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Differential Euler systems
associated to modular forms (1)

By

Masao OOI *

Abstract

We construct Euler systems in the space of modular forms associated to symmetric squares

of modular forms. The aim of this paper is to state the p‐adic Beilinson conjecture associated

to symmetric square of modular forms and show an evidence of this conjecture.

§1. Introduction.

Cyclotomic units and Beilinson elements satisfy certain norm relations. These norm

relations are called the Euler system relations. T. Fukaya, K. Kato and N. Kurokawa

construct modular forms satisfying a trace version of Euler system relations associated

to the symmetric squares of modular forms.

In sections 2, we will quickly give a review on Eisenstain series E_{N}^{k,s} satisfying Euler

system relations. These are almost the same as the Eisenstein series written in Kato�s

letter [9].

E_{N}^{k,s}(z_{1}, z_{2}):=({\rm Im}(z_{1}){\rm Im}(z_{2}))^{s}\displaystyle \sum_{P,Q\in SL_{2}(\mathbb{Z})\backslash $\Xi$_{N}}j^{k,s}(z_{1}, z_{2};P, Q) .

))Here we put ))
\det(1.1)  j^{k,s}(z_{1}; z_{2};P, Q)=\det(P\left(\begin{array}{l}
z1\\
1
\end{array}\right), Q\left(\begin{array}{l}
-z2\\
1
\end{array}\right))^{k}|\det(P\left(\begin{array}{l}
z1\\
1
\end{array}\right), Q\left(\begin{array}{l}
-z2\\
1
\end{array}\right))|^{-2s}

Here we dene ---N by the following.

(1.2)
---N:=\{P, Q\in M_{2}() \times M_{2}(\mathbb{Z})|\det P=\det Q\neq 0, (\det P, N)=1, Q^{-1}P\in\tilde{ $\Gamma$}_{0}(N)\}.
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Here we put

(1.3) \tilde{ $\Gamma$}_{0}(N) :=\{\left(\begin{array}{ll}
a_{1} & b_{1}\\
c_{1} & d_{1}
\end{array}\right)|a_{1}, b_{1}, c_{1}, d_{1}\in \mathbb{Z}_{(N)}, c_{1}\in N\mathbb{Z}_{(N)}\}
Here \mathbb{Z}_{(N)}:=\{a/b|a, b\in \mathbb{Z}, (b, N)=1\} . Throughout this paper, we always assume k

is an integer and s is a complex number such that k+2{\rm Re}(s)>2 for the convergence

of Eisenstein series.

Main result of Section 2 is that this Eisenstein series satises the Euler system
relation (Theorem 2.2).

In sections 3, we will relate the Eisenstein series studied in sections 2 to special
values of \mathrm{L}‐functions using Shimura�s result.

In section 4, using the result of section 3, we will formulate p‐adic Beilinson conjec‐
ture of two products of modular curves. Roughly speaking, this conjecture predicts the

existence of the norm compatible system which is sent to the Eisenstein series dened

in section 1 by p‐adic regulator.
In section 5, we will give the evidence of the conjecture in section 4.

§2. The Eisenstein series satisfying the Euler system relation.

In this section, we introduce the Siegel Eisenstein series satisfying the Euler System
relation. First, we need to introduce some notations.

For z_{1}, z_{2}\in \mathfrak{h}(\mathfrak{h}=\{z\in \mathbb{C}|{\rm Im} z>0 we put

E_{N}^{k,s}(z_{1}, z_{2}):=({\rm Im}(z_{1}){\rm Im}(z_{2}))^{s}\displaystyle \sum_{P,Q\in SL_{2}(\mathbb{Z})\backslash $\Xi$_{N}}j^{k,s}(z_{1}, z_{2};P, Q) .

Here j^{k,s}(z_{1}, z_{2};P, Q) and --N- are dened in the introduction. We also put

(2.1) E_{N, $\chi$}^{k,s}=({\rm Im}(z_{1}){\rm Im}(z_{2}))^{s}\displaystyle \sum_{P,Q\in SL_{2}(\mathbb{Z})\backslash $\Xi$_{N}} $\chi$(\det(P))j^{k,s}(z_{1}, z_{2};P, Q)
for Dirichlet characters  $\chi$ whose conductor are divisible by  N.

Proposition 2.1. The sums dening E_{N}^{k,s} and E_{N, $\chi$}^{k,s} are absolutely convergent

for k+2{\rm Re}(s)>2 and satisfy

E_{N}^{k,s}(\displaystyle \frac{a_{1}z_{1}+b}{c_{1}z_{1}+d_{1}}, \frac{a_{2}z_{2}+b_{2}}{c_{2}z_{2}+d_{2}})=(c_{1}z_{1}+d_{1})^{k}(c_{2}z_{2}+d_{2})^{k}E_{N}^{k,s}(z_{1}, z_{2})
E_{N, $\chi$}^{k,s}(\displaystyle \frac{a_{1}z_{1}+b}{c_{1}z_{1}+d_{1}}, \frac{a_{2}z_{2}+b_{2}}{c_{2}z_{2}+d_{2}})=(c_{1}z_{1}+d_{1})^{k}(c_{2}z_{2}+d_{2})^{k}E_{N, $\chi$}^{k,s}(z_{1}, z_{2})

for any \left(\begin{array}{ll}
a_{1} & b_{1}\\
c_{1} & d_{1}
\end{array}\right), \left(\begin{array}{ll}
a_{2} & b_{2}\\
c_{2} & d_{2}
\end{array}\right)\in$\Gamma$_{0}(N)
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Proof. For the proof, see [12] (master�s thesis of the author). \square 

In this section, we recall the Euler system relation proved in [12]. We use the

following notation. First, let X_{0}(N) be the modular curve with level N over \mathbb{Q} . Let

XÓ(N) =X_{0}(N)\times s_{pec(\mathbb{Q})}X_{0}(N) and

\mathrm{T}\mathrm{r}_{X}' Ó (N�)/XÓ (N)=\displaystyle \frac{N $\varphi$(N)}{N $\varphi$(N)} TrXÓ (N�)/XÓ (N)

when N' is divisible by N
,

where  $\varphi$ means the Euler function and the trace map Tr is

dened by

(22) TrXÓ (N�)/XÓ (N)(f)= \displaystyle \sum  f|[$\gamma$_{1}, $\gamma$_{2}]_{k,s}
$\gamma$_{1},$\gamma$_{2}\in$\Gamma$_{0}(N)/$\Gamma$_{0}(N')

for the function f on \mathfrak{h}\times \mathfrak{h} . Here we put

f|[$\gamma$_{1}, $\gamma$_{2}]_{k,s}(z_{1}, z_{2})=(c_{1}z_{1}+d_{1})^{-k}(c_{2}z_{1}+d_{2})^{-k}f(\displaystyle \frac{a_{1}z_{1}+b_{1}}{c_{1}z_{1}+d_{1}}, \frac{a_{2}z_{2}+b_{2}}{c_{2}z_{2}+d_{2}})
for $\gamma$_{1}=\left(\begin{array}{ll}
a_{1} & b_{1}\\
c_{1} & d_{1}
\end{array}\right), $\gamma$_{2}=\left(\begin{array}{ll}
a_{2} & b_{2}\\
c_{2} & d_{2}
\end{array}\right)\in SL_{2}() .

Theorem 2.2. (Euler system relation) E_{N}(1\leq N\in \mathbb{Z}) satisfy the following
relations. Let p be a prime. When p divides N

,
then

(2.3) \mathrm{T}\mathrm{r}_{X}'Ó( Np ) =XÓ (N)(E_{Np}^{k,s})=E_{N}^{k,s}
When p does not divide N

,
then

(2.4) (1-$\alpha$_{p}$\beta$_{p}\otimes$\alpha$_{p}$\beta$_{p})\mathrm{T}\mathrm{r}_{X}'Ó(Np) = XÓ (N)(E_{Np}^{k,s})=
(1-$\alpha$_{p}\otimes$\alpha$_{p})(1-$\alpha$_{p}\otimes$\beta$_{p})(1-$\beta$_{p}\otimes$\alpha$_{p})(1-$\beta$_{p}\otimes$\beta$_{p})E_{N}^{k,s},

where we put formally $\alpha$_{p}+$\beta$_{p}=pT_{p}/p^{k+s} ; $\alpha$_{p}$\beta$_{p}=p^{1-k-2s} and T_{p} is the Hecke

operator, i.e.

(1-$\alpha$_{p}\otimes$\alpha$_{p})(1-$\alpha$_{p}\otimes$\beta$_{p})(1-$\beta$_{p}\otimes$\alpha$_{p})(1-$\beta$_{p}\otimes$\beta$_{p}):=

1-T_{p}'\otimes T_{p}'+(T_{p}^{\prime 2}-2p^{1-k-2s})\otimes p^{1-k-2s}+p^{1-k-2s}\otimes T_{p}^{\prime 2}-p^{2(1-k-2s)}T_{p}'\otimes T_{p}'+p^{4(1-k-2s)}
with T_{p}'=T_{p}\cdot p^{1-k-s} ,

and the action of Hecke operators is dened by

(2.5) ((T_{p}\displaystyle \otimes 1)(f))(z_{1}, z_{2}):=1/p\cdot(\sum_{i=0}^{p-1}f(\frac{z_{1}+i}{p}, z_{2})+p^{k}f(pz_{1}, Z))
(2.6) ((1\otimes T_{p})(f))(z_{1}, z_{2}) :=1/p\displaystyle \cdot(\sum_{i=0}^{p-1}f(z_{1}, \frac{z_{2}+i}{p}))+p^{k}f ( z_{1} , pz ) )

for the function f on \mathfrak{h}\times \mathfrak{h}.
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Proof. For the proof, see [12]. \square 

§3. Relations between E_{N}^{k,s} and the values of \mathrm{L}‐function. ( $\Gamma$_{0}(N) case)

Let f, g\in S_{k}($\Gamma$_{0}(N))\subset S_{k}( $\Gamma$(N)) be normalized Hecke eigenforms. Let

\displaystyle \langle E_{N}^{k,s}(z_{1}, z_{2}) , f\otimes g\rangle:=\int_{($\Gamma$_{0}(N)\backslash \mathfrak{h})^{2}}E_{N}^{k,s}(z_{1}, z_{2})\overline{f(z_{1})g(z_{2})}y_{1}^{k-2}y_{2}^{k-2}dz_{1}dz_{2}
The following theorem holds.

Theorem 3.1. If k+2{\rm Re}(s)>2 ,
the following equalities hold. If f=g ,

then

\displaystyle \langle E_{N, $\chi$}^{k,s}(z_{1}, z_{2}) , f\otimes g\rangle=\frac{ $\pi$ i^{-k}}{(s-1)2^{2s-k}} \frac{L^{(N)}(k+s-1,f_{ $\chi$}\otimes f_{ $\chi$})}{L(N)(2(k+2s-1),$\chi$^{2})} \langle f, f\rangle.
Here  $\chi$ is a Dirichlet character whose conductor is divisible by N. If  f\neq g ,

then

\langle E_{N, $\chi$}^{k,s}(z_{1}, z_{2}) , f\otimes g\rangle=0.
Here we put

L^{(N)}(s', f_{ $\chi$}\displaystyle \otimes f_{ $\chi$}):=\prod_{p(N}((1- $\chi$(p)^{2}$\alpha$_{p}^{2}p^{-s'})(1- $\chi$(p)^{2}$\alpha$_{p}$\beta$_{p}p^{-s'})^{2}(1- $\chi$(p)^{2}$\beta$_{p}^{2}p^{-s'}))^{-1},
(3.1) L^{(N)}(s', $\chi$^{2}) :=\displaystyle \prod_{p(N}(1-$\chi$^{2}(p)p^{-s'})^{-1}
Here $\alpha$_{p}, $\beta$_{p} is determined by the relation $\alpha$_{p}+$\beta$_{p}=a_{p}, $\alpha$_{p}$\beta$_{p}=p^{k-1} and a_{p} is deter‐

mined by f=\displaystyle \sum_{n=0}^{\infty}a_{n}q^{n} with q=e^{2 $\pi$ iz}.

Proof. For the proof, see [12] (Section 4, Theorem 4.1). This formula is proved by

using Euler system relations and self adjoint properties of Hecke operators in my paper.

This result is essentially contained in the Shimura�s book [19] (Chapter IV, section 22,
formula (22.6.6)). \square 

§4. The statement of p‐adic Beilinson conjecture of the two products of

modular curves.

For positive integers N, n and a prime number p ,
let F_{N,p^{n}} be the function field of

X_{0}(N)\times s_{pec(\mathbb{Q})}X_{0}(N)\times s_{pec(\mathbb{Q})}Spec(\mathbb{Q}($\zeta$_{p^{n}})) . According to Theorem 3.1, it is natural
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to think that there exist elements Z_{N,p^{n}}(N=1,2, \cdots) in K_{3}(F_{N,p^{n}}) corresponding to

E_{N}^{k,s} and Z_{N,p^{n}}(n=1,2, \cdots) become norm compatible system. Two conjectures follow.

We will introduce the following notation.

(4.1) H:=\displaystyle \leftarrow\lim_{m}((((\mathbb{Z}/p^{m}\mathbb{Z})[[q_{1}]])[1/q_{1}])[[q_{2}]])[1/q_{2}])[1/p]

(4.2) H_{n}:=\displaystyle \leftarrow\lim_{m}((((\mathbb{Z}/p^{m}\mathbb{Z})[[q_{1}^{1/p^{n}}]])[1/q_{1}])[[q_{2}^{1/p^{n}}]])[1/q_{2}])[1/p]()

(4.3) H_{n}':=\displaystyle \leftarrow\lim_{m}((((\mathbb{Z}/p^{m}\mathbb{Z})[[q_{1}]])[1/q_{1}])[[q_{2}]])[1/q_{2}])[1/p]()

(4.4) O_{H_{n}}:=\displaystyle \leftarrow\lim_{m}((((\mathbb{Z}/p^{m}\mathbb{Z})[[q_{1}^{1/p^{n}}]])[1/q_{1}])[[q_{2}^{1/p^{n}}]])[1/q])()

(4.5) OHń :=\displaystyle \leftarrow\lim_{m}((((\mathbb{Z}/p^{m}\mathbb{Z})[[q_{1}]])[1/q_{1}])[[q_{2}]])[1/q_{2}] ) ($\zeta$_{p^{n}}) .

Note that H_{n} is a complete discrete valuation field and the valuation ring is O_{H_{n}}' ,
whose

residue field is (\mathrm{F}_{p}[[t_{1}^{1/p^{n}}]][1/t_{1}])[[t_{2}^{1/p^{n}}]][1/t_{2}] . Note that H_{n}' is a complete discrete valu‐

ation field and the valuation ring is OHń, whose residue field is (\mathrm{F}_{p}[[t_{1}]][1/t_{1}])[[t_{2}]][1/t_{2}].
Let \hat{K}_{3}(O_{H}[[ $\epsilon$-1 be dened by the following.

(4.6) \displaystyle \hat{K}_{3}(O_{H}[[ $\epsilon$-1 :=\leftarrow\lim_{m}K_{3}(O_{H}[[ $\epsilon$-1]])/U^{(r)}K_{3}(O_{H}[[ $\epsilon$-1

(4.7) \hat{K}_{3} (OHń) :=\displaystyle \lim_{m}K_{3}\leftarrow (OHń)/U (r)K_{3} (OHń)

Here U^{(r)}K_{3}(O_{H}[[ $\epsilon$-1 is the subgroup of K_{3}(O_{H}[[ $\epsilon$-1 generated by the symbols of

the form \{1+(p,  $\epsilon$-1)^{r}O_{H}[[ $\epsilon$-1]], O_{H}[[ $\epsilon$-1]]^{\times}, O_{H}[[ $\epsilon$-1]]^{\times}\} ,
and U^{(r)}K_{3}(O_{H\'{n}}) is the

subgroup of K3(OHń) generated by the symbols of the form { 1+p^{r}O_{H_{n}'} , OH
\times

ń, OH
\times

ń}.

§4.1. Conjecture.

Let  E_{k,N,p^{n}} be dened as follows.

(4.8) E_{k,N,p^{n}}=\displaystyle \frac{1}{ $\varphi$(p^{n})}\sum_{ $\chi$(1+p^{n}\mathbb{Z})=1}x:(\mathrm{z}/l_{C7n(N,p^{n})\mathrm{Z})\rightarrow \mathbb{C}^{\times}}\frac{L^{(N)}(2(k-1),$\chi$^{2})}{L(N)(k-1, $\chi$)}E_{N, $\chi$}^{k,0}
Let E_{N,p^{n}}' be the (

(E_{2,N,p^{n}}
� in the sense of Gross and Keatings (See [5] for details).
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Proposition 4.1. All Fourier coefficients of E_{k,N,p^{n}} and E_{N,p^{n}}' are in \mathbb{Q}($\zeta$_{p^{n}}) ,

and E_{k,N,p^{n}} and E_{N,p^{n}}' become trace compatible system. i.e.

(4.9) \mathrm{T}\mathrm{r}_{\mathbb{Q}($\zeta$_{p^{n}})/\mathbb{Q}($\zeta$_{p^{7m}})}(E_{k,N,p^{n}})=E_{k,N,p^{7m}}

(4.10) \mathrm{T}\mathrm{r}_{\mathbb{Q}($\zeta$_{p^{n}})/\mathbb{Q}($\zeta$_{p^{m}})}(E_{N,p^{n}}')=E_{N,p^{m}}'

Proof. For the proof, see [12] (Section 11). In [12], this result is proved by direct

computation of Fourier coefficients. Note that Shimura essentially proved this result in

more general setting in the paper [17] (Section 11). \square 

It is convenient to dene the following notations.

(4.11)

reg :\hat{K}_{3}(O_{H}[[ $\epsilon$-1
dlog

\displaystyle \hat{ $\Omega$}_{O_{H}[[ $\epsilon$-1]]}^{3}(s_{n}/p^{3n})_{n}\rightarrow\lim_{n}H_{n}\frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\leftarrow\rightarrow\lim_{n}H_{n}'\frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\mathrm{T}\mathrm{r}\leftarrow,
Here we put

(4.12) \displaystyle \hat{ $\Omega$}_{O_{H}[[ $\epsilon$-1]]}^{3}:=O_{H}[[ $\epsilon$-1]]\frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\wedge\frac{d $\epsilon$}{ $\epsilon$},
and s_{n} is dened as follows. If z=\displaystyle \sum_{i,j,k\underline{>}0}a_{i,j,k}q_{1}^{i}q_{2}^{j}( $\epsilon$-1)^{k}\in O_{H}[[ $\epsilon$-1]], s_{n}(z\displaystyle \frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\wedge\frac{d $\epsilon$}{ $\epsilon$})
is dened by

(4.13) s_{n}(z\displaystyle \frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\wedge\frac{d $\epsilon$}{ $\epsilon$})=s_{n}'(z)\frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}\in OH\'{n} \frac{dq_{1}}{q_{1}}\wedge\frac{dq_{2}}{q_{2}}.
Here we put

(4.14) s_{n}'(z):=\displaystyle \sum_{i,j,k\underline{>}0}a_{i,j,k}q_{1}^{i/p^{n}}q_{2}^{j/p^{n}}($\zeta$_{p^{n}}-1)^{k}
Let i:\displaystyle \lim_{\leftarrow}K_{3}(F_{N,p^{n}})\rightarrow\lim_{\leftarrow}K_{3}(H_{n}') be the map induced by the inclusion map  F_{N,p^{n}}\rightarrow

 n n

H_{n}' . Let pr : \displaystyle \lim_{\leftarrow}K_{3}(H_{n})\rightarrow\lim_{\leftarrow}K_{3}(H_{n}') be the inverse limit of norm map of K‐group.
\mathrm{n} \mathrm{n}

We use the following theorem to state the p‐adic Beilinson conjecture.

Theorem 4.2. There exists an isomorphisms.

(4.15) f:\displaystyle \hat{K}_{3}(O_{H}[[ $\epsilon$-1]])^{N_{ $\varphi$}=1}\rightarrow\lim_{n}\leftarrow\hat{K}_{3}(O_{H_{n}}) .

Here f is dened by f(a, b, c)=\{s_{n}'(a), s_{n}'(b), s_{n}'(c)\} foor a, b, c\in O_{H}[[ $\epsilon$-1]] . Here N_{ $\varphi$}
is the Coleman norm operator introduced in [15] and  $\varphi$ is the ring endomorphism which

sends  q_{1}, q_{2} and  $\epsilon$ to  q_{1}^{p}, q_{2}^{p} and $\epsilon$^{p}
, respectively.
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Proof. For the proof, see [15] (Sarah�s paper). \square 

We state the conjecture which we call p‐adic Beilinson conjecture.

Conjecture 4.3. There exist elements Z_{N,p^{n}} in K_{3}(F_{N,p^{n}}) for all natural num‐

ber n, Z_{N} in \hat{K}_{3}(O_{H}[[ $\epsilon$-1 and constants C_{N} which depends only on N such that

\mathrm{r}\mathrm{e}\mathrm{g}(Z_{N})=(C_{N}E_{N,p^{n}}')_{n}, i(Z_{N,p^{n}})=pr(f(Z_{N})) .

§5. Sketch of the proof of p‐adic local Beilinson conjecture

In this section, we will give the evidence of Conjecture 4.3. The following two

conjectures follow from Conjecture 4.3. We call Conjecture 5.2 the p‐adic local Beilinson

conjecture in this paper. We plan to give the proofs of the following Conjectures 5.1

and 5.2 in [13].

Conjecture 5.1. For any natural number N
,
there exist an element Z_{N}' in \hat{ $\Omega$}^{3}

O_{H}[[1]]
and a natural number C_{N} such that s_{n}(Z_{N}')=C_{N}E_{N,p^{n}}' for all natural number n.

We will give a sketch of the proof, which will be written in the forthcoming paper

[13] precisely. Roughly speaking, (C_{N}E_{N,p^{n}}')_{n} is in the image of the map s_{n} if and only
if the symmetric square of modular form has p‐adic L‐function which is \backslash 

integral�. Note

that the existence of the p‐adic L‐functions is proved by Schmidt in special case and

Hida�s book [6] (Chapter 5.3.6, p.296) in general situation.

Conjecture 5.2. For any natural number N
,
there exist an element Z_{N} in \hat{K}_{3}(O_{H}[[ $\epsilon$-

1 and a natural number C_{N} such that \mathrm{r}\mathrm{e}\mathrm{g}(Z_{N})=C_{N}(E_{N,p^{n}}')_{n}.

We will give a sketch of the proof of Conjecture 5.2 which will be written in the

forthcoming paper [13] precisely. In [12], we determined the image of reg completely,

using [11]. Using this, Conjecture 5.1 and trace compatibility of (C_{N}E_{N,p^{n}}')_{n} imply the

above conjecture.
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