On v-adic periods of t-motives: a resume

By

Yoshinori Mishiba*

Abstract

This is a resume of our results ([7]) on v-adic periods of t-motives, where v is a "finite" place of the rational function field over a finite field. For a t-motive M, we define v-adic periods of M and the fundamental group of the Tannakian category generated by M. Our main result is the transcendental degree of the extension generated by the v-adic periods is equal to the dimension of the fundamental group.

§ 1. Introduction

The special values $\zeta(n)$ of the Riemann zeta function are important objects in number theory. However we do not know how many algebraic relations are there among them over \mathbb{Q} . Euler proved that if $n \geq 2$ is an even integer, then we have $\zeta(n)/\pi^n \in \mathbb{Q}$. The odd integer points are more mysterious and we have the following conjecture:

Conjecture 1.1. For each integer $n \geq 2$, we have the equality

$$\operatorname{tr.deg}_{\mathbb{Q}} \mathbb{Q} (\pi, \zeta(2), \dots, \zeta(n)) = n - \lfloor n/2 \rfloor.$$

Here, for a real number x, we denote by |x| the largest integer not greater than x.

To prove Conjecture 1.1 seems to be very difficult, but the function field analogue of this conjecture was proved by Chang and Yu ([4]). We explain this briefly.

Let \mathbb{F}_q be the finite field with q elements, p the characteristic of \mathbb{F}_q , $K := \mathbb{F}_q(\theta)$ the rational function field over \mathbb{F}_q , and $K_{\infty} := \mathbb{F}_q((\theta^{-1}))$ the ∞ -adic completion of K. For each integer $n \geq 1$, the Carlitz zeta value is defined by

$$\zeta_C(n) := \sum_{a \in \mathbb{F}_q[\theta], \text{monic}} a^{-n} \in K_{\infty}.$$

Received March 29, 2012.

2000 Mathematics Subject Classification(s): 11R58.

Key Words: t-motives, v-adic periods, algebraic independence.

e-mail: y-mishiba@math.kyushu-u.ac.jp

^{*}Graduate School of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, JAPAN.

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

This is the function field analogue of the Riemann zeta values. Fix a (q-1)st root $(-\theta)^{\frac{1}{q-1}}$ of $-\theta$ and set

$$\tilde{\pi} := \theta(-\theta)^{\frac{1}{q-1}} \prod_{i=1}^{\infty} (1 - \theta^{1-q^i})^{-1} \in K_{\infty}((-\theta)^{\frac{1}{q-1}}).$$

This is an analogue of $2\pi\sqrt{-1}$. By the definition of ζ_C , we have the equalities $\zeta_C(np^m) = \zeta_C(n)^{p^m}$ for all integers $m, n \geq 1$. Carlitz proved that if n is divisible by q-1, then we have $\zeta_C(n)/\tilde{\pi}^n \in K$. This is an analogue of the corresponding fact about the Riemann zeta values at positive even integers (note that q-1 and 2 are respectively the cardinalities of $\mathbb{F}_q[\theta]^{\times}$ and \mathbb{Z}^{\times}). Chang and Yu proved that these are essentially the only relations among the special values.

Theorem 1.2 ([4, Corollary 4.6]). For each integer
$$n \ge 1$$
, we have the equality $\operatorname{tr.deg}_K K(\tilde{\pi}, \zeta_C(1), \dots, \zeta_C(n)) = n + 1 - \lfloor n/p \rfloor - \lfloor n/(q-1) \rfloor + \lfloor n/p(q-1) \rfloor$.

The proof of Theorem 1.2 uses Papanikolas' result on periods of t-motives. We explain this result. Let t be a variable independent of θ . A t-motive over K is a free K[t]-module M of finite rank equipped with a "Frobenius action" satisfying certain conditions. Let \mathbb{C}_{∞} be the ∞ -adic completion of an algebraic closure of K_{∞} and $|\cdot|_{\infty}$ its valuation. Set $\mathbb{T}:=\{f\in\mathbb{C}_{\infty}[\![t]\!]|f$ converges on $|t|_{\infty}\leq 1\}$ and $\mathbb{L}:=\operatorname{Frac}\mathbb{T}$ the fraction field of \mathbb{T} . For a t-motive M, a Betti realization $H_B(M)\subset\mathbb{L}\otimes_{K[t]}M$ is defined. This is an $\mathbb{F}_q(t)$ -vector space and we have $\dim_{\mathbb{F}_q(t)}H_B(M)\leq \operatorname{rank}_{K[t]}M$. Assume that the equality holds. Such t-motives are called t-gid analytically t-rivial. Fix bases \mathbf{x} of $H_B(M)$ and \mathbf{m} of M. We obtain the matrix $\Psi=(\Psi_{ij})_{i,j}\in\operatorname{GL}_r(\mathbb{L})$ such that $\mathbf{m}=\Psi\mathbf{x}$ in $\mathbb{L}\otimes M$, where r is the rank of M. We can construct a "good" category of rigid analytically trivial t-motives and this category forms a neutral Tannakian category with fiber functor H_B . Thus we obtain an algebraic group $\Gamma\subset\operatorname{GL}_r$ over $\mathbb{F}_q(t)$ which corresponds to the Tannakian subcategory generated by M via the Tannakian duality. In this situation, Papanikolas proved the following theorem:

Theorem 1.3 ([8, Theorem 4.3.1, 4.5.10]). Let M, Ψ and Γ be as above. Then we have

$$\operatorname{tr.deg}_{\bar{K}(t)} \bar{K}(t)(\Psi_{11}, \Psi_{12}, \dots, \Psi_{rr}) = \dim \Gamma.$$

Note that, each component of Ψ converges at $t = \theta$, and moreover Papanikolas proved the equality

$$\operatorname{tr.deg}_{\bar{K}} \bar{K}(\Psi_{11}|_{t=\theta}, \Psi_{12}|_{t=\theta}, \dots, \Psi_{rr}|_{t=\theta}) = \dim \Gamma$$

by using the "ABP-criterion" ([2]). Anderson and Thakur showed ([3]) that the Carlitz zeta values are described by linear combinations of entries of $\Psi|_{t=\theta}$ over K for certain t-motives. Hence Theorem 1.2 is proved by calculations of algebraic groups.

For a finite place v, there exist v-adic zeta values and v-adic realizations of tmotives. In [7] we proved a v-adic analogue of Theorem 1.3. However we do not know
whether we can apply this result to the v-adic zeta values.

$\S 2.$ t-motives

Before we state our results, we review t-motives. The notion of t-motive was introduced by Anderson in [1]. Let K and t be as in Section 1. We define an endomorphism σ on K[t] by

$$\sigma \colon K[t] \to K[t]; \quad \sum_i a_i t^i \mapsto \sum_i a_i^q t^i.$$

Definition 2.1. A t-motive over K is a free K[t]-module M of finite rank equipped with a σ -semilinear map $\varphi \colon M \to M$ such that

- $\det \varphi = c(t \theta)^n \ (c \in K^{\times}, n \ge 0),$
- M is finitely generated over $K[\varphi]$.

Note that $\det \varphi$ in the first condition is the determinant of the matrix $A \in \operatorname{GL}_r(K[t])$ which satisfies $\varphi \mathbf{m} = A\mathbf{m}$ for a fixed basis \mathbf{m} of M, where r is the K[t]-rank of M. Since $K[t]^{\times} = K^{\times}$, the validity of the first condition is independent of the choice of \mathbf{m} .

Remark. There exists an anti-equivalence of categories between the category of t-motives over K and the category of "abelian t-modules" over K. Roughly speaking, an abelian t-module is an algebraic group \mathbb{G}_a^d over K for some $d \geq 0$ equipped with an $\mathbb{F}_q[t]$ -action which satisfies certain conditions.

Example 2.2 (Carlitz t-motive). As a K[t]-module, set M := K[t]. We define a φ -action on M by

$$\varphi(a) := (t - \theta)\sigma(a)$$

for each $a \in M$. This forms a t-motive. We call this t-motive the Carlitz t-motive. The Carlitz t-motive corresponds to an abelian t-module \mathbb{G}_a equipped with an $\mathbb{F}_q[t]$ -action defined by $\mathbb{F}_q[t] \to \operatorname{End}(\mathbb{G}_a)$; $t \mapsto (x \mapsto \theta x + x^q)$.

$\S 3.$ v-adic case

Let $v \in \mathbb{F}_q[t]$ be an irreducible monic polynomial of degree d. Set $K^{\text{sep}}(t)_v := K^{\text{sep}}(t) \otimes_{K^{\text{sep}}[t]} \varprojlim_n K^{\text{sep}}[t]/v^n$, the v-adic completion of $K^{\text{sep}}(t)$, where K^{sep} is a separable closure of K. We define $K(t)_v$ and $\mathbb{F}_q(t)_v$ similarly. The endomorphism σ on K[t]

naturally extends to an endomorphism on $K^{\text{sep}}(t)_v$, and we have $(K^{\text{sep}}(t)_v)^{\sigma} = \mathbb{F}_q(t)_v$, where $(-)^{\sigma}$ is the σ -fixed part. For a t-motive M over K, we set

$$V(M) := (K^{\text{sep}}(t)_v \otimes_{K[t]} M)^{\sigma \otimes \varphi}.$$

We call V(M) the v-adic realization of M. This is an $\mathbb{F}_q(t)_v$ -vector space and the absolute Galois group $G_K := \operatorname{Gal}(K^{\operatorname{sep}}/K)$ of K acts on V(M) naturally. For any t-motive M, we can prove that $\dim_{\mathbb{F}_q(t)_v} V(M) = \operatorname{rank}_{K[t]} M$. Thus if we fix bases \mathbf{x} of V(M) and \mathbf{m} of M, we obtain the matrix $\Psi = (\Psi_{ij})_{i,j} \in \operatorname{GL}_r(K^{\operatorname{sep}}(t)_v)$ such that $\mathbf{m} = \Psi \mathbf{x}$ in $K^{\operatorname{sep}}(t)_v \otimes M$. Each component of the matrix Ψ is called a v-adic period of M. If we factorize $v = \prod_{l \in \mathbb{Z}/d} (t - \lambda_l)$ in $\overline{\mathbb{F}_q}$, we have the decomposition $K^{\operatorname{sep}}(t)_v = \prod_l K^{\operatorname{sep}}((t - \lambda_l))$. Thus we can write $\Psi_{ij} = (\Psi_{ijl})_{l \in \mathbb{Z}/d}$ where $\Psi_{ijl} \in K^{\operatorname{sep}}((t - \lambda_l))$ for each i, j and l.

To construct the v-adic analogue of the algebraic group Γ , we consider a certain subcategory of the category of φ -modules over $K(t)_v$. A φ -module over $K(t)_v$ is a finite-dimensional $K(t)_v$ -vector space N equipped with a σ -semilinear map $\varphi \colon N \to N$. A morphism between φ -modules is a $K(t)_v$ -linear map which commutes with φ 's. For a φ -module N, we set

$$V(N) := (K^{\text{sep}}(t)_v \otimes_{K(t)_v} N)^{\sigma \otimes \varphi}.$$

We have a natural injection

$$K^{\operatorname{sep}}(t)_v \otimes_{\mathbb{F}_q(t)_v} V(N) \to K^{\operatorname{sep}}(t)_v \otimes_{K(t)_v} N.$$

Let \mathcal{C} be the full subcategory of the category of φ -modules over $K(t)_v$ whose objects are the φ -modules such that the above map is an isomorphism. We can prove that $K(t)_v \otimes_{K[t]} M$ is an object of \mathcal{C} for each t-motive M. Recall that a neutral Tannakian category over a field k is a rigid abelian k-linear tensor category \mathcal{A} for which $k \stackrel{\sim}{\to} \operatorname{End}(1)$ and there exists an exact faithful k-linear tensor functor $\omega : \mathcal{A} \to \operatorname{Vec}(k)$, where 1 is the unit object of \mathcal{A} and $\operatorname{Vec}(k)$ is the category of finite-dimensional k-vector spaces (cf. [5, Definition 2.19]). Any such functor ω is said to be a fiber functor for \mathcal{A} . We can prove that the category \mathcal{C} forms a neutral Tannakian category over $\mathbb{F}_q(t)_v$, and the functor V is a fiber functor for \mathcal{C} . For a t-motive M over K, we set \mathcal{C}_M to be the Tannakian subcategory of \mathcal{C} generated by $K(t)_v \otimes M$. Let Γ_v be the algebraic group over $\mathbb{F}_q(t)_v$ corresponding to \mathcal{C}_M via the Tannakian duality. Thus we obtain the matrix Ψ and the algebraic group Γ_v from a t-motive M. We have the following theorem, which is a v-adic analogue of Theorem 1.3:

Theorem 3.1 ([7, Theorem 4.14, 5.15]). Let M, Ψ and Γ_v be as above. Then we have

$$\operatorname{tr.deg}_{K(t)_v} K(t)_v(\Psi_{11l}, \Psi_{12l}, \dots, \Psi_{rrl}) = \dim \Gamma_v$$

for all $l \in \mathbb{Z}/d$.

Example 3.2. Let M be the Carlitz t-motive defined in Example 2.2. Then we have $\Gamma_v = \mathbb{G}_m$, the multiplicative group over $\mathbb{F}_q(t)_v$, and the transcendental degree is one.

By using Theorem 3.1, we can prove the following proposition:

Proposition 3.3 ([7, Proposition 6.4, Corollary 7.4]). Fix an integer $n \ge 1$.

- (1) For each $\alpha \in K$, there exists an element $L_{\alpha,n} = (L_{\alpha,n,l})_l \in K^{\text{sep}}[\![t]\!]_v = \prod_l K^{\text{sep}}[\![t \lambda_l]\!]$ such that $\sigma(L_{\alpha,n}) = \sigma(\alpha) + L_{\alpha,n}/(t-\theta)^n$.
- (2) Fix elements $\alpha_1, \ldots, \alpha_r \in K$. If $L_{\alpha_1, n, l}, \ldots, L_{\alpha_r, n, l}, 1$ are linearly independent over $K(t)_v$ for some $l \in \mathbb{Z}/d$, then $L_{\alpha_1, n, l'}, \ldots, L_{\alpha_r, n, l'}$ are algebraically independent over $K(t)_v$ for each $l' \in \mathbb{Z}/d$.

Remark. In the ∞ -adic case, an analogous element of $L_{\alpha,n}$ is constructed explicitly, and its value at $t=\theta$ is the *n*-th Carlitz polylogarithm of α . Thus we consider $L_{\alpha,n}$ as a v-adic formal polylogarithm.

§ 4. Outline of the proof of Theorem 3.1

In this section, we will sketch the proof of Theorem 3.1. We will construct an algebraic group Γ' defined over $\mathbb{F}_q(t)_v$ such that the dimension of Γ' is equal to the transcendental degree in Theorem 3.1, and there exists an isomorphism $\Gamma' \xrightarrow{\sim} \Gamma$. We continue to use the notations of the previous sections, and factorize $v = \prod_{l \in \mathbb{Z}/d} (t - \lambda_l)$ in $\overline{\mathbb{F}_q}$ so that $\lambda_l^q = \lambda_{l+1}$ for each l. Set $F := \mathbb{F}_q(t)_v$, $E := K(t)_v$, $L := K^{\text{sep}}(t)_v$ and $L_l := K^{\text{sep}}((t - \lambda_l))$ for each l.

Let $X := (X_{ij})$ be an $r \times r$ matrix of independent variables X_{ij} , and set $\Delta := \det(X)$. We set $E[X, \Delta^{-1}] := E[X_{11}, X_{12}, \dots, X_{rr}, \Delta^{-1}]$. We define E-algebra homomorphisms $\nu : E[X, \Delta^{-1}] \to L$; $X_{ij} \mapsto \Psi_{ij}$ and $\nu_l : E[X, \Delta^{-1}] \to L_l$; $X_{ij} \mapsto \Psi_{ijl}$, and set

$$Z := \operatorname{Spec} E[X, \Delta^{-1}] / \operatorname{Ker} \nu$$

and

$$Z_l := \operatorname{Spec} E[X, \Delta^{-1}] / \operatorname{Ker} \nu_l$$

for each l. It is clear that the dimension of Z_l is equal to the transcendental degree which we want to calculate. To construct Γ' , we define matrices $\widetilde{\Psi} = (\widetilde{\Psi}_{ij})_{i,j} := (\Psi_{ij} \otimes 1)_{i,j}^{-1} (1 \otimes \Psi_{ij})_{i,j} \in GL_r(L \otimes_E L)$ and $\widetilde{\Psi}_{lm} = (\widetilde{\Psi}_{ijlm})_{i,j} := (\Psi_{ijl} \otimes 1)_{i,j}^{-1} (1 \otimes \Psi_{ijm})_{i,j} \in GL_r(L_l \otimes_E L_m)$ for each $l, m \in \mathbb{Z}/d$. We define F-algebra homomorphisms

 $\mu: F[X, \Delta^{-1}] \to L \otimes_E L; \ X_{ij} \mapsto \widetilde{\Psi}_{ij} \text{ and } \mu_{lm}: F[X, \Delta^{-1}] \to L_l \otimes_E L_m; \ X_{ij} \mapsto \widetilde{\Psi}_{ijlm}$ for each l and m. Set

$$\Gamma' := \operatorname{Spec} F[X, \Delta^{-1}] / \operatorname{Ker} \mu$$

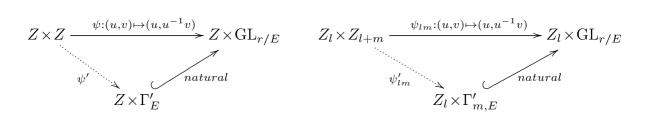
and

$$\Gamma'_{lm} := \operatorname{Spec} F[X, \Delta^{-1}] / \operatorname{Ker} \mu_{lm}.$$

By a simple calculation, we have $\operatorname{Ker} \mu_{0,m} = \operatorname{Ker} \mu_{1,m+1} = \cdots$. Thus we can set $\Gamma'_m := \Gamma'_{0,m} = \Gamma'_{1,m+1} = \cdots$. For each scheme Y over F, we set $Y_E := Y \times_{\operatorname{Spec} F} \operatorname{Spec} E$.

Proposition 4.1 ([7, Proposition 4.11]). (1) Let $\psi: Z \times_E Z \to Z \times_E \operatorname{GL}_{r/E}$ be the morphism of affine E-schemes defined by $(u,v) \mapsto (u,u^{-1}v)$. Then ψ factors through an isomorphism $\psi': Z \times_E Z \xrightarrow{\sim} Z \times_E \Gamma'_E$ of affine E-schemes.

(2) For any l and m, let $\psi_{lm}: Z_l \times_E Z_{l+m} \to Z_l \times_E \operatorname{GL}_{r/E}$ be the morphism of affine E-schemes defined by $(u, v) \mapsto (u, u^{-1}v)$. Then ψ factors through an isomorphism $\psi'_{lm}: Z_l \times_E Z_{l+m} \xrightarrow{\sim} Z_l \times_E \Gamma'_{m,E}$ of affine E-schemes.



By Proposition 4.1, we conclude that

- Γ' is a closed subgroup scheme of $\mathrm{GL}_{r/F}$ and Z is a Γ'_E -torsor under right multiplication,
- Γ'_0 is a closed subgroup scheme of $GL_{r/F}$ and Z_l is a $\Gamma'_{0,E}$ -torsor under right multiplication for each l,
- Γ'_m is a Γ'_0 -torsor under right and left multiplications for each m.

In particular, we have $\dim \Gamma' = \dim \Gamma'_m = \dim Z_l = \operatorname{tr.deg}_E E(\Psi_{11l}, \Psi_{12l}, \dots, \Psi_{rrl})$ for each l and m.

For any object N in \mathcal{C}_M , we can define a Γ' -action on V(N). This is functorial in N and we have a functor

$$\xi \colon \mathcal{C}_M \to \mathbf{Rep}_F(\Gamma')$$

which is compatible with tensor products, where $\operatorname{\mathbf{Rep}}_F(\Gamma')$ is the category of finitedimensional F-representations of Γ' . Thus we obtain the morphism $f \colon \Gamma' \to \Gamma_v$ of algebraic groups over F which corresponds to the functor ξ via the Tannakian duality. We can check easily that the morphism f is a closed immersion. To prove that f is an isomorphism, we consider the Galois representation $G_K \to \operatorname{GL}(V(M))$ which is obtained naturally by the definition of V. This representation factors as follows:

$$G_K \to \Gamma'(F) \hookrightarrow \Gamma_v(F) \hookrightarrow \operatorname{GL}(V(M)).$$

Since the functor V induces an equivalence of categories $V: \mathcal{C} \xrightarrow{\sim} \mathbf{Rep}_F(G_K)$, where $\mathbf{Rep}_F(G_K)$ is the category of finite-dimensional continuous F-representations of G_K (cf. [6, Appendix]), the set of F-valued points $\Gamma_v(F)$ is dense in Γ_v . Therefore we conclude that the immersion $f: \Gamma' \hookrightarrow \Gamma_v$ is an isomorphism. This is an essentially different point from Papanikolas' proof for the ∞ -adic case, in which the Zariski density is not proved and other facts are used to show this isomorphism.

References

- [1] G. W. Anderson, t-motives, Duke Math. J., **53** (1986), 457–502.
- [2] G. W. Anderson, W. D. Brownawell, M. A. Papanikolas, Determination of the algebraic relations among special Γ -values in positive characteristic, Ann. of Math., **160** (2004), 237–313.
- [3] G. W. Anderson, D. S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math., 132 (1990), 159–191.
- [4] C.-Y. Chang, J. Yu, Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., **216** (2007), 321–345.
- [5] P. Deligne, J. S. Milne, Tannakian categories, Hodge Cycles, Motives and Shimura Varieties, Lectures Notes in Math., **900**, Springer, Berlin (1982), 101–228.
- [6] D. Goss, The adjoint of the Carlitz module and Fermat's Last Theorem, J. Finite Fields, 1 (1995), 165–188. (Appendix: Y. Taguchi, φ -modules and adjoint operators)
- [7] Y. Mishiba, On v-adic periods of t-motives, J. Number Theory, 132 (2012), 2132–2165.
- [8] M. A. Papanikolas, Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., 171 (2008), 123–174.