2

holds, then points in J(f) are accumulated by repelling periodic points of f.

Theorem 2 combines and extends previous results of HinkkanenMartinMayer ([9])
and Siebert ([20]) for UQR‐mappings and classical results of Fatou and Julia ([14, §14
Baker [1], Bhattacharyya [4], and Bolsch [5] and Herring [8] in the holomorphic case.

For non‐constant and non‐injective uniformly quasiregular endomorphisms of \mathrm{S}^{n},
the repelling density in J(f) is due to Hinkkanen, Martin and Mayer [9] when F(f)
is either empty or not connected. Under these conditions  S_{f}=\emptyset and \dim J(f)>
n‐2. Siebert [20, 4.3.6 Satz] proved the repelling density under the assumption  J(f)\not\subset

\overline{\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}}) . In this case J(f)\displaystyle \not\subset\bigcap_{j\in \mathbb{N}}\overline{\bigcup_{k\geq j}f^{k}(B_{f^{k}})}.
In the holomorphic dynamics, i.e. for \mathrm{M}=\mathrm{S}^{2} (so n=2 ) and K=1

, every non‐

constant and non‐injective holomorphic mapping f:\mathrm{S}^{2}\backslash S_{f}\rightarrow \mathrm{S}^{2} is non‐elementary

(see Section 5). For  S_{f}=\emptyset ,
the repelling density in  J(f) is a classical result of Fatou

and Julia (cf. [14, §14]). For \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=1 ,
2 and \# S_{f}=\infty ,

it is due to Baker

[1], Bhattacharyya [4], Bolsch [5] and Herring [8]. Note that our proof covers also the

case \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})>2.
This paper is organized as follows. In Section 2, we give a unified treatment for

normal families and isolated essential singularities of quasiregular mappings. We also

recall the invariance of the dynamical sets D_{f}, F(f) , J(f) ,
and \mathcal{E}(f) under f and the

HinkkanenMartinMayer classification for cyclic Fatou components of non‐elementary
local uniformly quasiregular mappings. In Sections 3 and 4, we prove Theorems 1 and

2. We finish, in Section 5, with comments on the non‐injectivity and non‐elementarity
of non‐constant local uniformly quasiregular dynamics.

§2. Preliminaries

We begin with notations and fundamental facts from the local degree theory. For

each oriented n‐manifold X
,

we fix a generator $\omega$_{X} of H_{c}^{n}(X;\mathbb{Z}) representing the ori‐

entation of X
,

and for each subdomain D\subset X ,
a generator $\omega$_{D} of H_{c}^{n}(D;\mathbb{Z}) satisfying

$\omega$_{X}=$\iota$_{D,X}($\omega$_{D}) ,
where $\iota$_{D,X}:H_{c}^{n}(D;\mathbb{Z})\rightarrow H_{c}^{n}(X;\mathbb{Z}) is the canonical isomorphism.

Let f:M\rightarrow N be a continuous mapping between oriented n‐manifolds M and N.

For each domain D\subset M and each y\in N\backslash f(\partial D) ,
the local degree of f at y\in N with
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respect to D is the non‐negative integer  $\mu$(y, f, D) satisfying

(2.1)  $\mu$(y, f, D)$\omega$_{D}=$\iota$_{V,D}((f|V)^{*}$\omega$_{ $\Omega$}) ,

where  $\Omega$ is the component of  N\backslash f(\partial D) containing y and V=f^{-1}( $\Omega$)\cap D . Indeed, we

can take any open and connected neighborhood of y in N\backslash f(\partial D) as  $\Omega$ . If  $\mu$(y, f, D)>0,
then  f^{-1}(y)\cap D\neq\emptyset . For more details, see e.g., [7, Section I.2].

From now on, let  n\geq 2 and K\geq 1 . Let M and N be connected and oriented

Riemannian n‐manifolds, and f:M\rightarrow N a non‐constant quasiregular mapping. By

Reshetnyak�s theorem (see e.g. [18, I.4.1]), f is a branched cover, that is, an open and

discrete mapping. Every x\in M has a normal neighborhood with respect to f ,
that is,

an open neighborhood U of x satisfying f(\partial U)=\partial(f(U)) and f^{-1}(f(x))\cap U=\{x\}.
We denote by i(x, f) the topological index of f at x

,
that is, i(x, f)= $\mu$(f(x), f, U) .

The branch set B_{f} of f is the set of all x\in M satisfying i(x, f)\geq 2 ,
and is closed in

M . By the Chernavskii‐Väisälä theorem [22], the topological dimensions \dim B_{f} and

\dim f(B_{f}) are at most n-2.

The local degree theory readily yields the following manifold version of the Minio‐

witzRickman argument principle or the Hurwitz‐type theorem; see [15, Lemma 2]; note

that we do not assume that mappings f_{j} to be quasiregular.

Lemma 2.1. Let M and N be oriented Riemannian n ‐manifolds, n\geq 2 . Sup‐

pose a sequence (f) of continuous mappings fr om M to N tends to a quasiregular

mapping f:M\rightarrow N locally uniformly on M as  j\rightarrow\infty . Then for every domain  D\Subset M

with f(\partial D)=\partial(f(D)) and every compact subset E\subset N\backslash f(\partial D) ,
there exists j_{0}\in \mathbb{N}

such that  $\mu$(y, f_{j}, D)= $\mu$(y, f, D) for every j\geq j_{0} and every y\in E.

Proof. Let  $\Omega$\subset f(D) be a domain containing E and set V:=f^{-1}( $\Omega$)\cap D . Then

(f|V)^{*}($\omega$_{ $\Omega$})\in H_{c}^{n}(V;\mathbb{Z}) . Set V_{j}:=f_{j}^{-1}( $\Omega$)\cap D for each j\in \mathbb{N} . Since  f(\partial D)\cap $\Omega$=\emptyset , by
the uniform convergence of (f) to  f on \partial D ,

there exists j_{0}\in \mathbb{N} for which  f_{j}(\partial D)\cap $\Omega$=\emptyset
for every  j\geq j_{0} . Thus (f_{j}|V_{j})^{*}($\omega$_{ $\Omega$})\in H_{c}^{n}(V_{j};\mathbb{Z}) for j\geq j_{0} . Furthermore, mappings

f|D and f_{j}|D are properly homotopic with respect to  $\Omega$ for every  j\in \mathbb{N} large enough,
that is, there exists j_{1}\in \mathbb{N} so that for every j\geq j_{1} there exists a homotopy  F_{j}:\overline{D}\times
[0, 1]\rightarrow N from f|\overline{D} to f_{j}|\overline{D} and  F_{j}(\partial D\times[0,1])\cap $\Omega$=\emptyset . Thus $\iota$_{V,D}((f|V)^{*}$\omega$_{ $\Omega$})=
$\iota$_{V_{j},D}((f_{j}|V_{j})^{*}$\omega$_{ $\Omega$}) for j\displaystyle \geq\max\{j_{0}, j_{1}\} ,

and (2.1) completes the proof. \square 

A point x'\in M is a non‐normality point of a family \mathcal{F} of K‐quasiregular mappings
from M to N if \mathcal{F} is not normal on any open neighborhood of x' . A point x'\in M is an

isolated essential singularity of a quasiregular mapping f : M\backslash \{x'\}\rightarrow N if f does not

extend to a continuous mapping from M to N.

From now on, suppose that N is closed. The following theorems are manifold



126 Yûsuke Okuyama and Pekka Pankka

versions Miniowitz�s Zalcman‐type lemma ([15, Lemma 1]) and a MiniowitzZalcman‐

type rescaling principle for isolated essential singularities, respectively.

Theorem 2.2 ([13, Theorem 19.9.3]). Let M be an oriented Riemannian

n ‐manifold and N a closed and oriented Riemannian n ‐manifold, n\geq 2 ,
and let x'\in M.

Then a family \mathcal{F} of K ‐quasiregular mappings, K\geq 1 , from M to N is not normal at x' if
and only if there exist sequences (xj), ($\rho$_{j}) ,

and (f) in \mathbb{R}^{n}, (0, \infty) ,
and \mathcal{F} , respectively,

and a non‐constant K ‐quasiregular mapping g:\mathbb{R}^{n}\rightarrow N such that \displaystyle \lim_{j\rightarrow\infty}x_{j}= $\phi$(x') ,

\displaystyle \lim_{j\rightarrow\infty}$\rho$_{j}=0 and

(2.2) \displaystyle \lim_{j\rightarrow\infty}f_{j}\circ$\phi$^{-1}(x_{j}+$\rho$_{j}v)=g(v)
locally uniformly on \mathbb{R}^{n}

,
where  $\phi$:D\rightarrow \mathbb{R}^{n} is a coordinate chart of M at x'

Theorem 2.3 ([17, Theorem 1 Let M be an oriented Riemannian n ‐manifold
and N a closed and oriented Riemannian n ‐manifold, n\geq 2 ,

and let x'\in M. Then a

K ‐quasiregular mapping f : M\backslash \{x'\}\rightarrow N, K\geq 1 ,
has an essential singularity at x'

if and only if there exist sequences (X) and ($\rho$_{j}) in \mathbb{R}^{n} and (0, \infty) , respectively, and a

non‐constant K ‐quasiregular mapping g:X\rightarrow N ,
where X is either \mathbb{R}^{n} or \mathbb{R}^{n}\backslash \{0\},

such that \displaystyle \lim_{j\rightarrow\infty}x_{j}= $\phi$(x') , \displaystyle \lim_{j\rightarrow\infty}$\rho$_{j}=0 ,
and

(2.3) \displaystyle \lim_{j\rightarrow\infty}f\circ$\phi$^{-1}(x_{j}+$\rho$_{j}v)=g(v)
locally uniformly on X

,
where  $\phi$ :  D\rightarrow \mathbb{R}^{n} is a coordinate chart of M at x'

By the HolopainenRickman Picard‐type theorem [10], for every n\geq 2 and every

K\geq 1 ,
there exists a non‐negative integer q such that \#(N\backslash f(\mathbb{R}^{n}))\leq q for every

closed and oriented Riemannian n ‐manifold N and every non‐constant K ‐quasiregular

mapping f:\mathbb{R}^{n}\rightarrow N . We use this Picard‐type theorem in this article also in the

following form.

Theorem 2.4. For every n\geq 2 and every K\geq 1 ,
there exists a non‐negative

integer q' such that \#(N\backslash g(X))\leq q' for every closed and oriented Riemannian n‐

manifold N and every non‐constant K ‐quasiregular mapping f:X\rightarrow N ,
where X is

either \mathbb{R}^{n} or \mathbb{R}^{n}\backslash \{0\}.

Proof. Let Z_{n}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}\backslash \{0\} be the Zorich mapping and K_{n}\geq 1 the distor‐

tion constant of Z_{n} ; see e.g. [18, I.3.3] for the construction of the Zorich map. Set

K':=K K_{n}\geq 1 . Replacing f with f\circ Z_{n} if necessary, we may assume that f is

a K'‐quasiregular mapping from \mathbb{R}^{n} to N . Now the HolopainenRickman Picard‐type
theorem [10] completes the proof. \square 
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\in \mathrm{N}\text{∪}\{\} as in Theorem 2.4, which we call theLet q'(n, K) be the smallest such q'\in \mathbb{N}\cup\{0\} as in Theorem 2.4, which we call the

quasiregular Picard constant for parameters n\geq 2 and K\geq 1.

Having a Hurwitz‐type theorem (Lemma 2.1) and rescaling theorems for a non‐

normality point of a family of K‐quasiregular mappings and for an essential isolated

singularity of a quasiregular mapping (Theorems 2.2 and 2.3) at our disposal, \mathrm{a} �from

little to big by rescaling� argument deduces the following Montel‐type and big Picard‐

type theorems; see [15] and [17, Theorem 2].

Theorem 2.5. Let M be an oriented Riemannian n ‐manifold and N a closed

and oriented Riemannian n ‐manifold, n\geq 2 . Then a non‐normality point x'\in M of a

family \mathcal{F} of K ‐quasiregular mappings, K\geq 1 , from M to N is contained in \overline{\bigcup_{f\in \mathcal{F}}f^{-1}(y)}
for every y\in N except for at most q'(n, K) points.

Theorem 2.6. Let M be an oriented Riemannian n ‐manifold and N a closed

and oriented Riemannian n ‐manifold, n\geq 2 . Then an essential singularity x'\in M of a

K ‐quasiregular mapping f : M\backslash \{x'\}\rightarrow N, K\geq 1 ,
is accumulated by f^{-1}(y) for every

y\in N except for at most q'(n, K) points.

The similarity Theorems 2.5 and 2.6 goes beyond the statements and we prove

these results simultaneously. The argument can also be viewed as a prototype of the

proofs of Theorems 1 and 2.

Proof of Theorems 2.5 and 2.6. Let x'\in M be either a non‐normality point in

Theorem 2.5 or an isolated essential singularity in Theorem 2.6.

Let X is either \mathbb{R}^{n} or \mathbb{R}^{n}\backslash \{0\} and let g:X\rightarrow N be the non‐constant quasiregular

mapping v\mapsto f_{j}\circ$\phi$^{-1}(x_{j}+$\rho$_{j}v) as in Lemma 2.2 or in Lemma 2.3, respectively, associated

to this x' . Here f_{j}\equiv f if x' is as in Lemma 2.6.

Then g(X) is an open subset in N
,
and satisfies \#(N\backslash g(X))\leq q'(n, K) by Theorem

2.4.

Let y\in g(X) . Fix a subdomain U in N containing y for which some component V

of g^{-1}(U) is relatively compact in X . Then g:V\rightarrow U is proper. By the locally uniform

convergence and Lemma 2.1, for every j\in \mathbb{N} large enough, there exists v_{j}\in V such

that $\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})\in f_{j}^{-1}(y) . By the uniform convergence, \displaystyle \lim_{j\rightarrow\infty}$\phi$^{-1}(x_{j}+$\rho$_{j}v)=x'
uniformly on v\in\overline{V} . Thus \displaystyle \lim_{j\rightarrow\infty}$\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})=x' and x'\displaystyle \in\bigcup_{j\in \mathbb{N}}f_{j}^{-1}(y) .

Moreover, if x' is an essential singularity of f ,
then $\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})\neq x' for every

j\in \mathbb{N} . Thus x' is accumulated by \displaystyle \bigcup_{j\in \mathbb{N}}f_{j}^{-1}(y)=f^{-1}(y) . \square 

The following Nevanlinna�s four totally ramified value theorem is specific to the

case n=2 . Theorem 2.7 reduces to the original case that X=\mathbb{R}^{2} and N=\mathrm{S}^{2} by

lifting it to the (conformal) universal coverings of X and N
,

which are isomorphic to

\mathbb{R}^{2} and a subdomain in \mathrm{S}^{2}
, respectively.
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Theorem 2.7 (cf. [16, p. 279, Theorem Let g : X\rightarrow N be a non‐constant

quasiregular mapping from X to a closed, oriented and connected Riemannian 2‐manifold
N

,
where X is either \mathbb{R}^{2} or \mathbb{R}^{2}\backslash \{0\} . Then for every E\subset N containing more than 4

points, E\cap g(X\backslash B_{g})\neq\emptyset.

Again, having a Hurwitz‐type theorem (Lemma 2.1) and rescaling theorems for

both a non‐normality point of a family of K‐quasiregular mappings and an isolated

singularity of a quasiregular mapping (Theorems 2.2 and 2.3) at our disposal, \mathrm{a} �from

little to big by rescaling� argument deduces the following two big versions of Theorem

2.7.

Lemma 2.8. Let M be an oriented Riemannian 2‐manifold and N a closed

and oriented Riemannian 2‐manifold, n\geq 2 . Then a non‐normality point x'\in M

of a family \mathcal{F} of K ‐quasiregular mappings, K\geq 1 , from M to N is contained in

\overline{\bigcup_{f\in \mathcal{F}}(f^{-1}(E)\backslash B_{f})} for every E\subset N containing more than 4 points.

Lemma 2.9. Let M be an oriented Riemannian 2‐manifold and N a closed and

oriented Riemannian 2‐manifold, n\geq 2 . Then an essential singularity x'\in M of a

quasiregular mapping f:M\backslash \{x'\}\rightarrow N is accumulated by f^{-1}(E)\backslash B_{f} for every E\subset N

containing more than 4 points.

Again, due the similarity of the statements we give a simultaneous proof.

Proof of Lemmas 2.8 and 2.9. Let x'\in M be as in either Lemma 2.8 or Lemma

2.9, and let g(v)=f_{j}\circ$\phi$^{-1}(x_{j}+$\rho$_{j}v) be a non‐constant quasiregular mapping from X

to N as in Lemmas 2.2 and 2.3, respectively, associated to this x'
,

where X is either \mathbb{R}^{2}

or \mathbb{R}^{2}\backslash \{0\} ,
and f_{j}\equiv f in the case that x' is as in Lemma 2.9.

Let E be a subset in N containing more than 4 points. Then by Nevanlinna�s four

totally ramified values theorem (Theorem 2.7),  g^{-1}(E)\backslash B_{g}\neq\emptyset . Fix subdomains  U in

N intersecting E small enough that some component V of g^{-1}(U) is relatively compact

in X\backslash B_{g} . Then g : V\rightarrow U is univalent, and by the locally uniform convergence

(2.2) or (2.3) on X and the Hurwitz‐type theorem (Lemma 2.1), for every j\in \mathbb{N} large

enough, there exists v_{j}\in V such that $\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})\in f_{j}^{-1}(E)\backslash B_{f_{j}} . Furthermore,

\displaystyle \lim_{j\rightarrow\infty}$\phi$^{-1}(x_{j}+$\rho$_{j}v)=x' uniformly on v\in\overline{V} . Thus \displaystyle \lim_{j\rightarrow\infty}$\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})=x' and

x'\in\overline{\bigcup_{j\in \mathbb{N}}f_{j}^{-1}(E)\backslash B_{f_{j}}}.
Moreover, in the case that x' is as in Lemma 2.9, then $\phi$^{-1}(x_{j}+$\rho$_{j}v_{j})\neq x' for

every j\in \mathbb{N} ,
so x' is accumulated by \displaystyle \bigcup_{j\in \mathbb{N}}f_{j}^{-1}(E)\backslash B_{f_{j}}=f^{-1}(E)\backslash B_{f}. \square 

Let f: $\Omega$\rightarrow M be a non‐constant local uniformly K‐quasiregular mapping from an

open subset  $\Omega$ in a closed and oriented Riemannian  n‐manifold M, n\geq 2 ,
to M . The

following lemmas are elementary.
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Lemma 2.10. f^{-1}(\mathcal{E}(f))\subset \mathcal{E}(f) , f^{-1}(D_{f})\subset D_{f}, f(D_{f})\subset D_{f},  f^{-1}(F(f))\subset
 F(f) , f(F(f))\subset F(f) , f^{-1}(J(f))\subset J(f) ,

and f(J(f)\cap D_{f})\subset J(f) .

Proof. The first inclusion f^{-1}(\mathcal{E}(f))\subset \mathcal{E}(f) is obvious. The inclusion  f^{-1}(D_{f})\subset
 D_{f} immediately follows by the continuity and openness of f . The inclusion f(D_{f})\subset D_{f}
also follows by the continuity and openness of f.

The inclusion f^{-1}(F(f))\subset F(f) follows by the continuity and openness of f and

the Arzelà‐Ascoli theorem. Indeed, let x\in f^{-1}(F(f)) . Then \{f^{k};k\in \mathbb{N}\} is equicontin‐
uous at f(x) ,

so \{f^{k}\circ f;k\in \mathbb{N}\} is equicontinuous at x . Hence x\in F(f) .

Similarly, the inclusion f(F(f))\subset F(f) also follows by the continuity and openness

of f and the Arzelà‐Ascoli theorem. Indeed, let x\in f(F(f)) , i.e., x=f(y) for some

y\in F(f) . Then {fkof; k\in \mathbb{N}} is equicontinuous at y ,
so \{f^{k};k\in \mathbb{N}\} is equicontinuous

at x=f(y) . Hence x\in F(f) .

Let us show f^{-1}(J(f))\subset J(f) . The inclusion f^{-1}(J(f)\backslash D_{f})\subset J(f) follows from

f(D_{f})\subset D_{f} ,
which is equivalent to f^{-1}(M\backslash D_{f})\subset M\backslash D_{f} ,

and M\backslash D_{f}\subset J(f) . The

inclusion f^{-1}(J(f)\cap D_{f})\subset J(f) follows from J(f)\cap D_{f}=D_{f}\backslash F(f) and  f(F(f))\subset
 F(f) .

The final f(J(f)\cap D_{f})\subset J(f) follows from f^{-1}(F(f))\subset F(f) ,
which implies

f(D_{f}\backslash F(f))\subset D_{f}\backslash F(f) ,
and J(f)\cap D_{f}=D_{f}\backslash F(f) . \square 

Lemma 2.11. The interior of J(f)\cap D_{f} is empty unless J(f)=M.

Proof. Let x\in J(f) be an interior point of J(f) ,
and fix an open neighborhood

U of x in M contained in J(f) . Then by the Montel‐type theorem (Theorem 2.5), we

have \displaystyle \#(M\backslash \bigcup_{k\in \mathbb{N}}f^{k}(U))<\infty ,
so  M=\overline{\bigcup_{k\in \mathbb{N}}f^{k}(U)} ,

which is in J(f) by Lemma 2.10

and the closedness of J(f) . \square 

A cyclic Fatou component of f is a component U of F(f) such that f^{p}(U)\subset U
for some p\in \mathbb{N} ,

which is called a period of U (under f ). The proof of the following
is almost verbatim to the Euclidean case and we refer to HinkkanenMartinMayer [9,
Proposition 4.9] for the details.

Theorem 2.12. Let  $\Omega$ be an open subset in a closed and oriented Riemannian

 n ‐manifold M, n\geq 2 ,
and f: $\Omega$\rightarrow M be a non‐elementary local uniformly quasiregular

mapping. Then a cyclic Fatou component U of f having a period p\in \mathbb{N} is one of the

following:

(i) a singular (or rotation) domain of f ,
that is, f^{p}:U\rightarrow f^{p}(U) is univalent and the

limit of any locally uniformly convergent sequence (f^{pk_{i}})_{i} on U ,
where \displaystyle \lim_{i\rightarrow\infty}k_{i}=

\infty
,

is non‐constant,
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(ii) an immediate attractive basin of  f ,
that is, the sequence (f^{pk})_{k} converges locally

uniformly on U ,
the limit is constant, and its value is in U ,

or

(iii) an immediate parabolic basin of f ,
that is, the limit of any locally uniformly con‐

vergent sequence (f^{pk_{i}})_{i} on U ,
where \displaystyle \lim_{i\rightarrow\infty}k_{i}=\infty ,

is constant and its value is

in \partial U.

In the following sections, given a subset S in \mathbb{R}^{n} and a, b\in \mathbb{R} ,
we denote by aS+b

the set \{av+b\in \mathbb{R}^{n};v\in S\}.

§3. Proof of Theorem 1

Let \mathrm{M} be a closed, oriented, and connected Riemannian n‐manifold, n\geq 2 ,
and

f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} be a non‐constant local uniformly K‐quasiregular mapping,  K\geq

 1
,

where S_{f} is a countable and closed subset in \mathrm{M} and consists of isolated essential

singularities of f and their accumulation points in M.

Lemma 3.1. The interior of J(f) is empty unless J(f)=\mathrm{M}.

\text{∪Proof. By Lemma 2.11, the interior of J(f)\cap D_{f} is empty unless J(f)=\mathrm{M} . On

the other hand, J(f)\backslash D_{f}=\overline{\bigcup_{k\geq 0}f^{-k}(S_{f})} ,
which is the closure of a countable subset

in \mathrm{M}
,

has no interior by the Baire category theorem. \square 

Set

J_{1}(f):=J(f)\displaystyle \backslash \bigcup_{k\geq 0}f^{-k}(S_{f})=J(f)\cap D_{f} and

J_{2}(f) :=\displaystyle \bigcup_{k\geq 0}f^{-k} ( \{x\in S_{f}:x is isolated in Sf}).

The forthcoming arguments in this and the next sections rest on the following
observation on the density of J_{1}(f)\cup J_{2}(f) in J(f) .

Lemma 3.2. The set J_{1}(f)\cup J_{2}(f) is dense in J(f) . Furthermore,

(i) if \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty ,
then  J_{1}(f)\cup J_{2}(f)=J(f) and \# J_{2}(f)<\infty ;

(ii) if \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty ,
then  J_{1}(f)=\emptyset and  J(f)=\overline{J_{2}(f)}.

Proof. The density in S_{f} of isolated points of S_{f} implies \overline{\bigcup_{k\geq 0}f^{-k}(S_{f})}=\overline{J_{2}(f)},
so J_{1}(f)\cup\overline{J_{2}(f)}=J(f) . If \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty ,

then  J_{2}(f)=\displaystyle \bigcup_{k\geq 0}f^{-k}(S_{f})=\overline{J_{2}(f)},
so J(f)=J_{1}(f)\cup J_{2}(f) and \# J_{2}(f)<\infty . If \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty ,

then by the Montel‐

type theorem (Theorem 2.5), we have  J_{1}(f)=\emptyset ,
so  J(f)=J_{1}(f)\cup\overline{J_{2}(f)}=\overline{J_{2}(f)}. \square 
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The following is a simple application of the rescaling theorems (Theorems 2.2 and

2.3) to points in the dense subset J_{1}(f)\cup J_{2}(f) in J(f) . We leave the details to the

interested reader.

Lemma 3.3. Let a\in J_{1}(f)\cup J_{2}(f) and let  $\phi$ :  D\rightarrow \mathbb{R}^{n} be a coordinate chart of
MI at a . Then there exist

(i) sequences (X) in \mathbb{R}^{n} and ($\rho$_{m}) in (0, \infty) ,
which respectively tend to  $\phi$(a) and 0 as

m\rightarrow\infty,

(ii) a sequence (k) in \mathbb{N} , which is constant when a\in J_{2}(f) ,
and

(iii) a non‐constant K ‐quasiregular mapping g:X\rightarrow \mathrm{M} , where X is either \mathbb{R}^{n} or \mathbb{R}^{n}\backslash 
\{0\} ,

and X=\mathbb{R}^{n} when a\in J_{1}(f) ,

such that

(3.1) \displaystyle \lim_{m\rightarrow\infty}f^{k_{7m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v)=g(v)
locally uniformly on X.

We show the remaining assertions in Theorem 1 in separate lemmas. We continue

to use the notation q'(n, K) introduced in Section 2.

We first show both the non‐triviality of the Julia set J(f) and the finiteness of the

exceptional set \mathcal{E}(f) for non‐injective f.

Lemma 3.4. If  S_{f}\neq\emptyset , then  f is non‐injective,  J(f)\neq\emptyset ,
and \#\mathcal{E}(f)\leq

 q'(n, K) . If  S_{f}=\emptyset and  f is not injective, then J(f)\neq\emptyset, \mathcal{E}(f)\subset F(f) ,
and \#\mathcal{E}(f)\leq

 q'(n, K) .

Proof. If  S_{f}\neq\emptyset ,
then by the big Picard‐type theorem (Theorem 2.6),  f is not

injective and \#\mathcal{E}(f)\leq q'(n, K) ,
and by the definition of J(f) ,

we have \emptyset\neq S_{f}\subset
\displaystyle \bigcup_{k\geq 0}f^{-k}(S_{f})\subset J(f) .

From now on, suppose that  S_{f}=\emptyset and  f : \mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} is non‐injective. Then

\deg f\geq 2 . We show first that  J(f)\neq\emptyset . Indeed, suppose  J(f)=\emptyset . Then, by

compactness of \mathrm{M}
,

there exists a sequence (k) in \mathbb{N} tending to \infty such that (f^{k_{m}})
tends to a K‐quasiregular endomorphism h:\mathrm{M}\rightarrow \mathrm{M} uniformly on M. Then for every

m\in \mathbb{N} large enough, f^{k_{m}} is homotopic to h and \deg h=\deg(f^{k_{m}})=(\deg f)^{k_{m}}\rightarrow\infty as

 m\rightarrow\infty by the homotopy invariance of the degree. This is a contradiction and  J(f)\neq\emptyset.
We show now that \mathcal{E}(f)\subset F(f) . Let a\in \mathcal{E}(f) . Since \displaystyle \#\bigcup_{k\geq 0}f^{-k}(a)<\infty, f

restricts to a permutation of \displaystyle \bigcup_{k\geq 0}f^{-k}(a) . Thus there exists p\in \mathbb{N} for which f^{p}(a)=a
and i(a, f^{p})=\deg(f^{p})\geq 2 . Fix a local chart  $\phi$ :  D\rightarrow \mathbb{R}^{n} at a and identify f^{p} with
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 $\phi$\circ f^{p}\circ$\phi$^{-1} in a neighborhood of a':= $\phi$(a) where the composition is defined. Then

there exist a neighborhood U of a' and C>0 such that for every k\in \mathbb{N}, f^{pk} is a

K‐quasiregular mapping from U onto its image, and that for every k\in \mathbb{N} and every

x\in U,

|f^{pk}(x)-f^{pk}(a')|\leq C|x-a'|^{(i(a',f^{p})^{k}/K)^{1/(n-1)}}

by [18, Theorem III.4.7] (see also [9, Lemma 4.1]). Then \displaystyle \lim_{k\rightarrow\infty}f^{pk}=a' locally

uniformly on U . Hence a\in F(f) .

Finally, we show \#\mathcal{E}(f)\leq q'(n, K) . If \#\mathcal{E}(f)>q'(n, K) ,
we may fix A\subset \mathcal{E}(f) such

that  q'(n, K)<\# A<\infty and  A' :=\displaystyle \bigcup_{k\geq 0}f^{-k}(A)\subset \mathcal{E}(f) . Then q'(n, K)<\# A'<\infty,
and by the above description of each point in \mathcal{E}(f) , f^{-1}(A')=A' . By \# A'>q'(n, K)
and Theorem 2.5, J(f)\subset\overline{\bigcup_{k\in \mathbb{N}}f^{-k}(A')} ,

which contradicts that \overline{\bigcup_{k\in \mathbb{N}}f^{-k}(A')}=\overline{A'}=
A'\subset \mathcal{E}(f)\subset F(f) . \square 

We snow next the accumulation of the backward orbits under f of non‐exceptional

points to J(f) for non‐injective f ,
which implies the perfectness of J(f) for non‐

elementary f.

Lemma 3.5. Suppose f is not injective. Then, for every z\in \mathrm{M}\backslash \mathcal{E}(f) ,
each

point in J(f) is accumulated by \displaystyle \bigcup_{k\geq 0}f^{-k}(z) . Moreover, if f is non‐elementary, then

J(f) is perfe ct.

Proof. Fix a\in J_{1}(f)\cup J_{2}(f) . Let g(v)=\displaystyle \lim_{m\rightarrow\infty}f^{k_{7m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) be a

non‐constant quasiregular mapping from X to \mathrm{M} as in Lemma 3.3 associated to this a.

Then \#(\mathrm{M}\backslash g(X))<\infty by Theorem 2.4.

Fix  z\in \mathrm{M}\backslash \mathcal{E}(f) . Then we can choose subdomains U_{1} and U_{2} in g(X) intersecting

\displaystyle \bigcup_{k\in \mathbb{N}}f^{-k}(z) and having pair‐wise disjoint closures so that, for each i\in\{1 ,
2 \} ,

some

component V_{i} of g^{-1}(U) is relatively compact in X.

For each i\in\{1 ,
2 \}, g:V_{i}\rightarrow U_{i} is proper. By the locally uniform convergence

(3.1) on X and Lemma 2.1, f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V)) intersects \displaystyle \bigcup_{k\geq 0}f^{-k}(z) for every

m\in \mathbb{N} large enough. Thus, for m large enough, we may fix v_{m}^{(i)}\in V_{i} satisfying y_{m}^{(i)} :=

$\phi$^{-1}(x_{m}+$\rho$_{m}v_{m}^{(i)})\displaystyle \in\bigcup_{k\geq 0}f^{-k}(z) .

Let i\in\{1 ,
2 \} . By the uniform convergence \displaystyle \lim_{m\rightarrow\infty}$\phi$^{-1}(x_{m}+$\rho$_{m}v)=a on  v\in

(i)\overline{V_{i}} , we have \displaystyle \lim_{m\rightarrow\infty}y_{m}=a , and, by the uniform convergence (3.1) on \overline{V_{i}} , we have

\displaystyle \bigcap_{N\in \mathbb{N}}\overline{\{f^{k_{7m}}(y_{m}^{(i)});k\geq N\}}\subset g(\overline{V_{i}})=\overline{U_{i}} . Since \overline{U_{1}}\cap\overline{U_{2}}=\emptyset, \{y_{m}^{(1)}, y_{m}^{(2)}\}\neq\{a\} for m\in \mathbb{N}

large enough.
Hence any point a\in J_{1}(f)\cup J_{2}(f) is accumulated by \displaystyle \bigcup_{k\in \mathbb{N}}f^{-k}(z) ,

and so is any

point in J(f) by Lemma 3.2.

If f is non‐elementary, then choosing z\in J(f)\backslash \mathcal{E}(f) ,
we obtain the perfectness of

J(f) by the former assertion and f^{-1}(J(f))\subset J(f) . \square 
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We record the following consequence of Lemmas 3.2, 3.4, and 3.5 as a lemma.

Lemma 3.6. For non‐elementary f, J(f) is perfe ct, \mathcal{E}(f) is finite, and any

point in J(f) is accumulated by (J_{1}(f)\cup J_{2}(f))\backslash \mathcal{E}(f) .

Finally, the following lemma completes the proof of Theorem 1.

Lemma 3.7. If f is non‐elementary, then any point in J(f) is accumulated by
the set of all periodic points of f.

Proof. Fix an open subset U in \mathrm{M} intersecting J(f) . Let a\in(J_{1}(f)\cup J_{2}(f))\backslash \mathcal{E}(f) ,

and let g(v)=\displaystyle \lim_{m\rightarrow\infty}f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) be a non‐constant quasiregular mapping
from X to \mathrm{M} as in Lemma 3.3 associated to this a

,
where X is either \mathbb{R}^{n} or \mathbb{R}^{n}\backslash \{0\}

and  $\phi$:D\rightarrow \mathbb{R}^{n} is a coordinate chart of \mathrm{M} at a . By Lemma 3.5 and Theorem 2.4,

(U\displaystyle \cap\bigcup_{k\geq 0}f^{-k}(a))\cap g(X)\neq\emptyset.
Hence we can choose j_{1}\in \mathbb{N}\cup\{\} and a subdomain D_{1}\Subset D containing a such that

some component U_{1} of f^{-j_{1}}(D) is relatively compact in U and that some component

V_{1} of g^{-1}(U) is relatively compact in X . Then f^{j_{1}} og: V_{1}\rightarrow D_{1} is proper.

Choose an open neighborhood W\subset X of \overline{V_{1}} small enough that f^{j_{1}}\circ g(W)\Subset D.
By the uniform convergence \displaystyle \lim_{m\rightarrow\infty}$\phi$^{-1}(x_{m}+$\rho$_{m}v)=a\in D_{1} on v\in\overline{W} and the

uniform convergence (3.1) on \overline{W} , we can define a mapping  $\psi$ : \overline{W}\rightarrow \mathbb{R}^{n} and mappings

$\psi$_{m} : \overline{W}\rightarrow \mathbb{R}^{n} for every m\in \mathbb{N} large enough by

\left\{\begin{array}{l}
 $\psi$(v) := $\phi$\circ f^{j_{1}}\circ g(v)- $\phi$(a) \mathrm{a}\mathrm{n}\mathrm{d}\\
$\psi$_{m}(v):= $\phi$\circ f^{j_{1}}\circ f^{k_{7m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v)-(x_{m}+$\rho$_{m}v) ,
\end{array}\right.
so that \displaystyle \lim_{m\rightarrow\infty}$\psi$_{m}= $\psi$ uniformly on \overline{W}.

The limit  $\psi$:V_{1}\rightarrow $\psi$(V) is non‐constant, quasiregular, and proper, and satisfies

0\in $\psi$(V) by a\in D_{1}=f^{j_{1}}(g(V_{1})) . Although for each m\in \mathbb{N} large enough, $\psi$_{m}:V_{1}\rightarrow
\mathbb{R}^{n} is not necessarily quasiregular, we have \displaystyle \lim_{m\rightarrow\infty} $\mu$(0, $\psi$_{m}, V_{1})= $\mu$(0,  $\psi$, V_{1})>0 after

applying Lemma 2.1 to ($\psi$_{m}) and  $\psi$ on \overline{V_{1}} . Thus 0\in$\psi$_{m}(V_{1}) .

Hence for every m\in \mathbb{N} large enough, there exists v_{m}\in V_{1} such that y_{m}:=$\phi$^{-1}(x_{m}+
$\rho$_{m}v_{m}) is a fixed point of f^{j_{1}}\circ f^{k_{7m}} . Hence also f^{k_{m}}(y) is a fixed point of f^{j_{1}}\circ f^{k_{m}}.
By the uniform convergence (3.1) on \overline{V_{1}} , we have \displaystyle \bigcap_{N\in \mathbb{N}}\overline{\{f^{k_{m}}(y_{m});k\geq N\}}\subset g(\overline{V_{1}})=
\overline{U_{1}}\subset U ,

so f^{k_{m}}(y_{m})\in U for every m\in \mathbb{N} large enough.
We conclude that J(f) is in the closure of the set of all periodic points of f ,

so the

perfectness of J(f) completes the proof. \square 
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§4. Proof of Theorem 2

Let \mathrm{M} be a closed, oriented, and connected Riemannian n‐manifold, n\geq 2 . Suppose

f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} is a non‐elementary local uniformly K‐quasiregular mapping,  K\geq

 1
,

where S_{f} is a countable and closed subset in \mathrm{M} and consists of isolated essential

singularities of f and their accumulation points in M. We continue to use the notations

J_{1}(f) and J_{2}(f) introduced in Section 3.

We first show the first assertion of Theorem 2.

Lemma 4.1. If F(f) is non‐empty and connected, then every point in J(f) is

accumulated by the set of periodic points of f contained in J(f) .

Proof. By the assumption, F(f) is a fixed cyclic Fatou component of f . We show

first that f is not univalent on F(f) .

We consider three cases separately. In the case  S_{f}\neq\emptyset , by the big Picard‐type
theorem (Theorem 2.6), for every  y\in F(f) except for at most finitely many points, we

have \# f^{-1}(y)=\infty . In the case that  S_{f}=\emptyset and  B_{f}\cap F(f)=\emptyset ,
we have \deg f\geq 2,

and also  f(B_{f})\cap F(f)=\emptyset by  f^{-1}(F(f))\subset F(f) . Thus \# f^{-1}(y)=\deg f\geq 2 for every

y\in F(f) . Since f^{-1}(F(f))\subset F(f) , f is not univalent on F(f) in these two cases.

Suppose now that  S_{f}=\emptyset and  B_{f}\cap F(f)\neq\emptyset . By the classification of cyclic Fatou

components (Theorem 2.12),  F(f) is a fixed immediate either attractive or parabolic
basin of f . So all the periodic points constructed in Lemma 3.7, but at most one, are

in J(f)=\mathrm{M}\backslash F(f) . \square 

Next, we give a useful criterion for the repelling density in J(f) .

Lemma 4.2. Let a\in(J_{1}(f)\cup J_{2}(f))\backslash \mathcal{E}(f) and suppose that a non‐constant

quasiregular mapping g in Lemma 3.3 associated to this a satises the unramication
condition

(4.1) a\displaystyle \not\in\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}) and J(f)\cap g(X\backslash B_{g})\neq\emptyset.

Then every point in J(f) is accumulated by the set of all repelling periodic points of f.

Proof. Let a\in(J_{1}(f)\cup J_{2}(f))\backslash \mathcal{E}(f) and let g(v)=\displaystyle \lim_{m\rightarrow\infty}f^{k_{7m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v)
be a non‐constant quasiregular mapping from X to \mathrm{M} as in Lemma 3.3 associated to

this a
,

where  $\phi$:D\rightarrow \mathbb{R}^{n} is a coordinate chart of \mathrm{M} at a
,

and suppose that these a and

g satisfy (4.1).
Fix an open subset U in \mathrm{M} intersecting J(f) . By Lemma 3.5 and \#\mathcal{E}(f)<\infty,

there exists j_{1}\in \mathbb{N}\cup\{\} such that (f^{-j_{1}}(a)\cap U)\backslash \mathcal{E}(f)\neq\emptyset . By the latter condition
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in (4.1),  g(X\backslash B_{g}) is an open subset in \mathrm{M} intersecting J(f) . Thus, by Lemma 3.5,
there exists j_{2}\in \mathbb{N}\cup\{\} such that  f^{-j_{2}}((f^{-j_{1}}(a)\cap U)\backslash \mathcal{E}(f))\cap g(X\backslash B_{g})\neq\emptyset . Hence

by the first condition in (4.1), we can choose a subdomain  D_{1}\Subset D\backslash f^{j_{1}+j_{2}}(B_{f^{j_{1}+j_{2}}})
containing a such that some component U_{1} of f^{-j_{1}}(D) is relatively compact in U

and that some component V_{1} of g^{-1}(f^{-j_{2}}(U)) is relatively compact in X\backslash B_{g} . Then

f^{j_{1}+j_{2}}\circ g:V_{1}\rightarrow D_{1} is univalent.

By the same argument as in the proof of Lemma 3.7, we may choose, for every  m\in

\mathbb{N} large enough, a point v_{m}\in V_{1} such that y_{m}:=$\phi$^{-1}(x_{m}+$\rho$_{m}v_{m}) is a fixpoint of f^{j_{1}+j_{2}}\mathrm{o}
f^{k_{7m}} . By the uniform convergence (3.1) on \overline{V_{1}} , we have \displaystyle \bigcap_{N\in \mathbb{N}}\overline{\{f^{j_{2}}\circ f^{k_{m}}(y_{m});k\geq N\}}\subset
 f^{j_{2}}(g(\overline{V_{1}}))=\overline{U_{1}}\subset U . Thus f^{j_{2}}\circ f^{k_{m}}(y_{m})\in U for every m\in \mathbb{N} large enough.

Moreover, by the locally uniform convergence (3.1) on X and Lemma 2.1, the

mapping v\mapsto f^{j_{1}+j_{2}}\circ f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) is a univalent mapping from V_{1} onto its

image for every m\in \mathbb{N} large enough. Hence

f^{j_{1}+j_{2}}\circ f^{k_{m}}:$\phi$^{-1}(x_{m}+$\rho$_{m}V_{1})\rightarrow f^{j_{1}+j_{2}}\circ f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V_{1}))

is univalent for m\in \mathbb{N} large enough. By the uniform convergence

\displaystyle \lim_{m\rightarrow\infty}$\phi$^{-1}(x_{m}+$\rho$_{m}v)=a\in D_{1}=f^{j_{1}+j_{2}}\circ g(V_{1})
on v\in\overline{V_{1}} and the uniform convergence (3.1) on \overline{V_{1}},

$\phi$^{-1}(x_{m}+$\rho$_{m}V_{1})\subset f^{j_{1}+j_{2}}\circ f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V_{1}))

for every m\in \mathbb{N} large enough. Hence for every m\in \mathbb{N} large enough, y_{m} is a repelling
fixed point of f^{j_{1}+j_{2}}\circ f^{k_{m}}.

We conclude that J(f) is in the closure of the set of all repelling periodic points of

f ,
so the perfectness of J(f) completes the proof. \square 

We show the latter assertion of Theorem 2 under the conditions given there, sepa‐

rately.
Condition (i). Suppose \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty . Then by Lemmas 3.2 and 3.4, we

have \#(J_{2}(f)\cup \mathcal{E}(f))<\infty and  J_{1}(f)=J(f)\backslash J_{2}(f) . Suppose also that \dim J(f)\geq n-1.
For every k\in \mathbb{N}, \dim f^{k}(B_{f^{k}})\leq n-2 ,

and then \displaystyle \dim(\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}))\leq n-2 ([11, §2.2,
Theorem III]). Hence we can fix a\displaystyle \in J(f)\backslash (J_{2}(f)\cup \mathcal{E}(f)\cup\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}))=J_{1}(f)\backslash 
(\displaystyle \mathcal{E}(f)\cup\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}})) ,

and let g:\mathbb{R}^{n}\rightarrow \mathrm{M} be a non‐constant quasiregular mapping as

in Lemma 3.3 associated to this a . Then \dim g(B_{g})\leq n-2 ,
so J(f)\cap g(\mathbb{R}^{n}\backslash B_{g})\neq\emptyset.

The unramification condition (4.1) is satisfied by these a and g ,
and Lemma 4.2

completes the proof in this case.

Condition (ii). Let a be a repelling periodic point of f having a period p\in \mathbb{N}
in D_{f}\displaystyle \backslash (\mathcal{E}(f)\cup\bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}} Then a\in(J(f)\backslash \mathcal{E}(f))\cap D(f)=J_{1}(f)\backslash \mathcal{E}(f) . Let
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g(v)=\displaystyle \lim_{m\rightarrow\infty}f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) be a non‐constant quasiregular mapping from \mathbb{R}^{n}

to \mathrm{M} as in Lemma 3.3 associated to this a
,

where  $\phi$:D\rightarrow \mathbb{R}^{n} is a coordinate chart of \mathrm{M}

at this a . By [9, Theorem 6.3], we may, in fact, assume that x_{m}\equiv $\phi$(a) and p|k_{m} for all

m\in \mathbb{N} ,
and g is in this case usually called a Koenigs mapping of f^{p} at a . Then g(0)=a,

and by the proof of [9, Theorem 6.3], we also have 0\not\in B_{g} . Hence a\in J(f)\cap g(\mathbb{R}^{n}\backslash B_{g}) ,

and (4.1) is satisfied by these a and g . Lemma 4.2 completes the proof in this case.

Condition (iii). Suppose that J(f)\displaystyle \not\subset\bigcap_{j\in \mathbb{N}}\overline{\bigcup_{k\geq j}f^{k}(B_{f^{k}})} . By the closedness of

\displaystyle \bigcap_{j\in \mathbb{N}}\overline{\bigcup_{k\geq j}f^{k}(B_{f^{k}})} and Lemma 3.6, we indeed have J(f)\displaystyle \not\subset(\mathcal{E}(f)\cup\bigcap_{j\in \mathbb{N}}\overline{\bigcup_{k\geq j}f^{k}(B_{f^{k}})}) .

Hence we can fix N\in \mathbb{N} so large that the open subset U_{N} :=\mathrm{M}\backslash (\mathcal{E}(f)\cup\overline{\bigcup_{k\geq N}f^{k}(B_{f^{k}})})
in \mathrm{M} intersects J(f) .

Let a\in(J_{1}(f)\cup J_{2}(f))\cap U_{N}\subset(J_{1}(f)\cup J_{2}(f))\backslash \mathcal{E}(f) ,
and let g(v)=\displaystyle \lim_{m\rightarrow\infty}f^{k_{m}}\mathrm{o}

$\phi$^{-1}(x_{m}+$\rho$_{m}v) be a non‐constant quasiregular mapping from X to \mathrm{M} as in Lemma

3.3 associated to this a . Then \#(\mathrm{M}\backslash g(X))<\infty by Theorem 2.4. We claim that

\displaystyle \#\bigcup_{k\geq N}f^{-k}(a)=\infty . Indeed, in the case \displaystyle \#\bigcup_{k=0}^{N-1}f^{-k}(a)<\infty ,
this follows by  a\not\in

\mathcal{E}(f) . In the case \displaystyle \#\bigcup_{k=0}^{N-1}f^{-k}(a)=\infty ,
we have  S_{f}\neq\emptyset . By applying the big Picard‐

type theorem (Theorem 2.6) in at most  N times, we obtain \# f^{-N}(a)=\infty . Hence we

can fix  j_{1}\geq N such that  f^{-j_{1}}(a)\cap g(X)\neq\emptyset ,
and a subdomain  U\Subset U_{N} containing a

so small that some component V of (f^{j_{1}}\circ g)^{-1}(U) is relatively compact in X . Then

g:V\rightarrow g(V) is proper.

By the uniform convergence (3.1) on \overline{V} , for every m\in \mathbb{N} large enough, f^{j_{1}}\circ f^{k_{m}}\mathrm{o}
$\phi$^{-1}(x_{m}+$\rho$_{m}V)\subset U_{N} . Then by j_{1}\geq N and the definition of U_{N}, f^{k_{m}} : $\phi$^{-1}(x_{m}+
$\rho$_{m}V)\rightarrow f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V)) is univalent, so the mapping v\mapsto f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v)
from V onto its image is univalent. Hence by the locally uniform convergence (3.1) on

X and the Hurwitz‐type theorem (Lemma 2.1),  V\cap B_{g}=\emptyset . Then \emptyset\neq f^{-j_{1}}(a)\cap g(V)\subset
 J(f)\cap g(X\backslash B_{g}) ,

and (4.1) is satisfied by these a and g . Lemma 4.2 completes the proof
in this case.

Condition (iv). Suppose that n=2 . If \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty ,
then by Lemmas

3.2 and 3.6,  J_{1}(f)=J(f)\backslash J_{2}(f) is uncountable. Since \#\mathcal{E}(f)<\infty (in Lemma

3.6) and \displaystyle \bigcup_{k\geq 0}B_{f^{k}} is countable (when n=2 ), we may fix  a\in J_{1}(f)\backslash (J_{2}(f)\cup \mathcal{E}(f)\cup

\displaystyle \bigcup_{k\in \mathbb{N}}f^{k}(B_{f^{k}}))\subset J_{1}(f)\backslash \mathcal{E}(f) . Let g:\mathbb{R}^{n}\rightarrow \mathrm{M} be a non‐constant quasiregular mapping
as in Lemma 3.3 associated to this a . By the countability of B_{g} (when n=2 ) and

the uncountability of g^{-1}(J(f)) ,
we also have g^{-1}(J(f))\not\subset B_{g} . The unramification

condition (4.1) is satisfied by these a and g ,
and Lemma 4.2 completes the proof in this

case.

In the remaining case \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty ,
the argument similar to the above

does not work. For  n=2
,

instead of Lemma 4.2, we rely on the big versions (Lemmas
2.8 and 2.9) of the Nevanlinna four totally ramified value theorem (Theorem 2.7) to

show Theorem 2 under n=2
,

which is independent of the above proof specific to the
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case \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty.
Proof of Theorem 2 under n=2 . Set

J'(f):=\left\{\begin{array}{ll}
J_{1}(f)\backslash \{\mathrm{a}\mathrm{l}1 \mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c} \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s} \mathrm{o}\mathrm{f} f\} & \mathrm{i}\mathrm{f} \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty,\\
J_{2}(f) & \mathrm{i}\mathrm{f} \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty.
\end{array}\right.
We claim that J'(f) is dense in J(f) . If \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty ,

we have  J(f)=
\overline{J_{2}(f)}=\overline{J'(f)} by Lemma 3.2. Thus we may assume that \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty and it

suffices to show that  J(f)=\overline{J'(f)}.
By Lemmas 3.2 and 3.6, the set J_{1}(f) is uncountable. Since f has at most countably

many periodic points, J'(f) is non‐empty. Let y\in J'(f) . If J(f)\not\subset\overline{J'(f)} ,
then

every point in J(f)\backslash \overline{J'(f)} is accumulated by \displaystyle \bigcup_{k\geq 0}f^{-k}(y) by Lemma 3.5. On the

other hand, by Lemma 3.2, \# J_{2}(f)<\infty . Since  J_{1}(f)=J(f)\backslash J_{2}(f) ,
there exists

x\displaystyle \in\bigcup_{k\geq 0}f^{-k}(y)\cap(J_{1}(f)\backslash \overline{J'(f)}) . Thus x is a periodic point of f ,
and so is y ,

which

is a contradiction. Hence J(f)=\overline{J'(f)} in the case \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})<\infty.
Since J(f) is perfect, \# J'(f)=\infty . Fix an open subset  U in \mathrm{M} intersecting J(f) .

We claim that there exists a\in J'(f) such that \displaystyle \#(U\cap\bigcup_{k\geq 0}(f^{-k}(a)\backslash B_{f^{k}}))=\infty . Indeed,
let  E\subset J'(f) such that  4<\# E<\infty and let  b'\in U\cap(J_{1}(f)\cup J_{2}(f)) . For b'\in J_{1}(f) ,

\{f^{k};k\geq N\} is not normal at b' for any N\in \mathbb{N} . Hence b'\displaystyle \in\bigcap_{N\in \mathbb{N}}\overline{\bigcup_{k\geq N}(f^{-k}(E)\backslash B_{f^{k}})}
by Lemma 2.8. Moreover, if b'\in f^{-k}(E) for infinitely many k\in \mathbb{N} , then, by \# E<\infty,

f^{k_{1}}(b')=f^{k_{2}}(b')\in E for some k_{1}<k_{2} . Thus f^{k_{1}}(b')\in E is a periodic point of f ,
which

contradicts E\subset J'(f) . Hence b' is accumulated by \displaystyle \bigcup_{k\geq 0}(f^{-k}(E)\backslash B_{f^{k}}) . In the case

b'\in J_{2}(f) ,
b' is an isolated essential singularity of f^{j_{1}} for some j_{1}\in \mathbb{N} ,

so by Lemma

2.9, b' is accumulated by f^{-j_{1}}(E)\backslash B_{f^{j_{1}}} . In both cases, by \# E<\infty ,
we can choose

 a\in E such that \displaystyle \#(U\cap\bigcup_{k\geq 0}(f^{-k}(a)\backslash B_{f^{k}}))=\infty.
Let g(v)=f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) be a non‐constant quasiregular mapping from

X to \mathrm{M} as in Lemma 3.3 associated to this a
,

where X is either \mathbb{R}^{2} or \mathbb{R}^{2}\backslash \{0\} and

 $\phi$ :  D\rightarrow \mathbb{R}^{2} is a coordinate chart of \mathrm{M} at a . Then by the Nevanlinna four totally
ramified value theorem (Theorem 2.7),

(U\displaystyle \cap\bigcup_{k\geq 0}(f^{-k}(a)\backslash B_{f^{k}}))\cap g(X\backslash B_{g})\neq\emptyset.
Hence we can choose j_{1}\in \mathbb{N}\cup\{0\} and a subdomain D_{1}\subset D containing a such that some

component U_{1} of f^{-j_{1}}(D) is relatively compact in U\backslash B_{f^{j_{1}}} and that some component

V_{1} of g^{-1}(U) is relatively compact in X\backslash B_{g} . Then f^{j_{1}} og: V_{1}\rightarrow D_{1} is univalent.

By the same argument in the proof of Lemma 3.7, for every m\in \mathbb{N} large enough,
we can choose v_{m}\in V_{1} such that y_{m}:=$\phi$^{-1}(x_{m}+$\rho$_{m}v_{m}) is a fixed point of f^{j_{1}}\circ f^{k_{m}},
and so is f^{k_{m}}(y_{m}) ,

and we also have f^{k_{m}}(y_{m})\in U for every m\in \mathbb{N} large enough.
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Moreover, by the locally uniform convergence (3.1) on X and Lemma 2.1, the

mapping v\mapsto f^{j_{1}}\circ f^{k_{m}}\circ$\phi$^{-1}(x_{m}+$\rho$_{m}v) is also a univalent mapping from V_{1} onto its

image for every m\in \mathbb{N} large enough. Hence

f^{j_{1}}\circ f^{k_{m}}:$\phi$^{-1}(x_{m}+$\rho$_{m}V_{1})\rightarrow f^{j_{1}}\circ f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V_{1}))

is univalent for m\in \mathbb{N} large enough. By the uniform convergence \displaystyle \lim_{m\rightarrow\infty}$\phi$^{-1}(x_{m}+
$\rho$_{m}v)=a\in D_{1}=f^{j_{1}}\circ g(V) on v\in\overline{V_{1}} and the uniform convergence (3.1) on \overline{V_{1}},

$\phi$^{-1}(x_{m}+$\rho$_{m}V_{1})\Subset f^{j_{1}}\circ f^{k_{m}}($\phi$^{-1}(x_{m}+$\rho$_{m}V_{1}

for every m\in \mathbb{N} large enough. Hence y_{m} is a repelling fixed point of f^{j_{1}}\circ f^{k_{m}} for every

m\in \mathbb{N} large enough.
We conclude that J(f) is in the closure of the set of all repelling periodic points of

f ,
so the perfectness of J(f) completes the proof. \square 

§5. On the non‐injectivity and non‐elementarity of f

In the setting of Theorem 1, we have the following result on the non‐elementarity
of non‐injective UQR‐mappings.

Lemma 5.1. Let \mathrm{M} and f:\mathrm{M}\backslash S_{f}\rightarrow \mathrm{M} be as in Theorem 1. Suppose in

addition that f is non‐injective. Then f is non‐elemenatary if either  S_{f}=\emptyset or

\displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})>q'(n, K) .

Proof. For  S_{f}=\emptyset the claim follows from Theorem 1. Suppose \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})>
q'(n, K) . By the big Picard‐type theorem (Theorem 2.6), we have \displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})=\infty.
Thus, by Lemma 3.2, J(f)=\overline{\bigcup_{k\geq 0}f^{-k}(S_{f})} . Hence J(f)\not\subset \mathcal{E}(f) since \#\mathcal{E}(f)<\infty. \square 

It seems an interesting problem whether a non‐injective f is always non‐elementary.
This is the case in holomorphic dynamics, i.e., the case that \mathrm{M}=\mathrm{S}^{2} and K=1.

Indeed, if 0<\displaystyle \#\bigcup_{k\geq 0}f^{-k}(S_{f})\leq q'(2,1)=2, f can be normalized to be either a

transcendental entire function on \mathbb{C} or a holomorphic endomorphism of \mathbb{C}\backslash \{0\} having
essential singularities at 0, \infty

,
both of which are known to be non‐elementary.
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