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Torsion representations arising from (¢, G)-modules:
A resume

By

Yoshiyasu OZEKT*

Abstract

In this paper, we announce some results on torsion representations arising from torsion
(¢, G)-modules and properties of the category of torsion (¢, G)-modules. This study is related
with torsion semi-stable representations.

§1. Introduction

1.1. Let K be a complete discrete valuation field of mixed characteristics (0, p)
with perfect residue field, and let G denote the absolute Galois group of K. There are
established several theories describing Z,-representations of G' by linear algebra data,
by Fontaine-Laffaille, Breuil, Wach-Berger, Kisin and Liu. The main purpose of this

~

article is to give a survey of several results proved in [O] on torsion (¢, G)-modules and
torsion p-adic representations of G associated with them. (The notion of (¢, G’)—modules
is defined by Tong Liu [Li2], and we recall the definition in Section 2.)

We explain a motivation of our study more precisely. Let Repy (G) (resp. Repy,(G))
denote the category of Z,-representations of G, free of finite rank over Z, (resp. torsion
of finite type over Z,). Let C be a full subcategory of Rep; (G). We define a full

subcategory of Rep,.,(G) by

there exists an inclusion Ly C Ly in C
Repio, (G) := {T € Repy,, (G); ere ex1sts an inciusion L 2 in }

" such that Ly/L; is isomorphic to T

It is natural to raise the following:
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Question 1.2.  For which full subcategory C of Rep; (G) does the equality
Reptcor(G) = Reptor(G) hold?

Let r be a non-negative integer. Then Question 1.2 has a negative answer when C
is the full subcategory consisted of semi-stable representations with Hodge-Tate weights
in [0,7]. This follows from boundedness of ramifications for torsion semi-stable repre-
sentations as is shown by Caruso and Liu ([CL2], Theorem 5.4). However Question 1.2
is still open when C is the full subcategory consisted of semi-stable representations of
G. In this case Question 1.2 is related with non-emptiness of crystalline points on a
rigid analytic space associated with a deformation space of a mod p representation (for
example, see [Nal, Section 4). Therefore, we may raise the following:

Question 1.3. Let C be the full subcategory consisted of semi-stable represen-
tations of G and put Rep® (G) = Rep’,,(G). Does the equality Rep® (G) = Rep;,, (G)
hold?

1.4. Now let Repgr(G) denote the full subcategory of Rep,.,(G) consisted of

torsion Zp-representations of G arising from torsion (¢, G)-modules. Then we have

inclusions

Repin(G) C Repir(G) C Reptor(G)

(cf. [CL2], Theorem 3.1.3). Note that the category Repi. (G) is equivalent to the
category of torsion Z,-representations of G' written as a quotient of two representations
arising from free (¢, G’)—modulesl. Thus the following result implies that all the above

inclusions are “equal for the G,-case” (we recall the definition of G, C G in Section
2):

Proposition 1.5 ([CL2|, Proposition 5.6).  Let T be a torsion Z,-representations
of Goo. Then T is a quotient of two representations arising from free Kisin modules.

It is a natural question whether the above proposition holds or not after replacing
G and “Kisin modules” with G and “(¢p, @)—modules”, respectively. If it has an
affirmative answer, then we know that Question 1.3 also has an affirmative answer. In
this article we announce some results on linear algebraic properties of torsion (¢, G’)—
modules and the category Rep® (G). For example we mention that RepS (G) is an
abelian category. This fact is really plausible, but we need to establish Theorem 4.13
for a proof. In addition, we announce the Cartier duality theorem for (¢, é)—modules
in Section 3, and announce the theory of “maximal and minimal models” for (¢, Q)-

modules in Section 4, which classifies Rep$ (G) completely (cf. Corollary 4.15). To

1Tt should be mentioned that it is not known whether any torsion (¢, é)-module can be written as
a a quotient of two free (¢, G)-modules or not.
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A

establish the theory of “maximal and minimal models” for (¢, G)-modules, we need

A

to introduce the notion of étale (¢, G)-modules (cf. Section 2.2). The theory of étale

A

(¢, G)-modules are based on that of étale p-modules defined by Fontaine [Fo], and étale

~

(¢, G)-modules classify representations of G (cf. Proposition 2.22).

Acknowledgements. The author thanks the referee for many helpful comments
throughout this paper. This work is supported by the Grant-in-Aid for Young Scientists
Start-up.

Convention: For any Z-module M, we always use M,, to denote M /p"M for a
positive integer n. We reserve ¢ to represent various Frobenius structures and ¢y, will
denote the Frobenius on M. However, we often drop the subscript if no confusion arises.
All representations and actions are assumed to be continuous. Throughout this paper,
we fix a prime number p > 2. For any topological group H, We denote by Repg, (H)
the category of finite dimensional Q,-representations of H. We denote by Repy, (H)
(resp. Rep;..(H)) the category of Z,-representations of H, free of finite rank over Z,
(resp. torsion of finite type over Zj).

A

§2. On some (¢, G)-modules

N

In this section, after recalling the definition of (¢, G)-modules due to Tong Liu

N

([Li2], Section 2.2), we introduce the notion of étale (¢, G)-modules. We define also
various rings as follows.

I

—

(R) = W (FrR)———— W (FrR)[1/p]
|
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Figure 1. Ring extensions 1

A

§2.1. Liu’s (p,G)-modules

2.1.  Let k be a perfect field of characteristic p > 2, W (k) the ring of Witt vectors
with coefficients in k, Ky = W (k)[1/p], K a finite totally ramified extension of Ky, Ox
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Figure 2. Ring extensions 2

the integer ring of K, K a fixed algebraic closure of K and G = Gal(K/K). Throughout
this paper, we fix a uniformizer 7 € K and denote by E(u) its Eisenstein polynomial
over Ky. Put & = W(k)[u]. We define a Frobenius endomorphism ¢ of & by u — u?,
extending the Frobenius of W (k). It should be noted that the arguments developed
hereafter depends on the choice of 7.

A p-module over & is an G-module 9 equipped with a p-semilinear map ¢: 9 —
M. A morphism between two p-modules (91, 1) and (Ma, p2) is an S-linear map
My — My compatible with ¢ and 5. Let r be a non-negative integer. A p-module
(M, ) is called of height < r if 9 is of finite type over & and the cokernel of ¢* is
annihilated by E(u)". Here, ¢* stands for the G-linearization 1 ® ¢: 6 ®, e M — M
of ¢.

A p-module (M, ¢) of height < r is called a free Kisin module of height < r if M
is a free &-module. On the other hand, a ¢-module (M, ) of height < r is called a
torsion Kisin module of height < r if 9 is u-torsion free and annihilated by some power
of p.

We denote by Mod)g (resp. Mod)g_) the category of free (resp. torsion) Kisin
modules of height < r. It is known that, for any 91 € Mod?GOO, there exist 91; C 9y in
Mod)g such that 913/9% is isomorphic to 9 ([Lil], Proposition 2.3.2).

A p-module (I, ¢) is called a free (resp. torsion) Kisin module of finite height if
M is a free (resp. torsion) Kisin module of height < for some r. We denote by Mod s
(resp. Mod?%m) the category of free (resp. torsion) Kisin modules of finite height. By
definitions, we have

ModJg = U Mod)g, Modjs = U Mod)g

r>0 r>0



REPRESENTATIONS ARISING FROM (¢, G)-MODULES 71

2.2. PutR= @ Og/p, where O is the ring of integers of K and the transition
maps are given by the p-th power map. Note that the p-th power map is bijective on R.
It follows that there exists a unique surjective continuous homomorphism 6: W (R) —
O & which lifts the projection R — O /p onto the first component in the inverse limit.
Here O & is the p-adic completion of Oj.

On the other hand, the residue field k is embedded in R by X — (AY/ pn)nzo since
k is perfect. The embedding £ — R induces an embedding W (k) — W(R). Moreover,
the embedding W (k) — W (R) is extended to an embedding & — W (R) by u — [z].
Here, [x] is the Teichmiiller representative of © = (7, )n>0 € R. It is readily seen that
the embedding & — W (R) is compatible with the Frobenius endomorphisms.

Let O be the p-adic completion of &[1/u], which is a discrete valuation ring with
uniformizer p and residue field k((u)). Denote by &£ the field of fractions of O. The
inclusion & < W(R) extends to inclusions O < W (FrR) and £ — W (FrR)[1/p]. Here
FrR is the field of fractions of R. It is not difficult to see that FrR is algebraically closed.
We denote by £ the maximal unramified field extension of € in W (FrR)[1/p] and O™
its integer ring. Let £ be the p-adic completion of £ and O its integer ring. Put
S = 0w W(R). We regard all these rings as subrings of W (FrR)[1/p].

2.3.  Let Koo = Up>oK(m,) and G = Gal(K/K,). Put K ({pe) = Up>0K ((pr)

and Koo (Cpoe ) = Up>0Koo((pn). Put lfIK = Gal(Koo((pe)/Koo), Hoo = Gal(K’/Koo(Cpoo)),
G = Gal( Koo (G )/ K () amd G = Gal( Ko (G ) /K).

K

Figure 3. Galois groups of field extensions

Note now that the extension K., /K is a strictly APF extension in the sense of
[Wi] and that, by the theory of norm fields, G is naturally isomorphic to the absolute
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Galois group of k((u)). Thus G acts on G, Our g apd £ur /O™, and fixes the subring
S c W(R).

For a free or torsion Kisin module 9 of finite height, we define a Z,[G]-module
Ts(9M) by

Homg (9, &™) if M is free
Homg , (9, &%) if M is torsion.

Ts (M) = {

Here a Go-action on T (M) is given by (0.9)(x) = o(g(z)) for 0 € G, 9 € Tes (M), x €
m.

2.4. Let S be the p-adic completion of W (k)[u, E(.u)i]izo and endow S with the

7!

following structures:
e a continuous p-semi-linear Frobenius ¢: S — S defined by p(u) = uP.
e a continuous linear derivation N: S — S defined by N(u) = —u.

e a decreasing filtration (Fil'S);>o in S. Here FiliS‘ is the p-adic closure of the ideal
generated by the divided powers v;(E(u)) = % for all j > 1.
Put Sk, = S[1/p] = Ko ®w ) S. The inclusion & — W (R) induces inclusions & —

S — Acris and SKO — B+

cris’

We regard all these rings as subrings in B Fix

cris’

a choice of primitive p’-root of unity Gpi for i > 0 such that Cg i1 = Cpi. Put g =

(Gpi)izo € R* and t = log([g]) € Aeris- Denote by v: W(R) — W(k) a unique lift of
the projection R — k. Since v(Ker(f)) is contained in the set pW (k), v extends to a

map v: Agis — W(k) and v: Bl — W(k)[1/p]. For any subring A C B, we put

I, A = Ker(v on BY, )N A. For any integer n > 0, let tind = t”(”)’yq(n)(tp_l

4 P
n=(p—14¢n)+rn) with0 <r(n) <p-—1and y(z) = f—: is the standard divided
power.

We define a subring Ry, of B as below:

cris

) where

Rk, = {Z St | fi € Sk, and f; — 0 as i — oo}.
i=0

Put R = Rg, N\W(R) and I, = I, R.

Proposition 2.5 ([Li2], Lemma 2.2.1). (1) R (resp. Ri,) is a p-stable S-algebra
as a subring in W(R) (resp. BL,)).
(2) R and I (resp. Rk, and I Rk,) are G-stable. The G-action on R and I (resp.
Rk, and I, Ry,) factors through G.
(3) There exist natural isomorphisms R, /I+ R, ~ Ko and R/I+ ~ S/I.8 ~ & /1, & ~

W (k).
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2.6. Let 91 be a free or torsion Kisin module over & of height < r. We equip
7/5®%69ﬁ with a Frobenius by ¢ ®pgn. It is known that a natural map 9 — 7/5®%69ﬁ
is an injection ([CL2], Section 3.1). By this injection, we regard 9 as a ¢(&)-stable
submodule of R R, M.

Definition 2.7 ([Li2], Definition 2.2.3 and [CL2], Section 3.1). A free (resp. tor-
sion) Liu module M of height < r is a triple M = (M, p, ), where (90, go) is a free
(resp torsion) Kisin module 9t of height < r and G is an R-semilinear G-action on
R R, M satisfying the following conditions:

(1) the G-action commutes with Or & P,

(2) M (R@pe M),

(3) G acts on the W (k)-module R Rp,& 9ﬁ/1+(7€ Rp,e M) trivially.

We denote by Mod;g (resp. Mod;g ) the category of free (resp. torsion) Liu modules
of height < r. By convention, we put

ModOO G _ U Mod/6 , ModC>o .G U Mod
r>0 r>0

We shall call an object of Mod ¢

/e (resp. Mod;’%’i) a free (resp. torsion) Liu modules
of finite height.

Remark 2.8.  The notion of Liu modules was introduced by Tong Liu [Li2] under
the name of (¢, G)-modules.

2.9.  For a free or torsion Liu module 9% of finite height, we define a Zy|G]-module
T(9M) by
P Homgz (7@ Rpe MW(R)) if 9;71 is free
Homz (R ®p.6 MW (R)s) if M is torsion.

Here, G acts on T'(9) by (0.f)(x) = o(f(o~Y(x))) foro € G, f € T(M), z € 7/€®%69ﬁ.
We say that a torsion Z,-representation of G arises from a Liu module (of height < r)
if it is isomorphic to T(9N) for some torsion Liu module M (of height < r).

It follows from Theorem 3.1.3 (1) of [CL2] that the following diagram is commu-
tative (we write only the torsion case here, but the same result also holds for the free

case):

lforgetful restriction

Mod)g Repor(Goo)-
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Theorem 2.10. (1) (/Li2/, Theorem 2.5.1) The functor T induces an anti-
equivalence of categories between the category Mod;’g of free Liu modules of height
< r and the category Repp'' (G) of lattices in semi-stable representations of G with
Hodge-Tate weights in [0, 7].

(2) ([CL2], Theorem 3.1.3) Any torsion semi-stable Z,-representation of G with Hodge-

Tate weights in [0,7] arises from a Liu module of height < r.

Remark 2.11. (1) Differently from the free case as Theorem 2.10 (1), the func-
tor 1': Mod;’goo — Rep,o,;(G) on the category of torsion Liu modules is not full in
general although it is always faithful ([O], Corollary 2.8).

(2) (cf. [Li2], Theorem 3.2.2) If we remove the condition (3) of Definition 2.7, then
M is called a weak Liu module. If this is the case, T (95‘() is potentially semi-stable.
Moreover, 1" induces a contravariant fully faithful functor from the category of weak
Liu modules of height < r to the category of G-stable Zj,-lattices in potentially semi-
stable representations which are semi-stable over K (m,,) and have Hodge-Tate weights

in [0,7]. Here m := Max{i > 0; Ko((,1) C K}.

§2.2. Etale (p,G)-modules

~

2.12. Now we introduce the notion of étale (¢,G)-modules, which is deeply
related with Kisin modules and Liu modules, modifying étale ¢-modules defined by
Fontaine. For precise information, see [O], Section 5.

2.13.  An étale p-module over O is an O-module of finite type M, equipped with
a @-semilinear map ¢: M — M such that ¢* is bijective. Here, ¢* stands for the
O-linearlization 1 ® p: O ®, 0 M — M of ¢.

An étale p-module over £ is a finite dimensional £-vector space M, equipped with
a p-semilinear map ¢: M — M such that there exists a ¢-stable O-lattice L of M and
that L is an étale p-module over O.

We denote by ®M /o (resp. ®M/,o_ ) the category of étale p-modules over O
which are p-torsion free (resp. annihilated by some power of p). We denote by ®M /¢
the category of étale p-modules over &.

2.14. Recall that, as explained in 2.3, G acts on 6“\r, &ur and g /omr.
Let T' be a Z,-representation of G. We put

M(T) = Homg, . (T, 6‘1\r) it T is free
B Homg, g (T, /O") if T is annihilated by some power of p.

Moreover, for any Qp-representation 1" of G, we put

M(T) = Homg, (.| (T, E).
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On the other hand. let M be an étale p-module over O. We put

Homo (M, Our ) if M is p-torsion free
Homop ,(M,E™/O™) if M is annihilated by some power of p.

T(M) = {

Moreover, for any étale p-module over £, we put
T(M) = Homgm(M,é{lTr).

Proposition 2.15 ([Fo|, A.1.2.6).  The functor T induces an anti-equivalence of
categories between ®M o (resp. PM o __, resp. BM/¢) and Repr(Goo) (resp. Repyo, (Goo),
resp. Repg, (Geo)). Furthermore, M is a quasi-inverse functor of T .

2.16. Let 971 be a Kisin module over & of finite height. We shall denote by
M[1/u] the O-module O ®s M for short. Then M[1/u] is an étale p-module over O,
and there exists a natural isomorphism T (9) ~ T (M[1/u]) of Z,[Gc]-modules.

A

2.17.  Next we introduce the notion of étale (¢, G)-modules and mention their
important properties. We put Op = W (FrR)H>, which is absolutely unramified and a
complete discrete valuation ring with perfect residue field FrRH>. Put Ea =Tr0pq =
Ogl(1/p]. By definition, @w (mrr)n/p s stable on Og and £z which is bijective on
themselves. Furthermore, G' acts on Op and &5 continuously. By a natural injection
M — Oa ®p0 M (resp. M — Ex ®yp e M), we regard M as a sub ¢(O)-module of
Op ®p,0 M (resp. a sub ¢(€)-module of E4 ®, e M).

Definition 2.18 ([O], Definition 5.3).  An étale (o, G)-module M over O is a
triple M = (M, p, é), where (M, ) is an étale p-module over O and G is a G-action
on Og ®y.0 M satisfying the following conditions:

(1) the G-action commutes with Yo, ® PM,
(2) M C (Og ®p,0 M),
If M is free over O (resp. killed by some power of p), then M is called a free étale

~ A

(¢, G)-module (resp. a torsion étale (@, G)-module). By replacing O and O with £ and

N

&g, respectively, we define the notion of an étale (¢, G)-module over £.

Remark 2.19. Suppose p > 2 and fix a topological generator 7 of Gpe =~
L. Let M be an étale (¢, é)—module over O. Then we have a natural T-action on
Op®o M ~ Op ®p-1,0, (Og ®p,0 M). The étale p-module M with this 7-action on
Op ®o M is a (p, 7)-module in the sense of [Ca3].

Denote by @M?O (resp. @M?Ooo, resp. @M%) the category of free étale (o, G)-

A

modules over O (resp. the category of torsion étale (¢, G)-modules over O, resp. the

A

category of étale (¢, G)-modules over £).
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Lemma 2.20 ([O], Lemma 5.4). (1) For any finite free Z,-representation T of
Goo (resp. finite torsion Zy-representation T' of Goo, resp. finite Q,-representation T' of
G), the natural map

Og ®p,0 M(T) — Homg, ;) (T, W(FrR))
(resp. Og ®yp,0 M(T) — Homy, 1 |(T, W(FrR) o),
resp. £ ®pe M(T) — Homg, (7 (T, W(FrR)[1/p]))

1$ an 1somorphism.
(2) For any free étale p-module M over O (resp. torsion étale p-module M over O,
resp. étale p-module M over ), the natural map

T(M) — Homo,, »(Ogf ®p.0 M, W (FrR))
(resp. T(M) — Homo_, »(Op ®p.0 M, W (FrR)),
resp. T(M) — Homg,, »(Eq ®4p.e M, W(FrR)[1/p]))

1$ an 1somorphism.

2.21.  For any T' € Repy (G) or T € Repy,,(G) (resp. T' € Repg, (Go)), we
define an étale (¢, G)-module M(T) as follows: M(T) = M(T) as an étale p-module
and a G-action on Op®p,0 M(T) (resp. E4®yp,e M(T)) is naturally defined via Lemma
2.20 (1). A A

For any M € <I>M/O, M € @M?OOO or M € @M% we define a representation
T (M) of G as follows: T (M) = T (M) as a Goo-representation and naturally extend its
Goo-action to G via Lemma 2.20 (2).

Combining Proposition 2.15 and Lemma 2.20, we can verify without difficulty the
following fundamental proposition.

Proposition 2.22 ([O], Proposition 5.5).  The contravariant fAunctor7A' is an anti-
equivalence of categories between ®MG, Jo (resp. MG /0. s TESP. @M%) and Repr(G)
(resp. Repy,,(G), resp. Repr(G)) Furthermore, M is a quasi-inverse of T

It follows from the construction of 7 that the following diagram is commutative
(we write only the torsion case here, but the same results also hold for other cases):

G
(I’M/Ooo Reptor(G)
lforgetful restriction

‘I’Mfooo —T> Reptor(GOO) :

2.23.  Let 90 be a free (resp. torsion) Liu module of finite height. Extending the
G-action on R Rpe Mto Op ®p (R ®pe M) ~ Op ®yp0 M[1/u] by a natural way,
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we obtain an object of @M?O (resp. @M?Om). We shall denote by WL] the triple
(O ®s M, p,G) for short. Note that there exists a canonical isomorphism 7'(901) ~
T(9M[1/u]) of Z,-representations of G.

2.24. Summarizing the above, we have the following commutative diagram:

G T
. MOd/goo /]-:{eptor (G)
'/
dMS, B R G/
/Oco \L eptor( )
r T
08 MOd/G © /:Reptor (Goo)
// /
q)M/Ooo Reptor(GOO)

Here two vertical arrows in the left side are forgetful functors and those in the right
side are restriction functors. An analogous commutative diagram exists also for the free

case.

Remark 2.25. To solve Question 1.3, we have to check “differences” (if exists)
between the following three categories:

Rep{s, (G) C Rep(,(G) C Repy, (G),

By Proposition 2.22, the equality Repir(G) = Rep,,,(G) holds if and only if, for any
M e @Mfom, there exists a Liu submodule 9 of finite height of M such that 9[1/u] =
M.

§ 3. Cartier duality theorem

In this section, we give a brief summary of the Cartier duality for Liu modules.
Throughout this section, we assume r < oo.

§3.1. Cartier duality theorem for Kisin modules

3.1.  The results in this subsection are due to Liu, see Section 3.1 of [Lil] for
more details.
We put 6o = S[1/p]/&. Let M be a Kisin module of height < r, and put

mY — Homg (9, S) if M is free
| Home (MM, &) if M is torsion.
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Then we have natural pairings
(o) Mx MY — & if Mis free (%)

and
() Mx MY — Sy if M is torsion. ()

The Frobenius ¢g;, on MY is defined to be

(om (@), am(y)) = cg"E(u)"¢((z,y)) for z € M,y € M.
Here, pcg is the constant coefficient of E(u).

Theorem 3.2 ([Lil], Section 3.1).  Let 9 be a free (resp. torsion) Kisin module
of height < r.
(1) OMY is a free (resp. torsion) Kisin module of height < r.
(2) The correspondence M — MY gives rise to an anti-equivalence on the category of
free (resp. torsion) Kisin modules of height < r, and a natural map MM — (IMV)Y is an
1somorphism.
(3) The paring (%) (resp. (xx)) is perfect. Thus we have a canonical isomorphism
Te (M) = TLOMN) (1) of Zp|Goo]-modules.
(4) Taking the duals preserves a short exact sequence of free (resp. torsion) Kisin mod-
ules of height < r.

§ 3.2. Cartier duality theorem for Liu modules

3.3. Now we explain the Cartier duality for Liu modules. The Cartier duality
for Liu modules is based on that of Kisin modules. In fact, as explained in the below,
underlying Kisin modules of Cartier duals of Liu modules are Cartier duals of Kisin
modules. See Section 3 of [O] for more details.

For simplicity, we suppose p > 2 in this subsection. We put Roo = 7%[1 /) /7/5 Let
M be a Liu module of height < r, and put

Home (R ®Rp,c M, R) if M is free

R ®pi0 M) = s 5
(R ®p,6 M) {HOHI@ (R ®p,6 M, Roo) if M is torsion.

Then we can show that a natural map R Rp, MY — (7/5 Rp,e M)Y is an isomorphism
([0], Lemma 3.5). Consider natural parings

() (R®pes M) x (R®pes MY =R if Mis free (1)

and
() (R Ry, M) x (R Ry M) — Roo if M is torsion. (1)
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Fixing a topological generator 7 of G, we can define a G-action on R Ry, MY =
(R ®yp,6 M) such that

(r(x),7(y)) = & ((x,y)) forz € RQps My € (RDpe M.

Here,

&= Hgon(TEﬂ) e R~

Let 9 be a Liu module of height < r. Denote by MY a triple MY = (MY, oY, G),
where (MY, ") is the Cartier dual of (M, ¢) and G is a G-action on R Rp,e MY as
above.

Theorem 3.4 ([0], Theorem 3.9).  Let M be a free (resp. torsion) Liu module
of height < r.
(1) MY is a free (resp. torsion) Liu module of height < r.
(2) The correspondence M — MY gives rise to an anti-equivalence on the category of
free (resp. torsion) Liu modules of height < r, and a natural map m — (ﬂjtv)v s an
1somorphism.
(3) The paring (4) (resp. (48)) is perfect. Thus we have a canonical isomorphism
TERY) ~ TV (M)(r) of Z,|G]-modules.
(4) Taking the duals preserves a short exact sequence of free (resp. torsion) Liu modules
of height < r.

For a proof of Theorem 3.4, we have only to observe is “compatibilities” between the
Cartier duality for Kisin modules, an R-structure and a G-action on Liu modules. One
of the most serious problem is that we have only a few information for the ring R.
However, fortunately, we do not need explicit calculations in the proof but we only need
some ring theoretic properties for R (cf. the property that 7/@/ I, ~ W(k) is p-torsion
free).

§4. Maximal and minimal theory

In this section, we define an abelian full subcategory Max’)goo (resp. Min;’goo) of
Mod’/"’gm,
restricted on Max’/”goo (resp. Min;’goo) is fully faithful and its essential image coincides
with that of 7': Mod?%i — Repyo, (G). As one of by-products, we obtain the fact that
the category of torsion Z,-representations of G arising from Liu modules is an abelian
category (cf. Corollary 4.15). Note that, in general, the category Mod’/"gw is not abelian

and T': Mod’/"’goo — Rep,o,(G) is not fully faithful.

whose objects are called mazimal (resp. minimal), such that the functor T
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§4.1. Maximal and minimal Kisin modules

4.1.  Let r be a non-negative integer or r = oo. Let 91 € Mod’/"goo. We denote by
F&(9M[1/u]) the partially ordered set (by inclusion) of 91 € Mod)g_ which is a torsion
Kisin submodule of the étale p-module 91 /u] such that N[1/u] = M[1/u]. It is verified
that FZ(M[1/u]) has a maximum (cf. Corollary 3.2.6, [CL1]), denoted by Max" (90).
It is also verified that, if r < oo, F&(9[1/u]) has a minimum (cf. Corollary 3.2.6, loc.
cit.), denoted by Min"(907). By definition, we have Max"(Max" (91)) = Max" (9) and
Min" (Min" (90%)) = Min" (90).

Let (2 : 9 — Max" (9) and (X : Min"(9) — 9 denote the inclusions.

max * min *

Theorem 4.2 ([CL1], Section 3.3 and 3.4).  Under the assumptions of 4.1, we
have the following assertions.
(1) The morphisms Te (2% ) and Te (1% ) are bijective.
(2) Let f: 90 — D (resp. f: M — 9N ) be a morphism of Mod)g_ . If Ts(f) is
bijective, then there exists a unique morphism g: MM’ — Max" (9N) (resp. g: Min" (M) —
M) such that go f =18 (fog=1"%).

max min

4.3. It follows from the theorem that 9t — Max"(9M) (resp. M — Min" (9N))
gives rise to a functor Max”: Modyg_ — Mod)g_ (resp. Min": Mod)g_ — Mod)g__).
Denote by Max)g_ (resp. Minjyg_ ) the essential image of Max" (resp. Min"). By
definition, we have the following commutative diagram:

Ts

Reptor (GOO )

Max" y

MaX;GOO .

Mod)g

(We have the same commutative diagram after replacing Max with Min in the above.)
The following is a summary of main results in Section 3.3 and 3.4 of [CL1].

Theorem 4.4.  Under the assumptions of 4.1, we have the following assertions.
(1) The categories Max)g_ and Min)g_ are abelian.
(2) The functor Max": Mod)g_ — Max)e_ (Min": Mod)g_ — Minjg ) is ezact and
left adjoint (resp. right adjoint) to the inclusion functor Max)e —— Mod)s_ (resp.
Minjg  — Mod)s ).
(3) The restriction of Tg on Max)g_ and Min)g_ are exact and fully faithful, respec-
tively.
(4) Taking the Cartier duals gives rise to an anti-equivalence of abelian categories be-
tween Maxg_ and Minjg__ .
(5) Ifer <p—1, then Max)g_ = Minjg_ = Mod)g_ and Max" = Min".
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Definition 4.5 ([CL1], Definition 3.3.1 and 3.4.1).  Let 9 be a torsion Kisin mod-
m m

ule of height < r. We say that 9 is mazimal (resp. minimal) if ¢, (resp. (2 ) is

bijective. Note that this definition depends on the choice of 7.

4.6. In the case where » = 1, the category Mod’/"gm is dually equivalent to
the category of finite flat group schemes over Ok killed by a power of p. Under this
equivalence, the functor Min" (resp. Max") corresponds to the maximal (resp. minimal)
models defined by Raynaud in [Ra].

Combining Proposition 1.5 and Theorem 4.4, we see that torsion Z,-representations
of G are completely classified by maximal Kisin modules of finite height:

Corollary 4.7.  The functor Ts: Mod;’%w — Repyo;(Goo) induces the equiv-
alence of abelian categories between the category Maxféoo of maximal torsion Kisin

modules of finite height and the category Rep.,.(Goo) of torsion Zy,-representations of
Goo-

§4.2. Maximal and minimal Liu modules

4.8.  The same results on maximal and minimal theory for Kisin modules as in the
previous subsection holds for Liu modules. The proofs of maximal and minimal theory
for Liu modules in [O] are similar to those of Kisin modules in [CL1], but we need some
careful considerations for G-actions on Liu modules. When we see G-actions on Liu
modules, we need to use the ring 7%, however the structure of this ring is complicated.

A

On the other hand, the definitions of étale (p, G)-modules need only simple rings, which

A

is one of the advantage of étale (, G)-modules. Results appearing in this subsection is
based on this advantage.

4.9. Let r be a non-negative integer or r = oco. Let M e Mod’;goo. We denote
by FéG(m]) the partially ordered set (by inclusion) of 91 € Mod;’gm which is a Liu
submodule of the étale (¢, G)-module m] such that m] = WL] It is verified

that Fé’G(im[l /u]) has a maximum, denoted by Max"(9). It is also verified that, if

r < 00, FéG(WL]) has a minimum, denoted by Min"(9). By definition, we have

A ~ A~ A~

Max"(Max" (901)) = Max" (9) and Min"(Min" (90%)) = Min" (901).

Remark 4.10.  The author does not know whether Max" (90t) (resp. Min" (1))

coincides with the underlying Kisin module of Max"(90) (resp. Min"(90)) or not. If
er < p— 1, then they are coincide since the set FZ(9[1/u]) contains only one element

M (see Remark after Corollary 3.2.6 of [CL1]).

~

Let (2 : 9t — Max" (9) and R Min" (90%) — 9 denote the inclusions.

max * min *
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Theorem 4.11 ([O], Proposition 5.18).  Under the assumptions of 4.8, we have
the following assertions.
(1) The morphisms T (12}

o) and T(L?fln) are bijective.

(2) Let f: 9 — OV (resp. f: M — M) be a morphism ofMod;’goo. IfT(f) is bijective,
then there exists a unique morphism g: M — Max" (9M) (resp. g: Min" (9M) — M) such

that go f =120 (fog=1").

max min

4.12. It follows from the theorem that 95‘( — Max" (901) (resp. 95‘( — Minr(i}fn))
gives rise to a functor Max" : MO(jl;’goo — Mod;’goo (resp. Min" : Mod’/"gw — Mod;’goo).

Denote by Max;’gm

as the previous subsection, we see that the following diagram commutes:

(resp. Min;’gm) the essential image of Max" (resp. Min"). As well

T

Mod”:¢

/G Reptor (G)

Max” /

r,G
MaX/Goo'

(We have the same commutative diagram after replacing Max with Min in the above.)
The following is a summary of main results in Section 5.5 and 5.6 of [O].

Theorem 4.13.  Under the assumptions of 4.8, we have the following assertions.
(1) The categories MaX;’gOO and Min;’g
(2) The functor Max": Mod’/"gw — Max’)goo (Min": Mod’/"gw — Min;’goo) is ezact and
left adjoint (resp. right adjoint) to the inclusion functor Max?’goo — Mod;’goo (resp.

oo

are abelian.

Min;’goo — Mod;’gm).
(3) The restriction of T on Max’)’goo and Min;’goo are exact and fully faithful, respec-
tively.

(4) Taking the Cartier duals gives rise to an anti-equivalence of abelian categories be-
tween MaX;’G and Min"¢

oo /600 .A N .
5) Ifer < p—1, then Max"S =Min"¢ =Mod"S and Max” = Min".
/G oo /Soo /Soo

Definition 4.14 ([O], Definition 5.15).  Let 9% be a torsion Liu module of height
I3 N

max (resp. tmin

< r. We say that 9 is mazimal (resp. minimal) if ¢ ) is bijective. Note

that this definition depends on the choice of 7.
Corollary 4.15 ([0], Corollary 1.3).  The functor T': Modj%’i — Repyo, (G) in-
duces the equivalence of abelian categories between the category Max?%i of maximal tor-

sion Liu modules of finite height and the category Repgr(G) of torsion Z,-representations
of G arising from Liu modules.
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Corollary 4.16 ([O], Corollary 1.4).  Suppose er < p — 1. Then the category

Mod’/"gw is abelian and artinian. Furthermore, the functor T': Mod’/"gw — Repio, (G)

is exact and fully faithful, and its essential image is stable under taking a subquotient.

Such a result on torsion Breuil modules has been proved by X. Caruso (cf. [Ca2],
Théoréme 1.0.4).

By the Cartier duality theorem (cf. Theorem 3.4) and Theorem 4.13, it is not
difficult to check the following;:

Theorem 4.17 ([O], Theorem 1.1).  The category Repgr(G) is an abelian full
subcategory of Rep,,,(G) which is stable under taking a subquotient, ®, ® and a dual.
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