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On v-adic periods of t-motives: a resume

By

Yoshinori MISHIBA*

Abstract

This is a resume of our results ([7]) on v-adic periods of {-motives, where v is a “finite”
place of the rational function field over a finite field. For a t-motive M, we define v-adic periods
of M and the fundamental group of the Tannakian category generated by M. Our main result
is the transcendental degree of the extension generated by the v-adic periods is equal to the
dimension of the fundamental group.

§1. Introduction

The special values ((n) of the Riemann zeta function are important objects in
number theory. However we do not know how many algebraic relations are there among
them over Q. Euler proved that if n > 2 is an even integer, then we have ((n)/7™ € Q.
The odd integer points are more mysterious and we have the following conjecture:

Conjecture 1.1.  For each integer n > 2, we have the equality

tr'deg(@ Q (7T7 <(2)7 s 7<(n)) =n- Ln/2j :
Here, for a real number x, we denote by |x| the largest integer not greater than x.

To prove Conjecture 1.1 seems to be very difficult, but the function field analogue of
this conjecture was proved by Chang and Yu ([4]). We explain this briefly.

Let F, be the finite field with ¢ elements, p the characteristic of F,, K :=1F,(0) the
rational function field over F,, and K, := F,(0~')) the co-adic completion of K. For
each integer n > 1, the Carlitz zeta value is defined by

Co(n) = Z a " e K.
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This is the function field analogue of the Riemann zeta values. Fix a (¢ — 1)st root
(—0)4711 of —0 and set

7= 0(—0)7 [J(1-0) ' € Kuo((—0)77).

i=1

This is an analogue of 2mv/—1. By the definition of (¢, we have the equalities (¢ (np™) =
Cc(n)pm for all integers m,n > 1. Carlitz proved that if n is divisible by ¢ — 1, then
we have (o(n)/7™ € K. This is an analogue of the corresponding fact about the
Riemann zeta values at positive even integers (note that ¢ — 1 and 2 are respectively
the cardinalities of Fy[#]* and Z*). Chang and Yu proved that these are essentially the
only relations among the special values.

Theorem 1.2 ([4, Corollary 4.6]).  For each integer n > 1, we have the equality

tr.degg K (7,¢c(1), ..., ¢o(n)) =n+1—[n/p] — n/(¢—1)] + [n/p(¢—1)].

The proof of Theorem 1.2 uses Papanikolas’ result on periods of t-motives. We
explain this result. Let ¢ be a variable independent of #. A t-motive over K is a free
K[t]-module M of finite rank equipped with a “Frobenius action” satisfying certain
conditions. Let Cy be the oo-adic completion of an algebraic closure of K, and |- |
its valuation. Set T := {f € C[t]|f converges on |t|ooc < 1} and L := FracT the
fraction field of T. For a t-motive M, a Betti realization Hp(M) C L ®g M is
defined. This is an F,(t)-vector space and we have dimg ) Hp(M) < rankg) M.
Assume that the equality holds. Such t-motives are called rigid analytically trivial. Fix
bases x of Hg(M) and m of M. We obtain the matrix ¥ = (¥;;); ; € GL,(L) such that
m = Ux in L. ® M, where r is the rank of M. We can construct a “good” category of
rigid analytically trivial -motives and this category forms a neutral Tannakian category
with fiber functor Hp. Thus we obtain an algebraic group I' C GL, over Fy(¢) which
corresponds to the Tannakian subcategory generated by M via the Tannakian duality.
In this situation, Papanikolas proved the following theorem:

Theorem 1.3 ([8, Theorem 4.3.1, 4.5.10]).  Let M, U and I" be as above. Then
we have
tr.deg[{(t) K(t)(\lfll, \Iflg, e 7\1’1"1") =dimT.

Note that, each component of ¥ converges at ¢ = #, and moreover Papanikolas
proved the equality

tr.degg K(¥iili=0, Yi2lt=0,. .., Yrr|t=g) = dimT

by using the “ABP-criterion” (]2]). Anderson and Thakur showed ([3]) that the Carlitz
zeta values are described by linear combinations of entries of ¥|;—¢ over K for certain
t-motives. Hence Theorem 1.2 is proved by calculations of algebraic groups.
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For a finite place v, there exist v-adic zeta values and v-adic realizations of t-
motives. In [7] we proved a v-adic analogue of Theorem 1.3. However we do not know
whether we can apply this result to the v-adic zeta values.

§2. t-motives

Before we state our results, we review t-motives. The notion of t-motive was intro-
duced by Anderson in [1]. Let K and t be as in Section 1. We define an endomorphism
o on K[t] by

o: K[t] = K[t]; ) ait' =Y alt'.
7 (2

Definition 2.1. A t-motive over K is a free K[t]-module M of finite rank
equipped with a o-semilinear map ¢: M — M such that

o deto=c(t—0)" (ce K*,n>0),
e M is finitely generated over K|[y].

Note that det ¢ in the first condition is the determinant of the matrix A € GL,(K[t])
which satisfies ym = Am for a fixed basis m of M, where r is the K[t]-rank of M.
Since K[t]* = K*, the validity of the first condition is independent of the choice of m.

Remark.  There exists an anti-equivalence of categories between the category of
t-motives over K and the category of “abelian t-modules” over K. Roughly speaking,
an abelian t-module is an algebraic group Gg over K for some d > 0 equipped with an
IF,[t]-action which satisfies certain conditions.

Example 2.2 (Carlitz t-motive).  As a K[t]-module, set M := K[t]. We define
a @-action on M by

p(a) := (t = O)o(a)

for each a € M. This forms a t-motive. We call this t-motive the Carlitz t-motive. The

Carlitz t-motive corresponds to an abelian t-module G, equipped with an F,[t]-action
defined by Fy[t] = End(G,);t — (x — Oz + z9).

8§ 3. wv-adic case

Let v € FFy[t] be an irreducible monic polynomial of degree d. Set K*P(t), :=
K5 (t) @ eoenpy) Jm CP [t]/v™, the v-adic completion of K3P(t), where K®°P is a sepa-
rable closure of K. We define K (t), and Fy(t), similarly. The endomorphism o on Kt]
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naturally extends to an endomorphism on K (t),, and we have (K5P(t),)7 = Fy(t).,
where (—)7 is the o-fixed part. For a t-motive M over K, we set

V(M) := (K% (t), @ M)77% .

We call V(M) the v-adic realization of M. This is an Fy(t),-vector space and the
absolute Galois group Gg = Gal(K®P/K) of K acts on V(M) naturally. For any
t-motive M, we can prove that dimg, (), V(M) = rankg) M. Thus if we fix bases x
of V(M) and m of M, we obtain the matrix ¥ = (¥;;); ; € GL,(K"P(t),) such that
m = ¥Ux in K%P(t), ® M. Each component of the matrix ¥ is called a v-adic period
of M. If we factorize v = [];cz,4(t — A1) in F,, we have the decomposition K5°P(t), =
[I, K°°P((t — Ar)). Thus we can write W;; = (Wyj1)1ez/4 Where Wyj5 € K5P((t — \;)) for
each ¢, j and [.

To construct the v-adic analogue of the algebraic group I', we consider a certain
subcategory of the category of ¢-modules over K(t),. A p-module over K(t), is a
finite-dimensional K (t),-vector space N equipped with a o-semilinear map ¢: N — N.
A morphism between p-modules is a K(t),-linear map which commutes with ¢’s. For
a p-module N, we set

se o®
V(N) = (K p(t)v QK (t), N) v,
We have a natural injection
K> (t)y ®r, (1), V(N) = K> (t)y ®K ), N

Let C be the full subcategory of the category of p-modules over K (t), whose objects
are the ¢-modules such that the above map is an isomorphism. We can prove that
K(t), ®k[g M is an object of C for each t-motive M. Recall that a neutral Tannakian
category over a field k is a rigid abelian k-linear tensor category A for which & = End(1)
and there exists an exact faithful k-linear tensor functor w : A — Vec(k), where 1 is the
unit object of A and Vec(k) is the category of finite-dimensional k-vector spaces (cf. [5,
Definition 2.19]). Any such functor w is said to be a fiber functor for A. We can prove
that the category C forms a neutral Tannakian category over F,(t),, and the functor
V is a fiber functor for C. For a t-motive M over K, we set Cp; to be the Tannakian
subcategory of C generated by K(t), ® M. Let I, be the algebraic group over Fy(t),
corresponding to Cps via the Tannakian duality. Thus we obtain the matrix ¥ and the
algebraic group I', from a t-motive M. We have the following theorem, which is a v-adic
analogue of Theorem 1.3:

Theorem 3.1 ([7, Theorem 4.14, 5.15]).  Let M, ¥ and I', be as above. Then
we have
tr.degK(t)v K(t)v(\lflll, \Iflgl, e 7\I’rrl) = dim FU
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for alll € Z/d.

Example 3.2. Let M be the Carlitz t-motive defined in Example 2.2. Then we
have T';, = Gy, the multiplicative group over [Fy(t),, and the transcendental degree is

one.
By using Theorem 3.1, we can prove the following proposition:

Proposition 3.3 ([7, Proposition 6.4, Corollary 7.4]).  Fiz an integer n > 1.

(1) For each a € K, there exists an element Lo, = (Lani)i € K*P[t], =
[I, K5P[t — N] such that o(Layn) = o(a) + Lan/(t —0)".

(2) Fiz elements au,...,0p0 € K. If Loy niy---5 Lo, ni, 1 are linearly independent
over K(t), for some l € Z/d, then Lo, ni---,La, ny are algebraically independent
over K(t), for each l' € Z/d.

Remark.  In the oo-adic case, an analogous element of L, ,, is constructed explic-
itly, and its value at t = 6 is the n-th Carlitz polylogarithm of . Thus we consider
L. as a v-adic formal polylogarithm.

8§4. Outline of the proof of Theorem 3.1

In this section, we will sketch the proof of Theorem 3.1. We will construct an
algebraic group I' defined over F,(t), such that the dimension of I is equal to the
transcendental degree in Theorem 3.1, and there exists an isomorphism I'' = T'. We
continue to use the notations of the previous sections, and factorize v = [],., / 2t=XN)
in Fy so that A7 = A4 for each I. Set F := F,(t),, E := K(t),, L := K*P(t), and
L := K®P((t — \;)) for each [.

Let X := (Xj;) be an r x r matrix of independent variables X;;, and set A :=
det(X). We set E[X,A71] := E[X11, X12,..., X, A71]. We define E-algebra homo-
morphisms v : E[X,A™ Y — L; X;; — U;; and v : E[X, A7 = Lj; X;; — U5, and
set

Z = Spec E[X, A" ']/ Kerv

and
7, := Spec E[X, A Y]/ Kery,

for each [. It is clear that the dimension of Z; is equal to the transcendental degree
which we want to calculate. To construct I, we define matrices ¥ = (U;;);; :=
(V5 ® 1);]1(1 Q@ Wi;)i; € GL{(L ®g L) and ¥y, = (Wijim)i; = (Viji ® 1);;(1 ®
Uiim)ij € GLy(L; ® Lyy,) for each I,m € Z/d. We define F-algebra homomorphisms
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p:FIX, A = Log L; X~ Uy and g, - FIX, A7 = Ly ®p Ly; Xij = Yijim
for each [ and m. Set
I" := Spec F[X,A™ ']/ Ker u

and

I}, := Spec F[X, A/ Ker fiym.
By a simple calculation, we have Ker po,, = Ker ;11 = ---. Thus we can set
Iy, =14, =T1,,41 = For each scheme Y over F', we set Y := Y Xgpec r Spec E.

Proposition 4.1 ([7, Proposition 4.11]). (1) Let ¢ : Z xp Z — Z xg GL,/p
be the morphism of affine E-schemes defined by (u,v) — (u,u"tv). Then ¢ factors
through an isomorphism ' : Z xg Z — Z x g Uy of affine E-schemes.

(2) For any | and m, let Y, : Zi Xg Ziym — Zi Xg GL, /g be the morphism of
affine E-schemes defined by (u,v) — (u,u"1v). Then 1 factors through an isomorphism
Ul 2 XE Zitm — 21 XE F;n,E of affine E-schemes.

(u,v u,u_lv m(w,v u,u_lv
Zxg SN O Glyp Zix Zyg — PO D Ly s
ZxTI'y ZixTy, g

By Proposition 4.1, we conclude that

e I is a closed subgroup scheme of GL, /r and Z is a I';-torsor under right multipli-
cation,

e I'y is a closed subgroup scheme of GL,,r and Z; is a I‘é, p-torsor under right mul-
tiplication for each [,

e I is a I'(-torsor under right and left multiplications for each m.

In particular, we have dimI” = dim T, = dim Z; = tr.degy E(V11;, Y121, . .., Uypy) for
each [ and m.

For any object N in Cps, we can define a I'V-action on V(). This is functorial in
N and we have a functor

£:Cy — Repp(TY)

which is compatible with tensor products, where Repr(I") is the category of finite-
dimensional F-representations of IV. Thus we obtain the morphism f: IV — T, of
algebraic groups over F' which corresponds to the functor £ via the Tannakian duality.
We can check easily that the morphism f is a closed immersion. To prove that f is an
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isomorphism, we consider the Galois representation Gx — GL(V (M)) which is obtained
naturally by the definition of V. This representation factors as follows:

Gx — I'(F) < T,(F) — GL(V(M)).

Since the functor V induces an equivalence of categories V: C — Repy(Gf), where
Rep(G) is the category of finite-dimensional continuous F-representations of G (cf.
[6, Appendix]), the set of F-valued points I',(F') is dense in T';,. Therefore we conclude
that the immersion f: IV < T, is an isomorphism. This is an essentially different point
from Papanikolas’ proof for the co-adic case, in which the Zariski density is not proved
and other facts are used to show this isomorphism.
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