RIMS Kokyiroku Bessatsu
B43 (2013), 155-170

A bilinear estimate for commutators
of fractional integral operators

By

Yoshihiro SAWANO} Satoko SUGANO*™* and Hitoshi TANAKA***

Abstract

The aim of this paper is to investigate the Morrey norm boundedness of commutators
generated by BMO(R™)-functions and the Riesz kernel. A bilinear estimate is the focus of this
paper, which cannot be obtained from a mere combination of the boundedness of commutators
and the Holder inequality. As a key tool, a decomposition using dyadic cubes is employed.

§1. Introduction

The aim of this paper is to investigate a bilinear estimate generated by commuta-
tors. Let a € BMO(R") and 0 < a < n. Let m € N. The m-fold commutator [I,,a]™

is given by .
lawal™ @) = [ DU 5 g,

no o=y

Here and below we assume that the functions are real-valued and measurable. We recall
the definition of BMO(R"™) in Section 2. As is verified in (3.4), we shall consider

a(x) —aly)|™
o [
O e 1]
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and hence we may assume that the integral defining [I,a]™) f(x) converges for a.e.
x € R".
In the present paper we investigate the boundedness of the operator given by

(f.9) = g+ Ta,a]"™ f

on Morrey spaces. Here, we shall adopt the following definition of the Morrey space
MEP(R™), 1 < p < pg < oo: First we define D as the set of all dyadic cubes (see (2.1)
below). For a measurable function f we define

Il = sup Q%+ ([ 1P an)”
QeD Q

The function space Mb°(R") is the set of all measurable functions f for which the norm
[ £l pqzo is finite.
Now we present our main result of the present paper.

Theorem 1.1.  Suppose we are given parameters o, po, P, qo,q,To,T Satisfying
O<a<n, l<p<py<oo,1<qg<g<oo,1<r<ryg<oo

and

1 1
—_ > —_
0

3e

q>T,

Assume in addition that

Then we have
(1.1) g - [Ta,a]"™ fl[pg0 < C lal[Baroll £l a9l a0
for all a € BMO(R"), f € Mb(R") and g € M@ (R"™).

The method of the proof of Theorem 1.1 also covers a classical theorem of the
commutator: It corresponds to the case gy = co and g = 1.

Corollary 1.2.  Suppose we are given parameters o, po,p,To,T Satisfying
O<a<n,l<p<py<oo,1<r<ry<oo.

Assume in addition that

Then we have
11as al™ fllagro < CllalBacoll Fll agmo

for all a € BMO(R") and f € ML°(R").
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The proof is left for interested readers.
This inequality (1.1) dates back to the one obtained in [9], which deals with the

operator I, given by
f(y)
I, f(x E/ ——=dy.
(@) e [T —y[r o

Proposition 1.3.  Suppose we are given parameters o, po, p, o, q,To, T Satisfying
O<a<n, l<p<py<oo,1<qg<g<oo,1<r<ryg<oo

and
Assume in addition that

Then we have

(1.2) lg - Lafllazo < Clfllagzo gl pgzo
for all f € ME(R™) and g € M@ (R").

As was discussed in [10, p.7], Proposition 1.3 is not an immediate consequence of
the well-known boundedness of I, due to Adams [1] and the Ho6lder inequality. The same
can be said for Theorem 1.1; it cannot be deduced directly from Corollary 1.2 and the
Holder inequality. The inequality (1.2) is called the Olsen inequality and investigated
initially in [7].

Several people have tried to extend the original results (see [3, 15] for more details).
In [9] we proved that the condition on ¢ > r is sharp. Although we mean (1.2) by the
Olsen inequality (see [3, 9, 10, 17], for example), we overlooked the original paper [2].
In [2], on R?, Conlon and Redondo considered the following equation:

(=A =b(2) - Vju(z) = f(z) (lz| <R),
u(z) =0 (lz| = R),

for R > 0. If b is smooth, then as is described in [12], we have an expression of the
solution;

u(z) = F, [ | f(Xb<t))dt] |

where X (¢) is a Brownian motion starting from z € {|y| < R} with drift b, E, denotes
the expectation with respect to Xy (t) and 7 is the first hitting time on the boundary
|z| = R. Conlon and Redondo proved Proposition 1.3 with n = 3 essentially.

One of the reasons why (1.2) holds is that in the Adams theorem I, is not surjective.
Indeed, we have;
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Proposition 1.4. Suppose 0 < a < n,1 <p < pg < oo, 1 <r <7y < o0.

Assume that
r _p 1 1 @

o po To Po M
Then, 1, is bounded from MZ°(R™) to M7°(R™).

Proposition 1.5.  In Proposition 1.4, I, is not surjective from MgO(R”) to

Mo (R™).

Proposition 1.5 was proven as [11, Corollary 3.6]. However, in Section 4, we give
an alternative proof. Recently, in [13, 14] an inequality dealing with I, and intersection
of Morrey spaces was considered. In this note, by using this new type of inequality, we

reprove Proposition 1.5.
Seemingly, Theorem 1.1 is a consequence of Corollary 1.2 and the following lemma:
Lemma 1.6. Letl <q <p; <ooandl < gy <py < oo. Define

p= P1p2 q= 4192
p1+p2’ a+aq

Then
1 - gllaeg < 1 lnees gl pezs

for all f € MEY(R™) and g € ML2(R™).

However, this is not the case; a mere combination of Proposition 1.4 and Lemma

1.6 does not give Theorem 1.1. Indeed, Morrey spaces are nested:
MES(R") C M33(R™)
for all 1 < ps < p; < co. The following example shows that the inclusion is strict:
Example 1.7. For r < 1/2, and € € {0,1}", we define
Sre(x) =re+(1—r)¢ (xzeR").
Define inductively {F;}32, by

Bo=1[0,1", Ej= |J Swa(BEi1) (G=12--)
ee{0,1}n

Then we have
X5, | A =~ max(|[x(0.7 | e, 1 XE; [ 1)

for all j, where the implicit constants in ~ do not depend upon j and r.
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A detailed calculation in [10, p.6] shows that the case when p%ro <q< p%qo is
beyond the reach of the combination of Corollary 1.2 and Lemma 1.6.
We can pass our result to the operator given by

o o+ anf@) = [ LU T 0s60) — a0 o

re |7 — Y|
Theorem 1.8.  Suppose we are given parameters o, po, P, qo,q,To,T Satisfying
0<a<n, 1<p<py<oo,1<qg<qo<oo,1<r<ry<oo

and
Assume in addition that

Then we have

m
lg - s (ar a2, am)f aro < C | [T llasllenco | 1 aezo llgll ez
j=1

for all ay,az,- -, a, € BMO(R"), f € MI(R") and g € M@ (R").

Theorem 1.8 follows from Theorem 1.1, a homogeneity argument and the following
lemma, the proof of which will be given in the appendix:

Lemma 1.9.  For all m € N, the polynomial x1x2 - - - x,, 1S in the linear span of
the set

Vi = {(a121 + a2x2 + -+ + amxm)™ © a1,a2,- -+ ,am € R}
§2. Notations and preliminaries

Here we fix some notations.

1. We define the set of all dyadic cubes as follows:

= Comy+ 1
(2.1) D= jl;[ll%’mgj‘ ) v EZL, m=(my,mg,- ,my) €EL"
If a dyadic cube @ has volume 27", then we say that () is of the v-th generation.
We also write D, the set of all dyadic cubes of the v-th generation. If Q) € D,,, then

define £(Q) = 27". Observe that
(2.2) > xq=1

QeD,



160 YOSHIHIRO SAWANO, SATOKO SUGANO AND HITOSHI TANAKA
2. The open ball centered at x € R™ of radius » > 0 will be denoted by B(z,r).

3. Given a function f and a dyadic cube @ € D, we set mq(f |Q| / f(x

4. By a cube we mean a compact cube whose edges are parallel to the coordinate axes.
The set Q denotes the totality of all cubes. For a point x € R", we write Q(x) for
the set of all cubes in Q containing .

5. The function space BMO(RR") is the set of all measurable functions f for which the
quantity

| fllBMo = sup mo([f —mq(f)|)
QeQ
is finite.

6. The maximal operator is defined by

M = d
f(x) ng?x) |Q|/ |f(y)] dy.

There are several variants: write

) £ = 1 u >%
MO () Qi‘é‘?@(m /Q FWltdy) (e (1,00)),
1
M., f(z) = - d n)).
@)= s o [ fwldy (e 0.m)

We shall recall some fundamental facts of the maximal operator M, above and
BMO(R™)-functions.

Lemma 2.1.  Suppose the parameters o, po,p,ro,T Satisfy
0<a<n,l<p<py<oo, 1<r<ry<oo.

Assume in addition that

Then we have
1Mo fll pg70 < C Nl fll agzo-

Here it will be understood that My denotes the Hardy-Littlewood maximal operator M.
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Lemma 2.2 (The John-Nirenberg inequality). Let 1 < p < oo and let Q be a
cube. Then there exists a constant ¢ > 0 such that

1 P
(@ /Q a(@) — mo(a)l? d:c) < cllallsyo
for all a € BMO(R™).

We also need a decomposition result about cubes. Let Qg be a cube and let f €

Li (R™). We set

loc

D(Qo) ={Q €D: Q C Qo}-

We write 3Qg for its triple, that is, the unique cube concentric to )y and having the
volume 3"|Qo|. Letting vo = mgsq,(f) and A =2- 18", we set, for k =1,2,...,

Dy = U {Q : Q €D(Qo), msq(f) >10A4"}.

Considering the maximal cubes with respect to inclusion, we can write
Dy = J Q..
J

where the cubes {Q,;}; C D(Qo) are nonoverlapping. That is, {Qx,;}, is a family of
cubes satisfying

Z XQr.; < XQo
J
for almost everywhere. By the maximality of Q) ; we see that
(2.3) 0A¥ < mag, , (F) < 2"904%,

Let
Ey=Qo\Di, FEir;=Qr;\Dit1.

We need the following properties:

Lemma 2.3.  ([5]) The set {Eo} U{E} ;} forms a disjoint family of sets, which
decomposes gy, and satisfies

(2.4) [Qol < 2|Eo|, |Qk.;| < 2|Ek;l.

For the sake of completeness we recall the proof here.

Proof. By (2.3) we see that

Qkj N Dii1 C {2 € Qrj = Mxaq,, fl(x) > 50A"H},
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Using the weak-(1,1) boundedness of M, we have

25) 1Qus 1 Dunal < g [ 1@y < %5 9Quil = T 1Qus] = 510kl
where we have used again (2.3). Similarly, we see that

(2.6) D < 51Qol.

Clearly, (2.5) and (2.6) imply (2.4). O

§3. Proof of Theorem 1.1

We depend on the method of Li and Perez [6, 8]. Here and below we can assume
that f and g are positive.

§3.1. Set up

We set
Cilf.glie) = o) 32 2 xla) [ mala) — an)” ) dy
vEZ QED, 3Q
Colf, gl 2"y (@)|a(x) —me(a)|™ | fly)d
g ;ZQ; Xo(@ Q /3 Wy
We decompose Csf, g] according to QQp: We write
Corlf,gl(x) =3"g(x) > D> UQ)*xq(@)la(z) — mg(a)"maq(f)
veZ QED,,QRDQo
Coolf,9)(x) =3"9(x) > > HQ)*xe(@)la(x) — mg(a)[™msq(f)-

veZ QeDy, QS Qo

Note that Ca[f, g] = Ca1[f, g] + Ca2[f, g].
Let us recall the notation of Lemma 2.3. We set

Dy(Qo) ={Q € D(Qo) : m3(f) <A}

and

Dr,j(Qo) = {Q € D(Qo) : Q C Qujy 10A* < mag(f) < yAFY.

Then we obtain

(3.1) D(Qo) = Do(Qo) U|J Dr.;(Qo)-

k.j
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Next, we shall choose 6 € (1,p) and s € (r,q) so that

(3.2) sf < q
and that
(3.3) s'0 <.
Writ
rite ,_ 9
=31

§3.2. Decomposition of the operator [I,,a]" f(z)
We first obtain a pointwise estimate of [I,,a]™) f(x); by using

3.4 el (o)) < [ LD 1)
we obtain
(m) la(@) —a@)™ ¢\ 4
|[Lay @)™ f (2 |<;Z/ S ey = fy) dy
v(n—a) - m
soypte [ @) el ) dy

VEZ
Now that D, partitions R™ according to (2.2), we have

e ™f@) <03 T 2=y () / o) e ) dy
—v—1 T—Y —v

vEZ QED,
SO 3 20 gla) [ ate) = al)™ ) dy
vEZ QED, (z,277)

We recall that we denote by 3Q) the triple of a dyadic cube @Q; 3Q) is made up of 3"
dyadic cubes of equal size and the center of 3Q) is that of ). A geometric observation
shows that B(x,27") C 3Q if x € Q € D,. Consequently we obtain

Uad™f@) <Y 3 270-Dyg(a) / la() — aly)™ £ (y) dy
vEZ QED, 3Q

Recall that mg(a) denotes the average of a over a cube (. Using mg(a), we shall

decompose

19() Tara] ™ £(@)] < Clo(@)| 3 3 2700 o () / ima(a) — aly)|™ f(y) dy

veEZ QED,

+Clg@) S Y 20y (@)a(@) — mo(a)|™ / )y

veZ QED,
= CC\[f, gl(x) + CCalf, g)(x) + CCxsf, g)(x).
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Hence we have
(3.5) 19(2)[La,a]™ f(2)] < C(Cilf, g)(x) + Car[f, g)(x) + Cazlf, g)()).
Thus, we are led to analyzing three operators C1[f, g], Ca1[f, g] and Caslf, g].

§3.3. Estimate for C4][f,¢]

The analysis of C1[f, g] depends on (1.2): First, we choose 6 slightly larger than 1.
By the John-Nirenberg inequality (see Lemma 2.2), we have

1 m
o / Ima(@) ~ )" f)dy

sﬁll(/wmg(a) o ay)’

(3.6) < Clal[Eyo inf M@ f(y).
yeQ

Consequently, by inserting (3.6) to C1[f, g], we are led to a pointwise estimate:

Culf, gl(x) < Cllallgyog(@) Lo MM f])(x).

If we use (1.2) and 6 < p, then we have

(3.7) IS Ml aaze < CllallByio 11 aze gl aggo-

This is an estimate we are looking for.

§3.4. Estimate for Cy[f,g]

We aim to estimate

r

I — |Qol% ( /Q |021[f,g](x)lrdx)

The estimate for Ca1[f, g](x) is simple. Let us denote by @y the unique cube containing
Qo and satisfying |Qx| = 2¥|Qo|. By the Hélder inequality, if we set v = — log, |Qx|*,
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we have

) dy}r da:)%

| Az @g@aw) - mo. @} da:)%

Qo

I, = |Qol ( /Q 0 {2”<”-a>g<x>mk (2)la(z) — ma, (@)™

3Q%
[ fydyx Qs (
3Qk

<c [ gwarx i@t ([ {20 g@la) - mo@lm} dx)%

3Qk

+Clmay() = mou@)l” [ sy <@t ([ {20} ar)

no_ g

—k
< 027 ) (1 B 1 Loz 9 e s

Here for the last inequality we have invoked the fact that, for every k € Z, we have
Img(a) — mg(a)] < C|almo, if @ € Dy is engulfed by R € Dj_;. Assuming that
po < %, we see that this estimate is summable over £ € NU {0}. Hence, we have

39 =@t ([ (Calngl@rds) < Ol lollag lalgvo
Thus, the control of Coy[f, g](z) is valid.

§3.5. Estimate for Cq|f,g]

The heart of the matter, as is the case with the operator g-[I,, a](m) f, is to estimate

Caalf, g]-
Finally, we aim to estimate

S

I — Qo ( / |022[f,g]<x>|fdx)

To investigate Cas|[f, g](x), we linearize the estimate: Choose a positive element w €
L™ (Qo) with norm 1 so that

(3.9) ( / (Gl g](a:)rda:) =y Calf. o) de

Using (3.1), we decompose the right-hand side of (3.9) as follows:

Coa[f, gl(x)w(x) dx
Qo

- ¥ e / (o) ~ m(@)"g(a)ula) dz ) maql )

Q€EDo(Qo)

(3.10) Y (e ( /Q |a<x>—mQ<a>|mg<x>w<x>dx) mao(f).

k,j Q€Dx,;(Qo)
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From the Holder inequality and Lemma 2.2, we have

/ lalx) — mg(a)"g(x)w(z) de

1

< | k) = mate)™” dx)w ( / <g<x>w<x>>9dx)%
—Qp (IQI / a(z) — mg(a)|™ dx)ﬁ ( / (g($)w(x)>0dx)%

< Ollalgol@ (|Q| / (9 (x)w(x))edxf < Ollallgo /Q MO [gul(z) de

This implies

( / a(z) — mo(a)|"g(x)uw() dx) mag(f)
QeDk J(QO)
G1) < Clan 1 ([ MO lgu)(x) de ) msg(f).
BMO QEDkZJ(QO) (/Q > 3

It follows from the definition of Dy, ;(Qo), a/n < 1, support condition and (2.3) that

> e ( RS2 iz ) maq )

QEDy,;(Qo)

_ Z Q| (/Q MO [gw](x) d:c> maq(f)

Q€eDy,;(Qo)

< C|Qkj|™ ( MD[gw)(x) dl’) maq, ; (f)

Qk,j
= C|Qk7j %ka,j (M(e) [gw])m3Qk,j
(312) < C|Qk,j|%ka,j (M(G)[gw])mng’j

N)IQk 1

(
(N Ek 5l

The Holder inequality gives
MO [guw] < MCE Dy . p69 g

and hence

1

313) oy, (MOlgu)) < (ma, (M Dw)))” (mo, (M10gyn)

Lemma 2.1 with a = 0, the Morrey boundedness of M enables us that, noticing (3.2),

(3.14) |Qk.j

1
L q
& (mqu, (MEDg)1) " < Cllg -
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(3.11)—(3.14) yield

@ ( | lat) = () steyua i) mag()

1
7

a 1 ’ ’
n. q0 (ka’j((M(s Q)w)q )> e mng’j (f)lEk,j|

QEDy 5 (QO)

(3.15) < CllalBmollgllrmzo |Qr.s

@ ( [ ate) = mo@I gty iz ) maql )

1

a 1 ’ ’ -
(3.16) < Cllalgaollg e |Qol * 7 (mau (M Dw)™)) ™ maqq ()| Bol-

Gathering all factors (3.10), (3.15) and (3.16) and using the fact that {Eo} U {Ey ;}
forms a disjoint family of sets, which decomposes Qg, we see that the right-hand side

Similarly, we see that

QGDO(QO)

of (3.9) is bounded by constant times

lallZssollgll o /Q MO M) (2) Mo g0y () d
0

N———
3=

< CllalEsollgl e (/Q MO M) () dx) (/Q Mo (oo (@) d

/ /
Recall that 6 is slightly larger than 1. Since — > 1 and —9 > 1, we have
q

1
v

( M(q/)[M(s'G)w](x)r’ da:) <cC.
Qo

Thus,

3=

@l ( O (Carlf. gl d

< Cllaliolslaip 100 (| Mociojan Sta) dr)

Finally, Lemma 2.1 gives

(B17) T = [QolF (/Q (Carlf.gl@)l o) < Claliollllago 1l

From (3.5), (3.7), (3.8) and (3.17), we conclude the proof of Theorem 1.1.

§4. Proof of Proposition 1.5

We recall the following estimate by Hedberg:
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Lemma 4.1.  Suppose the parameters a,p, s satisfy

1 1 «
O0<a<n,l<p<s<oo, —=-———.
s p n

Let f be a positive measurable function. Then

Inf(x) < CMf(@)* |l

Proof. The proof is well-known but for the sake of completeness, we supply it. By

the Fubini theorem, we obtain

)= [ ( = cw) Fdy=(n-a) [ (6% [ 1o dy) .

If we insert the estimates

1 1
w [ fway< i@, s [ fw)dy < Ol
0" JB(z,0) ¢ B(a,0)

then we obtain

@) < C [ min(en M (@), 070 Flagg) e = CM Py

Corollary 4.2. Letl<t<s<oo andl < q<p < oo satisfy

Y

1
s

S ge)
®w | o+

g
p

RS

Then

r 1—2
Mo fllage < CUF g 1 s -
We prove Proposition 1.5.

Proof. Since I, is known to be injective, if I, were surjective, then by virtue of
the open mapping theorem, I, : ML(R") — M(R") would be isomorphic. So, we
would have a constant C' such that

CH e < Hafllag < Ol fllae-

If we combine this with Corollary 4.2, then we obtain

1—2

CHIA ey < CUAN g Il s
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This implies that M7 (R™) C ME(R™). Since MJ(R™) D> MP(R™) is known to hold,
it follows that M7 (R™) = MP(R™) with norm equivalence. This is a contradiction to
Example 1.7. O

8§5. Appendix: The proof of Lemma 1.9

In what follows we prove Lemma 1.9. When m = 2,3, this is true as the following
identities show:

1 1
T1Xo = 1(331 + 332)2 — Z(xl — 332)2~
1
T1T2X3 = ﬂ(ﬂ?l + T2 + .733)3
P S +23)% — o=~ + 2o+ 75)°
— —(x To —x3)° — — (1 — X T3)” — —(—x T z3)°.
o \¥1 2 3 o \¥1 2 3 21 1 2 3

Suppose that Lemma 1.9 is correct for m = mg. Then by the induction assumption, it
suffices to prove that {™°x,,,+1 is in the linear span of V41, where § = a121 + a2 +
o A Tmg -

Consider an mg + 2 matrix

1 1 1 ... 1
1 2 3 ... mg+2

A= 12 22 32 . (mg+2)?

1mo+1 9gmo+l gmo+l (mo + 2)m0+1

Then, by virtue of the Vandermonde determinant, A becomes invertible. We now set

by 0
by 1
b3 = A_l 0
bmo+2 0
We notice that
g 1 (k=1),

b =

(k=0,2,3,---mgo—+1).

This implies
mo-+2

Z b (€ + jmor2) ™0 = (mo + 1)EM0 Ty, 12
=1

So, Lemma 1.9 is correct for m = mg + 1.
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