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Toroidal compactifications of Shimura varieties
of PEL type and its applications

By

Naoki IMAI * and Yoichi MIEDA **

Abstract

In this survey paper, we explain a theory of toroidal compactifications of Shimura varieties
of PEL type after Lan. We also explain its application to cohomology of the Shimura varieties.

Introduction

A Shimura variety of PEL type is a moduli space of abelian varieties with addi-
tional structures. The cohomology of Shimura varieties of PEL type are important,
because they should realize the Langlands correspondences. It is often useful to con-
sider compactifications of Shimura varieties for studying cohomology of the Shimura
varieties. A toroidal compactification of a Shimura variety of PEL type is a compact-
ification determined by data of a cone decomposition. It depends on the choice of the
cone decomposition data, and does not have moduli interpretation. However, there is
a degenerating family of abelian varieties on the toroidal compactification. The pur-
pose of this paper is to explain a statement of the main theorem of [Lanl] on toroidal
compactifications of Shimura varieties of PEL type. In short, toroidal compactifications
of Shimura varieties of PEL type over a ring of integers outside some bad primes are
constructed by algebraic methods in [Lanl].

Here, we briefly recall some related results. Toroidal compactifications of Shimura
varieties over the field of complex numbers was obtained by Ash-Mumford-Rapoport-
Tai in [AMRT]. Algebraic construction of toroidal compactifications of Siegel modular
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varieties over a ring of integers outside bad primes was obtained by Faltings-Chai in [FC].
Larsen constructed toroidal compactifications of Picard modular varieties over a ring
of integers outside bad primes in a way based on methods in [FC] (cf. [Lar]). There is
also an unpublished preprint [Fuj] by Fujiwara on toroidal compactifications of Shimura
varieties of PEL type. The construction of toroidal compactifications in [Lanl] is based
on that in [FC], but there are a lot of technical difficulties for generalization, which
is resolved in [Lanl]. A coincidence over the the field of complex numbers of analytic
construction in [AMRT] and algebraic construction in [Lanl] is proved in [Lan2].

We explain the contents of this paper. In Section 1, we recall the definition of
Shimura varieties of PEL type. In Section 2, we define a notion of a cusp label, which
is an index set of some stratification of a toroidal compactification. In Section 3, we
recall a general notion of a cone decomposition. In Section 4, we define a degeneration
data in the principal level case, which is used to construct a degeneration family of
abelian varieties. In Section 5, we define cone decomposition data, which determine a
toroidal compactification. In Section 6, we state a theorem on the existence of toroidal
compactifications. In Section 7, we mention some application of the theory of toroidal
compactifications to the cohomology of Shimura varieties of PEL type.

Notation

Let OO be a set of prime numbers. We say an integer is prime to [J if it is not
divisible by any prime number in [J. For a positive integer n, we write O 1 n if n is
prime to [J. For a commutative ring R, we write Ry for the localization of R at the
multiplicative subset of Z generated by the non-zero integers prime to [J. We write Vi
and AU for the integral adeles and adeles away from [ respectively.

§1. Shimura varieties of PEL-type

Let B be a finite-dimensional semisimple algebra over Q with positive involution
*. Here, positivity of x means that Trp,q(bb*) > 0 for any non-zero b € B. We write F’
for the center of B. Let O be an order in B that is stable by *.

Definition 1.1.  Let ¢t = [B : Q]. The discriminant Disc = Discp,z is the ideal
of Z generated by the set of elements

{det((T‘I‘B/Q(ai'i:l'}j))lgi,jgt) | X1,...,T¢ € O}

We put Z(1) = Ker(exp: C — C*). For z € C, the complex conjugate of z is
denoted by z€.

Definition 1.2. A PEL-type O-lattice is a triple (L, (-, -), h) where
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1. L is an O-module that is finite free over Z,

2. (+,-): L x L — Z(1) is a Z-bilinear alternating pairing such that (bx,y) = (z, b*y)
for z,y € Land b € O,

3. h: C — Endpg,r(L ®z R) is an R-algebra homomorphism such that (h(z)z,y) =
(x,h(2%)y) for x,y € L®z R and z € C,
4. the R-bilinear pairing
1
2my/—1

is symmetric and positive definite for any choice of «/—1 € C.

(-, h(v/=1)-): (L®zR) x (L ®zR) — R

Let (L,(-, -),h) be a PEL-type O-lattice. We define an algebraic group scheme
G = G(L,(-,-),h) over Z by

G(R) = {(g,r) € GLO@ZR(L ®7 R) X Gm(R) | (ga:,gy> = T<x7y> for all T,y € L}

for a commutative Z-algebra R. We put Ipaq = 2 if B ®@p, R ~ M (H) for some
Q-algebra homomorphism 7: F' — R and some positive integer k. Otherwise, we put
Iaqa = 1. Then G is smooth over Z,) if p{ Iyaq Disc by [Lanl, Corollary 1.2.3.12].

Let L ®z C = Vi @ V§ be the unique decomposition such that h(z) acts by 1 ® z
on Vp and by 1 ® 2¢ on Vj for z € C.

Definition 1.3.  The reflex field Fj of (L ®z R, (-, -),h) is the fixed field of C
by the elements o € Aut(C/Q) such that Vy and Vp ®c » C are isomorphic as (B ®q C)-
modules.

Remark 1.4. We have Fy = Q(Trc(b; Vo) | b € B) by [Lanl, Corollary 1.2.5.6].
Therefore Fj is a finite extension of Q.

Definition 1.5. Let S be a scheme, and let M be any locally free Og-module
of finite rank on which O acts by morphisms of Og-modules. We take a Z-basis
{ag,...,a¢} of O. Let {af,...,a)} be the Z-basis of OV = Homgz(O,Z) dual to
{o1,...,4}. Then we have an isomorphism Og[X:!' ... X&' ~ Og[0Y] of Os-
algebra defined by sending X; to ) for 1 <14 <t. We put

detoi® (X1, X)) = detog (X101 + -+ Xiu| M) € O5(8)[X1,.... X4,

We define deto|aq as the element of Og(S)[O"] corresponding to det?‘;';;;t”at (X1,...,X4)
under the isomorphism Og(S)[ X!, ..., X&' ~ Og(S)[0Y]. This element deto|aq does
not depend on the choice of {aq,...,a}.

If S = SpecR and M = M(R), then we write detp;ys € R[OY] for detojp €

O0s(9)[0Y].
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Lemma 1.6.  [Lanl, Lemma 1.2.5.10] The element detoy, of C[OY] is in the
subset Of,[OY] C C[OY].

Definition 1.7. Let A be an abelian scheme over a scheme S. We write P4y
for the Poincaré invertible sheaf of A, which is an invertible sheaf on A xg AY. A
polarization of A is a homomorphism A4: A — AV such that

1. the composite 4 = (AY)V 24, AV coincides with A,
2. the invertible sheaf (Ida, A4)*Pa over A is relatively ample over S.

We put
L'={reLe;Q| (z,y) € Z(1) for all y € L}.

We fix a set [ of prime numbers such that [ Iy.q[L* : L] Disc.

Definition 1.8. Let A be an abelian scheme over a scheme S. A prime-to-[]
polarization of A is a polarization Ay: A — AY of A such that the rank of ker(\4) is
prime to L.

Definition 1.9.  Let S be a scheme over Spec O, (). A triple over S is a triple
(A, Aa,i4) where

1. A is an abelian scheme over S,
2. Aa: A— AV is a prime-to-UJ polarization of A,

3. ia: O — Endg(A) is a ring homomorphism such that i4 (b)Y o Ag = A4 0i4(b*) for
beO.

Definition 1.10.  Let (A,A4,i4) be a triple over an Op, )-scheme S. We
say that Lie, g satisfies the determinant condition defined by (L ®z R, (-, -),h) if
det@l@f\/s agrees with the image of dety;, under the structural homomorphism O, oy —
Os(95), where we consider the action of O on Lie, g induced by i4.

Definition 1.11.  Let (A, A4,i4) be a triple over an Op, (y-scheme S, and let
n be a positive integer prime to [J. An O-equivariant symplectic isomorphism from
(L/nL)s to A[n] consists of the following data:

1. An O-equivariant isomorphism «,: (L/nL)s — A[n] of group schemes over S.

2. An isomorphism v,,: ((Z/nZ)(1))s — p, g of group schemes over S such that the
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diagram

(L/nL)s T (L/nL)s " (Z/nZ)(1))s
Qp Xy | Vn 2

era

Aln] x5 An] M5

is commutative, where e is the A4-Weil pairing.
We often write (o, v,): (L/nL)s — A[n] for such a symplectic isomorphism.

Definition 1.12.  Let (A, A4,i4) be a triple over an Op, (y-scheme S, and let
n be a positive integer prime to [J. A principal level n structure of (A, Aa,i4) of type
(L®zZP, (-, -)) is an O-equivariant symplectic isomorphism (an, v5): (L/nL)g = Aln]
that is symplectic-liftable in the following sense:

There exist a tower (Sy — Sm)n|m,m|m’,Opm Of finite étale surjections with S,, = S
and an O-equivariant symplectic isomorphism (o s,,,Vm.s,,): (L/mL)s, — Alm]s,,
over each S, such that the pullback of (ay g,,v1,5,) to Sy, is the reduction mod [ of
(.S, Vm,s,,) for each [ satistying n|l and I|m.

Definition 1.13. Let n be a positive integer prime to [J. The moduli problem
M, is defined by the category fibered in groupoids over (Sch/Op, @y) whose fiber over
an Op, y-scheme S is the groupoid M,,(S) described as follows:
The objects of M,,(S) are tuples (A, Aa,ia, (an,vy)) where

1. (A, A4,i4) is a triple over S,
2. Liey g satisfies the determinant condition defined by (L ®z R, (-, ), h),
3. (un,vn) is a principal level n structure of (A, Aa,i4) of type (L ®z Z5, (-, -)).

The isomorphisms (A, A4, 74, (qn,vn)) ~ (A, Aar,iar, (o, v))) in M,, are given by O-

nr n

equivariant isomorphisms f: A — A’ as abelian schemes over S such that
1. Aa= fYodaof,
2. flam): Aln] = A'[n] satisfies af, = (f|afn]) © n-
For a commutative Z -algebra R, we put G=5(R) = Im(G(Z") — G(R)).

Definition 1.14.  Let (A, A4,44) be a triple over an Op, (my-scheme S, and let n
be a positive integer prime to 0. Let H,, be a subgroup of G***(Z/nZ). By an H,-orbit
of étale locally defined level n structures for (A, Aa,74), we mean a subscheme ay, of

Isomg((L/nL)s, Aln]) xs Isomg (((Z/nZ)(1))s, py.5)



8 NAOKI IMAI AND YOICHI MIEDA

over S that becomes a reduced closed subscheme defined by some H,,-orbit of level n
structures after base change to some finite étale covering of S.

For a positive integer n prime to O, we put U= (n) = Ker(G(zD) — G(iD/nzD)).
For an open compact subgroup H of G(Z") and a positive integer n such that O { n
and UP(n) C H, we put H, = H/(U(n)) C G=5(Z/nZ).

Lemma 1.15.  Let (A,Aa,ia) be a triple over an Op, )-scheme S, and let H
be an open compact subgroup of G@D). Let n and m be positive integers prime to [
such that nlm and U (n) C H. Then there is a canonical bijection from the set of H,,-
orbits of étale locally defined level m structures for (A, Aa,ia) to the set of H,-orbits
of étale locally defined level m structures for (A, Aa,ia), which is induced by taking the
reduction mod n of level m structures étale locally.

Proof. This follows from the symplectic-liftability condition in Definition 1.12. [

Definition 1.16.  Let (A, A4,i4) be a triple over an O, (y-scheme S, and let
‘H be an open compact subgroup of G(iﬂ). Then a level H structure of (A, Aa,i4) of
type (L ®z 75, (-, -)) is a collection apy = {ag, } labeled by positive integers n such
that (117 and U (n) C H where

1. ap, is an H,-orbit of étale locally defined level n structures for any index n,

2. the map induced by the reduction mod n sends oy, to ap, for any indices n and
m such that n|m.

Remark 1.17.  The collection ay = {ap, } in Definition 1.16 is determined by
any element ay, in it by Lemma 1.15.

Definition 1.18. Let H be an open compact subgroup of G (iD). The moduli
problem My is defined by the category fibered in groupoids over (Sch/Op, (o)) whose
fiber over an Op, (m)-scheme S is the groupoid My (.S) described as follows:

The objects of My (S) are tuples (A, Aa,ia, ) where

1. (A, A4,i4) is a triple over S,
2. Lie, g satisfies the determinant condition defined by (L ®z R, (-, ), h),
3. ag is a level A structure of (A, Aa,i4) of type (L @z Z2, (-, ).

The isomorphisms (A, A4, 44, an) ~ (A, Aar,ia7, o) in My (S) are given by O-equivariant
isomorphisms f: A = A’ as abelian schemes over S such that

1. )\A:fvo)\A/ Of7
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2. ap, is the pullback of oy under the morphism (f|4[n))« x Id for any positive
integer n prime to O satisfying 45 (n) C H, where

(flagn))«: Isomg((L/nL)s, Aln]) — Isomg((L/nL)s, A'[n])

is the morphism induced by f|ap): A[n] = A’[n], and Id is the identity morphism
on Isomg (((Z/nZ)(1))s, ta,s)-

Definition 1.19.  Let g = (gp)p¢0 € G(Z") with gp € G(Zyp) C GLog,z,(L ®z
Zp) X Gm(Zp). For each p ¢ [, let I'y be the subgroup of @; generated by the
eigenvalues of the action of g, on (L ®z Z,) ® Z,. Let (@X N Ty, )tors be the subgroup
of @X consisting of the torsion elements of @X NIy, for an embedding Q- @p, which
is independent of the choice of the embedding Q — Q,. We say that g = (g,) is neat

if ﬂpgm(@x NTy, )tors = {1}. We say that an open compact subgroup H of G(Z") is
neat if all elements in H are neat.

Remark 1.20. If # c U (n) for some positive integer n such that [ { n and
n > 3, then H is neat, because no nontrivial root of unity can be congruent to 1 mod n
if n > 3.

Theorem 1.21.  [Lanl, Theorem 1.4.1.11 and Corollary 7.2.3.10] Let H be an
open compact subgroup of G(ZD). Then the moduli problem My is a smooth separated
algebraic stack of finite type over Op, ). If H is neat, then My, is representable by a
smooth quasi-projective scheme over O, (-

§2. Cusp labels

Definition 2.1. A left O-module M is called an O-lattice if it is finitely gener-
ated free Z-module.

Definition 2.2.  Let R be a commutative ring. An (O ®z R)-module is called
integrable if it is isomorphic to M ®z R for some O-lattice M.

Convention.  For a commutative ring R, all filtrations on L®yz R we shall consider
will be increasing filtrations Z = {Z_;} of (O ®z R)-submodules on L ®z R indexed by
integers —3 < —i < 0 such that Zo = M and Z_3 = {0}.

Definition 2.3. Let R be a commutative ring, and let Z = {Z_;} be a filtration
on L ®; R. We put Grz_i =Z_;/Z_;_1 for 0 <i <2, and Gr? = Do<i<2 Grz_z-.

1. We say that Z is integrable if Gr?, is integrable as an (O®z R)-module for 0 < i < 2.
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2. We say that Z is split if there exists some isomorphism Gr® ~ M as (O ®z R)-
modules.

3. We say that Z is admissible if it is integrable and split.

4. We say that Z is symplectic if Z_5 and Z_; are annihilators of each other under the
pairing induced from (-, -).

If Z is symplectic, let (-, -)11: Gr®, x Gr® | — R(1) be the pairing induced from (-, -).

Definition 2.4. Let R be a commutative ring, and let M be an integrable (O®y
R)-module. An integrable O ®; R-submodule M’ of M is called admissible if the
filtration 0 C M’ C M is admissible. A surjection M — M" of integrable (O ®z R)-
modules is called admissible if the kernel is admissible.

Definition 2.5. Let B ~ ][], ; B; be the decomposition of B into simple factors.
Let M be a finite B-module. Then we have a decomposition M ~ P,
to the decomposition B ~ [],.; B;, where M; is the unique simple left B;-module for
i€ I. We call (m;);e; the B-multi-rank of M.

MP™ according

Definition 2.6. Let R be a Noetherian commutative flat Z-algebra, and let M
be an integrable (O ®7 R)-module, which is isomorphic to M’ ®7 R for some O-lattice
M’ by definition. Then the O-multi-rank of M is defined to be the B-multi-rank of
the M’ ®7 Q. The O-multi-rank of M does not depend on the choice of M’ by [Lanl,
Lemma 1.2.1.24].

Definition 2.7. The O-multi-rank of a symplectic admissible filtration Z on
L ®y 75 is the O-multi-rank of Z_o as an integral (O ®y 2'])—module.

Definition 2.8. We say that a symplectic admissible filtration Z on L ®7, 75 is
fully symplectic with respect to (L, (-, -)) if there is a symplectic admissible filtration
Zyo={Z_; o} on L®y AP such that Z_; 0N (L®z Z5) =7_; in L®z A for all 4.

Definition 2.9. For a positive integer n prime to [, a fully symplectic-liftable
admissible filtration Z,, of L/nL with respect to (L, (-, -)) is the reduction mod n of
some fully symplectic admissible filtration Z on L ®7,Z" with respect to (L, (-, - }) with
the information of O-multi-rank of Z.

Definition 2.10. For a fully symplectic admissible filtration Z on L ®z 75 with
respect to (L, (-, +)), a torus argument ® for Z is a tuple & = (X,Y, ¢, ¢_2, o), where

1. X and Y are O-lattices of the same O-multi-rank, and ¢: Y — X is an O-linear
embedding,
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2. p_9: Gr’y = Homon (X ®z Z9,75(1)) and ¢q: Grf = Y ®z 79 are O-linear
isomorphisms such that the pairing (-, -)og: Gr*, x Grj — ZP(1) induced from
(-, ) is the pullback by (¢_2, o) of the pairing

(-, )g: Homsp (X ®2 Z°,Z5(1)) x (Y @5, 25) — Z°(1)

defined by (f,y)¢ = f(¢(y)) for f € Homsn (X®27°,7°(1)) and y € Y ®zZ5. Here
we consider the O-action on Homsn (X ®z Z8,75(1)) defined by (bf)(x) = f(b*x)
for b € O, f € Homgn (X ®z ZB,78(1)) and x € X ®4Z°.

Definition 2.11. Let n be a positive integer prime to [, and let Z, be a fully
symplectic-liftable admissible filtration on L/nL with respect to (L, (-, -)). Then a
torus argument ®,, at level n for Z,, is a tuple ®,, = (X,Y, ¢, ¢_2.n,¥0.n), Where

1. X and Y are O-lattices of the same O-multi-rank, and ¢: Y — X is an O-linear
embedding,

2. ¢_o,: Gr*y = Homsn (X/nX, Z/nZ(1)) and ¢o,: Gri® = Y/nY are O-linear
isomorphisms that are reduction mod n of an O-linear isomorphisms ¢_o: Grz_2 =
Homg (X ®z ZB,78(1)) and - Gri = Y ®z 75 respectively such that ® =
(X,Y,0,0_9,p0) form a torus argument.

Two torus arguments ®,, = (X,Y, 9,0 2.,,00n) and &), = (X', Y, ¢/, 0" 5,00 ,) at
level n are equivalent if and only if there are O-equivariant isomorphisms vy : X’ — X
and vy : Y = Y’ such that ¢ = yx¢'vy, ¢ on = ‘yxp_a, and ©om = VY PO

Definition 2.12.  For a positive integer n prime to O, a splitting 6,,: Gr?" =
L/nL for a fully symplectic-liftable admissible filtration Z,, is called liftable if it is the
reduction mod n of some splitting 6: Gr? = L ®y 75 for a fully symplectic admissible
filtration Z lifting Z,,.

Definition 2.13. Let n be a positive integer prime to [J. A principal cusp
label at level n for a PEL-type O-lattice (L, (-, -), h) is an equivalence class of triples
(Zy, Py, 6p,) that consist of the following data:

1. Z,, is a fully symplectic-liftable admissible filtration on L/nL with respect to the
pairing (La < Tyt >)

2. &, is a torus argument at level n for Z,.
3. 0,: Gr*» =5 L/nL is a liftable splitting.

Two triples (Z,, ®,,d,) and (Z,, ], ,0) are equivalent if and only if Z,, = Z/, and ®,,
and ®/ are equivalent.
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Definition 2.14. Let H be an open compact subgroup of G (25). Then a collec-
tion of orbits of fully symplectic-liftable admissible filtrations with respect to (L, (-, -))
for H is a collection Zy; = {Zp, } indexed by positive integers n such that [J 1 n and
U (n) C H where

1. Zp, is an H,-orbit of fully symplectic-liftable admissible filtrations on L/nL with
respect to (L, (-, -)) for any index n,

2. the map induced by the reduction mod n sends the H,,-orbit Zy, to the H,-orbit
Zg, for any indices n and m such that n|m.

For g, € G***(Z/nZ), a positive integer n prime to [J and a fully symplectic-liftable
—1
admissible filtration Z,, of L/nL with respect to (L, (-, -)), let Gr;(g,): Gri" oy Grin
for —2 < i < 0 and Gr(g,): Gro» "Zn 5 Gr% denote the homomorphisms induced by
n-

Definition 2.15. Let H be an open compact subgroup of G(@]), and let Zy =
{Zp,} be a collection of orbits of fully symplectic-liftable admissible filtrations with
respect to (L, (-, -)) for H. Then a torus argument ®4; at level H for Zy is a collection
®y = {®y, )} indexed by positive integers n such that 0t n and U5 (n) C H satisfying
the following;:

1. For any index n, there is an element Z, in Zy, and a torus argument ®, =
(X,Y, 0, 0_2n,%0n) at level n for Z,, such that @5, is the H,-orbit of ®,,, where
(gn.Tn) € Hy sends @, to the torus argument (X,Y, ¢, r,*(¢—2,,0Gr_2(gn)), @o,n©
Gro(gn)) at level n for g,'Z,.

2. The map induced by the reduction mod n sends the H,,-orbit ®;  to the H,-orbit
&y for any indices n and m such that n|m.

Two torus arguments ®3 = {®p, } and @), = {® } at level H are equivalent if
and only if there is some index n such that ®f_ contains some torus argument that is
equivalent to some torus argument in (E/I_In'

For a torus argument ®y = (X,Y, ¢, v_22,pon), let I'p,, be the group of the

pairs (yx,7y) € GLo(X) x GLo(Y) such that ¢ = vx¢y, pan = “yxp_an and
©o,4 = Yy ¥o,H, Where the last two equalities are equalities as collections of orbits.

Definition 2.16. Let H be an open compact subgroup of G(ZD). A cusp la-
bel at level H for a PEL-type O-lattice (L, (-, -),h) is an equivalence class of triples
(Z3, P34, 09¢) that consist of the following data:

1. Zy ={Zpy, } is a collection of orbits of fully symplectic-liftable admissible filtrations
with respect to (L, (-, -)) for H.
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2. &4 is a torus argument at level H for Zy.

3. 0 = {dm, } is a collection indexed by positive integers n prime to [J satisfying
UB(n) € H, where 6y, is the H,-orbit of a liftable splitting 6,,: Gr* = L/nL for
a representative Z,, of the H,,-orbit Zg _, where (gy,r,) € H,, sends 4, to g;l 04, ©
Gr(gn): Gron Zn L/nL.

Two triples (Zy, Py, 0y ) and (Z%,, D%, 0%,) are equivalent if and only if Zy = Z), and
P4, and @7, are equivalent.

Remark 2.17. By the definition of the equivalence in Definition 2.16, for a cusp
label (Z3;, P4, 03 ), only the existence of d4 is important.

Convention. ~ We shall often suppress Z3; from the notation (Zz, Py, d%), with
the understanding that the data ®4 and dy require an implicit choice of Z.

Lemma 2.18.  Let Zy be a collection of orbits of fully symplectic-liftable admis-
sible filtrations for H, and let 4 = (X,Y, ¢, 0_2 1, p0.1) be a torus argument at level
H for Zy. Let X' and Y’ be O-lattices of the same O-multi-rank, and let ¢': Y — X'
be an O-linear embedding, Let sx: X — X' and sy:Y — Y’ be admissible surjec-
tions such that sx¢ = ¢'sy. Then these naturally induce a collection ZY, of orbits of
fully symplectic-liftable admissible filtrations for H and a pair (go’_z,q_[,gogﬂ) such that
), = (XY, ¢, go’_Q,H, goé,,q_[) is a torus argument at level H for Z7,.

Proof. Let n be a positive integer such that 0 f n and U (n) C H. We take
representatives Z,, and (¢_2 ., @o.n) of Hy-orbits Zg,, and (¢_2. 1, , po,m, ), Where Zy =

Zy, } and (@_o 3, 0oH) = —oH1.,p0.m.)}. Let Z'_, be the inverse image of the
n SD 3 (p 3 SD Pl n SD Pl n 2,” g
image of

s%: Hom(X'/nX' (Z/nZ)(1)) — Hom(X/nX,(Z/nZ)(1)); f — fosx

under Z_,,, = Gr’, AL Hom(X/nX, (Z/nZ)(1)). Then ¢_s, induces an isomor-
phism ¢ 5, Gr’n, = Z' o, — Hom(X'/nX' (Z/nZ)(1)). Let syn: Y/nY —Y'/nY’
be the surjection induced by sy. We define Z’ 1,n to be the kernel of the composite

Zom — Gl 22 y/ny 220 Y ny,

This composite induces an isomorphism ¢y ,, : Grir = Y/ /nY’. Then we define yAy
and (¢’ 5 3, ¥, ) as the collection of Hy-orbits of Z' and (¢, ,,, ¢y ,,) for the positive
integers n such that 04 n and U9 (n) C H. O
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Definition 2.19.  Let (Zy, 3, dy) and (Z%,, Y, 63,) be representatives of cusp
labels at level H, where ®3; = (X, Y, ¢, 023, p0x) and &3, = (X', Y, ¢, " 5 3, 00 21)-
A surjection (Zy, Py, 01) — (2%, Yy, 64,) is a pair of admissible surjections sx: X —
X’ and sy : Y — Y’ satisfying the following:

1. We have sx¢ = ¢'sy.

2. 23, and (¢’ 5 4, P 4) are induced from Zy and (p—2.%, vox) by sx and sy as in
Lemma 2.18.

§3. Cone decompositions

Let H be a group of multiplicative type of finite type over a scheme S. We put
X(H) = Homg(H,Gy, s) and X(H)Y = Homg(Gp s, H). Then X(H) is an étale
sheaf of finitely generated commutative groups, and X(H)Y is an étale sheaf of finitely
generated free commutative groups.

In the sequel, we assume that H is split and consider X(H) and X(H)" as abelian
groups. We put X(H)Y, = X(H)" ®z R for a commutative ring R.

Definition 3.1. A subset of X(H)y is called a cone if it is invariant under the
natural multiplicative action of RZ,. A cone in X(H)y is nondegenerate if its closure
does not contain any nonzero R-vector subspace of X(H)y.

Definition 3.2. A rational polyhedral cone o in X(H )y is a cone in X(H )y of
the form o = Rygvy + -+ - + Rsgv,, with v1,...,v, € X(H)é

Definition 3.3. A rational polyhedral cone o in X(H)y is smooth with respect
to the integral structure given by X(H)" if we have 0 = Rugvy + -+ + Rugu, with
v1,...,v, forming a part of a Z-basis of X(H)".

For a rational polyhedral cone o in X(H)g, let @ be the closure of o in X(H).
Definition 3.4. Let o be a rational polyhedral cone in X(H)g. A supporting
hyperplane P of o is a hyperplane in X(H)g such that o does not overlap with both

sides of P. A face of ¢ is a rational polyhedral cone 7 such that 7 = @ N P for some
supporting hyperplane P of o.

Let (-, -): X(H) x X(H)E — R be the pairing defined by scalar extension of the
natural pairing X(H) x X(H)Y — Z. For a rational polyhedral cone o in X(H)g, we
put

o’ ={r e X(H) | (x,y) >0 forally € g},
o ={x € X(H) | (z,y) >0 forall y € o}.

Let T be any group acting on X(H). It induces actions on H and X(H)".
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Definition 3.5. Let C be a cone in X(H)g. A TI'-admissible rational polyhe-
dral cone decomposition of C' is a collection ¥ = {o;},cs of nondegenerate rational
polyhedral cones with some index set J satisfying the following:

1. C' is the disjoint union of all the ¢;’s in ¥. For each j € J, the closure of o; in C
is a disjoint union of o;’s with k£ € J.

2. ¥ is invariant under the action of T on X(H)y, in the sense that I' permutes the
cones in ¥. Under this action, the set X/I" of I'-orbits is finite.

A T-admissible smooth rational polyhedral cone decomposition of C' is a I'-admissible
rational polyhedral cone decomposition {o;};cs of C in which every o; is smooth.

Let M be an H-torsor over an S-scheme Z. Then M is relatively affine over Z,
and the H-action on Oy, gives a decomposition O = GBXEX(H) O M.y, Where Opy y is
the invertible sheaf of x-eigenspaces under H-action, together with isomorphisms

(3.1) ﬁM,x Ko, ﬁM,x’ = ﬁM,X-l-X'
giving the 0z-algebra structure of 0.

Definition 3.6. Let o be a nondegenerate rational polyhedral cone in X(H)g.
We put M(o) = Specﬁz (D cov Orm,x) over Z, where B, v Orx has the structure
of an Oz-algebra given by the isomorphisms (3.1). The o-stratum M, of M(o) is the
closed subscheme of M (o) defined by the ideal sheaf @xeag Opmyx C Dyeov Omx-

Remark 3.7.  More generally, if Z is an algebraic stack, we can construct M(o)
and M, by [LM, Proposition 14.2.4].

§4. Degeneration data with principal level structure

We consider the following condition for a PEL-type O-lattice.

Condition 4.1.  Let (L,(-, -),h) be a PEL-type O-lattice. The action of O on

L extends to an action of some maximal order O’ in B containing O.

Lemma 4.2.  [Lanl, Lemma 5.2.7.5] Let n be a positive integer prime to [,
and let Z,, be a fully symplectic-liftable admissible filtration on L/nL with respect to
(L, (-, -)). We take a fully symplectic lifting Z of Z,, and its extension Z,n to L @z AV
as in Definition 2.8. Let Zg be the filtration on L @z R induced from L @z AP, We put
Z_onc)y =MC)Z oR. Let ZJ—_Q,h((C) be the orthogonal complement of Z_3 y(c) with respect
to (-,-) in Loz R. Let h_y: C = Endog,r(Gr” | g) be the homomorphism induced
from the restriction of h to ZJ—_Q,h((C) by the natural isomorphism ZJ—_Q,h((C) = Grz_l,R.
Then there is a PEL-type O-lattice (L, (-, - )%~ h®*") such that
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~

. Condition 4.1 holds for (L*~, (-, -)%n hZn),

2. [(L*)%: L%] is prime to OJ,

~

3. there are isomorphisms (L* @7 75, (-, V%) 5 (Gr% 1, (-, )11) and (L% &y
Rv < Tyt >Zn’ hzn) l> (Grz—l,]Rv < N >11,R7 h—l)-

Then the moduli problem M%» over Spec Op, @y defined by (L*, (-, -)**,h*") as in
Definition 1.13 does not depend on the choice of (L%, (-, <)%~ h*") up to isomorphisms.

In the rest of this section, let (Z,,,®,,d,) be a representative of a principal cusp
label at level n for a PEL-type O-lattice (L, (-, ), h), where ®,, = (X, Y, 0,021, P0.n)-
The liftable splitting 6,,: Gr®" = L/nL defines two pairings

(-, Yoom: Grir x Grir — (Z/nZ)(1), (-, d1om: Gr*y x Grir — (Z/nZ)(1)
induced from (-, -) on L.

Definition 4.3. Let S be an Op, )-scheme, and let (A,Aa,ia,(qn,Vn)) €
MZ=(S). Let ¢_1,: Gr’y, = A[n] be the composite of the isomorphism Gr’7 =~
L% /nL* and ay,: L% /nL* = Aln]. We put v(¢_1,,) = V5. We often simply write
Y_1n for (¢_1n,v(p_1,)). Then we define a pairing ag,, 5, : %Y X %Y — G, and a
homomorphism b, 5, : Y — AV[n] by requiring

11, 1 1
@5, (=Y, ~Y') = V(9-1.0) (P00 (): 90,08 ))00,n),
1 _ _
(0, be, 5, (1)) = ¥(P-1.0) ({=1,0(0): 90,5 (W) 10,)
for a € A[n] and y,y' € Y.

Definition 4.4.  Let S be an O, y-scheme. A degeneration data with a prin-
cipal level n structure over S is a tuple

(Zn7 (Xa Ya ¢7 Y—2,n, 900,71)7 (A7 )‘Aa iA) 90—1,71)7 5”7 (Cn7 Cx: Tn))
that satisfies the following:

1. (A, 24,04, 9—1.n) is determined from some (A, A, i4, (qn,Vn)) € MZ2(S) as in Def-
inition 4.3.

2. ¢cp: %X — AV and ¢,/ : %Y — A are O-equivariant group homomorphisms satisfying
the relation Aac), — c,¢n = ba, 5, With ¢,: 1Y < L X induced by ¢: Y — X. We
write ¢ for ¢, |x.
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3. Tt L1y x =5 (cn X ¢)*Pa4 is a trivialization of biextensions over S which satisfies
the relation

0 (s ) ™ = a5, (s ) € 1, (9)

for y,9’ € Y under the canonical isomorphism

(€1(50). O Pa Do (EL(y),e6W)PT T = O,

n
and satisfies the O-compatibility 7,,(by, x) = 7, (y,b*x) for y € Y and x € X under
the canonical isomorphism (¢, (by), c(x))*Pa =~ (¢, (y),c(b*x))*Pa, where the two
canonical isomorphisms are induced from the biextension structure of P4.

4. For each positive integer m such that n|m and O t m, suppose that we have lifted
all the other data to some tuple

(Zn7 (X7 Y7 ¢7 80—2,1717 SOO,m)a (A7 )\Aa iAv 90—1,m)7 5m)

at level m, then the triple (c,,c,, T, ) is also liftable to some (¢, ¢, Tm) that has
the same kind of compatibility with other data as (cy, ¢, 7,,) does.

Two degeneration data
(Zna (X7 Y7 ¢7 Y—2n, QOO,n)a (A, )\Av iAa 90—1,n)7 5n7 (Cn> Cy\z/a Tn))a
(Zn7 (X7 Yv ¢7 90—2,717 900,71)7 (A7 )‘Av iAa 90—1,71)7 57/17 (C;w (C'rvl)/v 7-7/1))

with principal level n structures over S are called equivalent if the following conditions
are satisfied:

1. There is a liftable O-linear isomorphism z, : Gr*» = Gr®" such that &/, = &, o z,
and
idGrzn‘ if i = 7,

—1

Zijn = e
0 ifi <y

for 0 <14,5 <2, where z;;,, is the composite
Grz_”j < Grén 2oy Gl — Grz_”i .

2. If we consider the homomorphisms d,: X — AY[n], dy: 1Y — A[n] and the
pairing e,, : %Y x X — p,,(S) defined by the relations

ealo) (@, dn (X)) = (o -10) (620 0 220, 0 971, )(@) (1),
dy, (%y) = (¢—1n ©Z10,m © 90 1) (¥);

en (X)) = vl 1) (920 0 220 0 20) () (X))
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for each a € A[n], x € X and y € Y, where eqp): A[n] x AY[n] — p,(5) is the
Weil pairing, then ¢, = ¢, + dy, (¢,)) = ¢,/ + d) and the diagram

en(2v,X)
Pal(ey (y).e) ~ Pal(eyy (2y).c00)
2
Ty 1 Paley2v).c00) @5 Palay iy e
2 Tn(%?%X)@"’(dX(%y)»cn(%X))

Os Os Reg Os

is commutative for y € X and y € Y, where 7(d)(+y), c,(Lx)) is the canonical

isomorphism

Os = Pal(e.en(2x) = Pal@yw).en(2x) = Palay(2y).ct0)-

§5. Cone decomposition data

Let H be an open compact subgroup of G(zD). In this section, let (Zy, ®y, d3)
be a representative of a cusp label at level H, where ®,, = (X,Y, ¢, ¢_2.,,90,n). Then
we can interpret (Zy, Py, %) as a collection {(Zg,,PH, ,0m,)}n indexed by positive
integers n such that [ n and U9 (n) C H.

Definition 5.1.  We choose an integer n such that 0 n and U (n) C H, and a
representative Z,, of the H,-orbit Zy; . We put

P;* = {(gn,n) € G*(Z/NZL) | gnZn = Zn}.
We consider the map
o1 Pp® — GLo(Gr*) x G (Z/nZ); (gn,Tn) = (G (gn),Tn),

and we put G3% = Imp, 1. We take a PEL-type O-lattice (L*", (-, -)?",h*") as in
Lemma 4.2. Then we have a natural identification oz, = ‘(efzn (o)), hzn)(Z/ nz).
We put anGZS,Szn = Pn,1(Hy N PP¥). Let Hy be the preimage of H”»Gis,szn under the
surjection Gz (.. )zn’hzn)(ZD) — G}z, . Then we define an algebraic stack Mf{” over
O, (0 to be the moduli problem defined by (L*", (-, - )%, h**) with level H-structure.
The isomorphism class of Mf{” depends only on Zy.

Definition 5.2.  Let S be an Op, (m)-scheme. A degeneration data with a level
‘H structure over S is a tuple

(ZH7 (Xa Y7 ¢7 $—2,H, 900,7'[)7 (Aa )‘A7 iA) 90—1,7'[)7 57'[7 (C'H7 C’\}-/La TH)))
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which is a compatible system of étale locally defined H,-orbits

{(Za,, (X, Y, ¢, 0 2.1,,%0.m,), (A Xaia,o-1.m,),0m,, (¢, ¢y, Ti,)) }

of equivalence classes of degeneration data with principal level structures over .S indexed
by positive integers n such that O { n and U5 (n) C H, where (gn,rn) € H,, sends a
degeneration data

(Zn7 (Xa Ya ¢7 ¥Y—2,n, 900,71)7 (A7 )‘Aa LA, @—1,71)7 5117 (Cn7 Cx: Tn))

with a principal level n structure to

(gglzna (X7 Y7¢7 T;1(90—2,n © Gr—Q(gn))a ¥o,n © GrO(gn))7
(A, )\Aa 1A, Y—-1,n © Gr—l(gn))a 9771 o 5n o Gr(gn)7 (Cn> 61\;7 Tn)) .

Proposition 5.3.  [Lanl, Proposition 6.2.4.7] We fix a choice of a representative
(Zy, Pyy, 0y ) of a cusp label at level H, where ®,, = (X, Y, ¢, p_2n,Pon). We consider
the category Dy fibered in groupoids over the category of locally Noetherian schemes
over the algebraic stack Mg_z* whose fiber over each locally Noetherian scheme S has as
objects degeneration data

(Z'Ha (Xa Y7 ¢7 ©—2,H, SOO,'H)a (Aa )\Ap iA; 30—1,7'[)7 57'[7 (C'H7 C’\}-/b TH))

with level H structures over S such that (A, Aa,ia, p—1) is the pullback of the universal
tuple over M3, Then we can construct a smooth separated relative scheme Eg,, s,, over
M2 with a natural action of T's,, such that the quotient e, s, /Te,, is isomorphic to
Dy as categories fibered in groupoids.

Further, we can construct a split torus Eg,, over Z with a natural I's,, -action,
and the structural morphism Zs,, 5, — M3} factorizes as the composition Ee,, 5, —
Co,, .5, — I\/Ig_z*, where Ea,, 5,, — Ca,,.5, 5 an FEg, -torsor, and Cy,, 5, — I\/Ig_f s a
relative abelian scheme.

Remark 5.4. If H = U (n) for a positive number n that is prime to O, then
the character group of Eg,, is the quotient group of

(Gr)exx)/(vesr=soow. ()= () o)

by its torsion subgroup. In general, Fg,, is a quotient of Eq,uD( ) for some positive inte-

y,y' €Y, xeX, becO

ger n such that (04 n and U = (n) C H. Roughly speaking, Cs,, 5,, — MZ" parameterizes
data (cy,¢;), and Ea,, 5,, = Ca,, 5, parameterizes data 7.

We take Z¢,,.5,,, Co,,.6,, and Eg,, as in Proposition 5.3. We put Ss,, = X(Eg,,)
and Sg,H = X(Eg,,)". Let (Sa,, )g = SX,H ®7 R.
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Lemma 5.5.  The R-vector space (Sa,, )y is isomorphic to the space of Her-
mitian pairings (-, -): (Y @z R) x (Y ®z R) — B ®q R. Here, a Hermitian pair-
ing (-, ): (Y @zR) x (Y ® R) - B ®g R means an R-bilinear pairing such that
(v, v') = (¥, y)* and (y,by') = b(y,y') for b€ O.

Proof. By the construction of Sg,, in the proof of [Lanl, Proposition 6.2.4.7],
the R-vector space (Sa,,)§ is isomorphic to the space of symmetric R-bilinear pairings
(-, ): (Y ®zR) x (Y ® R) — R such that (by,y’) = (y,b*y’) for b € O (cf. [Lanl,
(6.2.3.5) and Lemma 6.2.4.4]). The space of Hermitian pairings as in the claim is
isomorphic to the space of symmetric R-bilinear pairings as above by sending (|-, - |) to
the pairing (y,y") = Trpgr)/r(y, ') by [Lanl, Lemma 1.1.4.5]. O

Definition 5.6. We say that the radical of a positive semi-definite Hermitian
pairing (|-, - ): (Y ®zR) x (Y ®zR) — B ®g R is admissible if it is the R-span of some
admissible O-submodule Y’ of Y.

We define Pg,, to be the subset of (Se,, ) corresponding to positive semi-definite
Hermitian pairings with admissible radicals. Let PgH be the subset of Pg,, correspond-
ing to positive definite Hermitian pairings. Then Pg,, and Pjg% are cones in (Sa,, )j-

For a I'g,,-admissible smooth rational polyhedral cone decomposition X4, of Pg,,
and o € Xg,, such that o C PjI;H, we can construct Zg¢,, 5, (0) and Za,, 5,0 by Remark

3.7, and let Xg,, 5,,,0 be the formal completion of Eg,, 5, (0) along Zg,, 5,0

Definition 5.7. Let o be any nondegenerate rational polyhedral cone in Pg,,.
The group I'e,, » is defined as the subgroup of I'y,, consisting of elements that maps o
to itself under the natural action of I'y,, on Pg,,.

Remark 5.8. For a I'g,,-admissible smooth rational polyhedral cone decompo-
sition Yg,, of Ps, and o € Yg,, such that o C P+H, the group I's,, » naturally acts
on X,,,5,,,0 by the construction.

Definition 5.9. Let (®4,dy) and (94, d5,) be representatives of cusp labels at
level H. Let o and o’ be nondegenerate rational polyhedral cones in Pg,, and Po,
respectively. We say that the two triples (®, 04, 0) and (®,,0%,,0") are equivalent if
the following hold:

1. (P, 0%) and (P4, 84,) are equivalent by yx: X' = X and 3y : Y = Y.
2. The isomorphism Pg, = Pg,, induced by vx and ~y sends o’ to o.

Definition 5.10.  Let [(®4,dy,0)] and [($),,0%,,0")] be equivalent classes of
triples as in Definition 5.9. We say that [(®7,, 6%, 0")] is a face of [(®y, I3, 0)] if there are
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representatives (P, 64, 0) of [(Py, 0n,0)] and (9%, 65, 0") of (DY, 8%, 0")] satisfying
the following:

1. There is a surjection (sx,sy): (®y,dy) — (P}, 0%,) between representatives of
cusp labels.

2. The image of ¢/ under the embedding Pq,;{ — Pg,, induced by (sx, sy) is contained
in the I'g,,-orbit of a face of o.

Definition 5.11.  Let (®4, %) and ($),, 0%,) be representatives of cusp labels at
level H. Let ¥g,, (resp. Xg, ) be a I'p,, -admissible (resp. I'p; -admissible) smooth ratio-
nal polyhedral cone decomposition of Pg,, (resp. Ps, ). A surjection (®y, oy, Xa,,) —
(@35 0% Xa;,) means a surjection (Py, %) — (P%,d%) that induces an embedding
P‘;;{ — Pg,, such that the restriction Xg,, |p o, of the cone decomposition ¥g,, of
Ps, to P‘;;{ is the cone decomposition quﬂ of P‘;;{.

Definition 5.12.  An admissible boundary component of Pg,, is the image of
Py, under the embedding (Se;, )z — (Ss, )g defined by some surjection (®3,03) —

(P 03)-

Condition 5.13. A cone decomposition Yo, = {0;};cs of Pg,, satisfies that,
for each j € J if 45; NT; # {0} for some v € I'p,, then v acts as the identity on the
smallest admissible boundary component of Pg,, containing o;.

Definition 5.14. A compatible choice of admissible smooth rational polyhedral
cone decomposition data for My means the following choices:

1. We choose a complete set of representatives (®4,d3) of cusp labels at level H.

2. We choose a I'g,,-admissible smooth rational polyhedral cone decomposition Xg,,
satisfying Condition 5.13 for each (P4, d7) chosen above so that the cone decom-
positions Xg,, and Xy, defines a surjection (Py, 01, Xay,) — (@;[,53_[,24%1) for
every surjection (P, 09) — (P%y, 0%)-

Proposition 5.15.  [Lanl, Proposition 6.3.3.5] There exists a compatible choice
of admissible smooth rational polyhedral cone decomposition data for My.

§6. Toroidal compactification

Definition 6.1. Let S be a normal locally Noetherian algebraic stack. A tuple
(G, A\, i,ay) over S is called a degeneration family of type My if the following hold:

1. There exists a dense sub-algebraic stack Sy of S such that S is defined over O, ().
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G is a relative semi-abelian scheme over S whose restriction Gg, to S; is a relative
abelian scheme.

A: G — GV is a homomorphism that induces a prime-to-UJ polarization Ag, of Gg,
by restriction, where G is the relative dual semi-abelian scheme of G.

i: O — Endg(G) is a homomorphism of algebra that defines an O-structure ig, : O —
Endg, (Gs,) of (Gs,, As,) by restriction.

. Lies s\ /S satisfies the determinant condition defined by (L ®z R, (-, ), h).

.y is a level H structure of (Gg,, s, ,ig,) of type (L ®zZ2, (-, -)).

Theorem 6.2.  [Lanl, Theorem 6.4.1.1] We assume that (L, (-, -), h) satisfies

Condition 4.1. To each compatible choice ¥ = {Ecpﬂ}[(qm,(;ﬂ)] of admissible smooth

rational polyhedral cone decomposition data for My, there is a proper smooth algebraic

tor

stack MP,L‘ZTE over Op, oy with a degenerating family (G, \, i, ) of type My, over M3’

satisfying the following:

1.

2.

ML contains My as an open dense sub-algebraic stack.

The restriction (Gm,,, AMy, » iMy,» Q) 0f the degenerating family (G, A, i, agy) to My
1s the universal tuple over My.

M. has a stratification

M%’?fE = H Z[((I)'Hvé'Hvo')]
[(®34,070,0)]

by locally closed sub-algebraic stacks, where [(®3, 03, 0)] run through the equivalence
classes of triples (P, 044, 0) with o € X, such that o C PjI;H‘ In this stratification,
the [(®7,, 0%, 0')]-stratum Z(a1, 55,00 lies in the closure of the (P, On,0)]-stratum
Z((By,550,0) of and only if (P, 09,0)] is a face of [(®Yy,d5,0")]. Further, My
is an open dense stratum in this stratification corresponding to the unique class
[(Py,09,0)] such that X =Y = 0.

The complement of My in M';fl’fz with its reduced structure is a relative Cartier
divisor with normal crossings.

tor

The formal completion of M3, along its [(P, 63, 0)]-stratum Z(a,, 5, o)) s canon-
ically isomorphic to the formal algebraic stack Xa,, 5,0/ ®,,,0 for any representa-

tive ((I)Ha 0%, U) Of [((I)H7 0%, U)] :

Further, if H s neat, then M%_‘i’fz s an algebraic space.
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Remark 6.3. In Theorem 6.2, if H is neat, we can take a compatible choice X
so that M‘;_‘i’fz is a projective scheme by [Lanl, Proposition 7.3.1.4 and Theorem 7.3.3.4].

8§ 7. Applications

We assume the following conditions:
— B ®q Q) is a product of matrix algebras over unramified extensions of Q.
— O ®z Z,, is a maximal order of B ®g Q.
— (L, (-, ), h) satisfies Condition 4.1.

We take a compact open neat subgroup HP C G (ip ). Let m be a non-negative integer.
We put Uy,(m) = Ker(G(Z,) — G(Z/p™Z)) and H(m) = HPU,(m) C G(Z). We
choose a place v of Fy dividing p. Then we can construct an integral model M, of
M (m) ®F, Fo,0 over OF, , as in [Man, §6]. Let , be the residue field of O, ,. We write
M) w5 for Myy(m) R0, , Fo- We take a prime number £ different from p. Let £ be an
algebraic representation of the algebraic group Gg, on a finite dimensional Q,-vector
space. Let L¢ ,, be the smooth Q-sheaf on M3 (m) associated to . Then we have the
following theorem.

Theorem 7.1.  The kernel and cokernel of the canonical homomorphism
ling He (Msg(my o, RO Lem) — iy Ho(Myy(m) ©F, Fo,0, Le.m)

have no supercuspidal subquotient as G(Qp)-representations for any non-negative integer
1.

In [IM], we construct potentially good reduction loci of pre-abelian Shimura va-
rieties. For My (,,), the potentially good reduction locus Mg’_[g(m) coincides with the
Raynaud generic fiber of the formal completion of My, (,,) along its special fiber. A
main theorem of [IM] says that kernel and cokernel of the canonical homomorphism

hﬂHé(M%g(m) ®Fy., Fo.us Lem) — hﬂHé(MH(m) ®F, Fo,0, Lem)
m m

have no supercuspidal subquotient as G(Q,)-representations for any non-negative inte-
ger i. Therefore we obtain Theorem 7.1 because we have a natural isomorphism

Hi(M"H(m),Ea RYLem) = Hi(M%g(m) O Fo, FO,mE&,m)

for any non-negative integer 1.
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To prove the main theorem of [IM], we use toroidal compactifications of some
Shimura varieties. In fact, in a proof given in [IM], we use only toroidal compactifications
of Siegel modular varieties by considering embeddings of Shimura varieties of Hodge type
into Siegel modular varieties. However, in the situation of Theorem 7.1, we can also
argue directly using toroidal compactifications of Shimura varieties of PEL type. We
explain an outline of a proof using toroidal compactifications of Shimura varieties of
PEL type.

A main point of the proof is to construct a partition of My;(;,) \ Mg’_[g(m). First, we
construct a partition of My \ Mg’_[g(m) according to degeneration of abelian varieties.
More explicitly, we make a partition using the inverse images in My(,,) of the tubular
neighborhoods of the special fibers of the strata in a stratification of Mfﬁfo)’z as in
Theorem 6.2.3, where ¥ is taken so that M;—?fo),z is a projective scheme (cf. Remark
6.3). Next, we make a finer partition using level structures. Then we can show that a
difference of limits of cohomology of My (,,) and Ml;_[g(m) with respect to m comes from
proper parabolic inductions of limits of cohomology of some loci in the constructed
partition.
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