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Algebraic transformations of hypergeometric
functions arising from theory of Shimura curves

By

Fang‐Ting Tu *

Abstract

In this paper, we will give some examples of algebraic transformations of the {}_{2}F_{1^{-}}\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}-
geometric functions. The discovery is achieved by interpreting the {}_{2}F_{1} ‐hypergeometric func‐

tions as automorphic forms on Shimura curves. Then we obtain identities among hypergeo‐
metric functions as identities among automorphic forms on different Shimura curves.

§1. Introduction

For real numbers a, b, c with c\neq 0, -1, -2
,

. .

.,
the {}_{2}F_{1} ‐hypergeometric function

(Gaussian hypergeometric function) is dened by the hypergeometric series

{}_{2}F_{1}(a, b;c;z)=\displaystyle \sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}n!}z^{n}
for z\in \mathbb{C} with |z|<1 ,

where

(a)_{n}=\left\{\begin{array}{ll}
1, & \mathrm{i}\mathrm{f} n=0,\\
a(a+1) . :. (a+n-1) , & \mathrm{i}\mathrm{f} n\geq 1,
\end{array}\right.
is the Pochhammer symbol. The hypergeometric function {}_{2}F_{1}(a, b;c;z) is a solution of

the differential equation

 $\theta$( $\theta$+c-1)F-z( $\theta$+a)( $\theta$+b)F=0,  $\theta$=z\displaystyle \frac{d}{dz}.
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This is a Fuchsian equation on the complex projective line with precisely 3 regular

singular points at z=0 , 1, \infty with local exponents \{0, 1-c\}, \{0, c-a-b\} ,
and \{a, b\},

respectively.

Using the well‐known fact in the classical analysis that a second‐order linear or‐

dinary differential equation with three regular singularities at 0 , 1, \infty is completely
determined by the local exponents, one can easily deduce Euler�s identity

{}_{2} F_{1}(a, b;c;z)=(1-z)^{-a_{2}}F_{1}(a, c-b;c;\displaystyle \frac{z}{z-1})
(among many other similar identities). Since the function z/(z-1) is a rational func‐

tion of degree 1 of z
,

we call this identity an algebraic transformation of degree 1 of

hypergeometric functions.

The hypergeometric functions also admit algebraic transformations of higher de‐

grees. One of the most famous example is Kummer�s quadratic transformation

(1.1) {}_{2}F_{1}(2a, 2b;a+b+\displaystyle \frac{1}{2};z)={}_{2}F_{1}(a, b;a+b+\frac{1}{2};4z(1-z)) ,

valid for any real numbers a, b with a+b+1/2\neq 0, -1, -2
,

. . .. The first quadratic trans‐

formations were given by Kummer, and then Goursat gave a complete list of quadratic
transformations. In [2], Goursat contributed more than 100 algebraic transformations

of degrees 2; 3; 4; 6. One such example is

{}_{2}F_{1}(3a, 3a+\displaystyle \frac{1}{2};2a+\frac{5}{6};z)=(1+3z)^{-3a_{2}}F_{1}(a, a+\frac{1}{3};2a+\frac{5}{6};\frac{27z(1-z)^{2}}{(1+3z)^{3}})
of degree 3. In 2009, VidUnas [7] found many algebraic transformations of degrees

6; 8; 9; 10; 12, and one of them is

{}_{2}F_{1}(\displaystyle \frac{5}{42}, \frac{19}{42};\frac{5}{7};27z)=f(z)^{-1/28_{2}}F_{1}(\frac{1}{84}, \frac{29}{84};\frac{6}{7};-\frac{27g(z)}{4f(z)^{3}})
of degree 10, where

f(z)=1-57z-1029z^{2}+50421z^{3}, g(z)=z^{2}(1-27z)(3-49z)^{7}

In a very recent paper, we [6] obtained many new algebraic transformations of

hypergeometric functions. For example, one of our favorite identities is

{}_{2}F_{1}(\displaystyle \frac{1}{20}, \frac{1}{4};\frac{4}{5};\frac{64z(1-z-z^{2})^{5}}{(1-z^{2})(1+4z-z^{2})^{5}})
=(1-z^{2})^{1/20}(1+4z-z^{2})^{1/4_{2}}F_{1}(\displaystyle \frac{3}{10}, \frac{2}{5};\frac{9}{10};z^{2})
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The main novelty in [6] is the interpretation of hypergeometric functions as automorphic
forms on Shimura curves. As far as we know, this interpretation first appeared in [9].

In this paper, we will give more examples of algebraic transformations of hyperge‐
ometric functions to illustrate the role Shimura curves play in proving these identities.

We will first review the basic denitions of Shimura curves and their automorphic forms.

Then we will prove Kummer�s quadratic transformation (1.1) in the cases when the hy‐

pergeometric functions are related to automorphic forms on Shimura curves. We then

prove 4 identities related to Classes VI and III in Takeuchi�s classication of arithmetic

triangle groups [4, 5]. We remark that these identities can also be deduced from the

results in [6] and some classical algebraic transformations of hypergeometric functions.

The purpose of proving these identities is to demonstrate the advantage of using Shimura

curves in proving this kind of identities.

§2. Preliminaries

In this section, we will review denitions of quaternion algebras, Shimura curves,

arithmetic triangle groups, and their relations to hypergeometric functions. Most of the

materials in this section are taken from [6, 8]. The fields that we are mainly concerned

with are the number fields. In the sequent discussions, therefore, we will always assume

that K is a field whose characteristic is not 2.

§2.1. Quaternion algebras

A quaternion algebra B over a field K is a central simple algebra of dimension 4

over K . Equivalently, a quaternion algebra can be written in the form

B=K+Ki+Kj+Kij, i^{2}=a, j^{2}=b, ij=-ji;

for some nonzero constants a, b in K . In this case, we denote this algebra by (\displaystyle \frac{a,b}{K}) .

For example, the Hamilton�s quaternions \mathbb{H}= (\displaystyle \frac{-1,-1}{\mathbb{R}}) and the 2‐by‐2 matrix algebra

M(2, K) are quaternion algebras. The map dened by

i\mapsto\left(\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right) and j\mapsto\left(\begin{array}{l}
01\\
10
\end{array}\right)
gives an isomorphism between (\displaystyle \frac{1,1}{K}) and M(2, K) .

Notice that every element h in a quaternion algebra satises a monic polynomial

equation over K of degree at most 2. Therefore, any quaternion algebra B is provided
with the unique anti‐involution: B\rightarrow B satisfying h+\overline{h}\in K for all h\in B . Here an

anti‐involution of B is a K‐linear map from B to itself satisfying

ax+by=a\overline{x}+b\overline{y}, \mathrm{X}=x, \overline{xy}=\overline{y}\mathrm{X} , for all a, b\in K, x, y\in B.
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The maps reduced trace, and reduced norm on B are dened by

tr(h)=h+\overline{h} ,
and n(h)=h\overline{h},

respectively.
If K=\mathbb{C} ,

then up to isomorphisms, there is only one quaternion algebra over \mathbb{C},
which is M(2, \mathbb{C}) . If K=\mathbb{R} or a non‐Archimedean local field, then up to isomorphism,
there are only two quaternion algebras. One is M(2, K) and the other is the unique
division quaternion algebra.

Now assume that K is a number field and that R is its ring of integers. Let v be

a place of K and K_{v} be the completion of K with respect to v . Then the localization

B_{v}:=B\otimes_{K}K_{v} is a quaternion algebra over K_{v} . If B_{v} is isomorphic to M(2, K_{v}) ,

we say B splits at v . If B_{v} is a division algebra, we say B ramies at v . It is known

that the number of ramied places is finite and in fact an even integer. The product of

ramied places is called the discriminant of the quaternion algebra.
An order in B is a finitely generated R‐module that is also a ring with unity

containing a K‐basis for B . An order is maximal if it is not properly contained in another

order. For instance, the ring M(2, R) is a maximal order in M(2, K) ; moreover, if R is

a principal ideal domain, each maximal order in M(2, K) is conjugate to the maximal

order M(2, R) by an element of \mathrm{G}\mathrm{L}(2, K) . It is known that every order is contained in

a maximal order.

§2.2. Shimura curves

To dene a Shimura curve, we assume that K is a totally real number field and

take a quaternion algebra B over K that splits at exactly one innite place among all

innite places, that is,

B\otimes_{\mathbb{Q}}R\simeq M(2, \mathbb{R})\times \mathbb{H}^{[K:\mathbb{Q}]-1},

where \mathbb{H}= (\displaystyle \frac{-1,-1}{\mathbb{R}}) is Hamilton�s quaternion algebra. Then, up to conjugation, there

is a unique embedding  $\iota$ of  B into M(2, \mathbb{R}) .

Let \mathcal{O} be an order of B and \mathcal{O}^{1}=\{ $\gamma$\in \mathcal{O} : n( $\gamma$)=1\} be the norm‐one group of \mathcal{O}.

Then the image  $\Gamma$(\mathcal{O}) of \mathcal{O}^{1} under the embedding  $\iota$ is a discrete subgroup of \mathrm{S}\mathrm{L}(2, \mathbb{R}) ,

and hence it acts on the upper half‐plane \mathfrak{H} in the usual manner

\displaystyle \left(\begin{array}{l}
ba\\
cd
\end{array}\right): $\tau$\mapsto\frac{a $\tau$+b}{c $\tau$+d}.
An element  $\gamma$ of  $\Gamma$(\mathcal{O}) is elliptic, parabolic, or hyperbolic, according to whether

|tr( $\gamma$)|<2, |tr( $\gamma$)|=2 ,
or |tr( $\gamma$)|>2 . The fixed point  $\tau$ of an elliptic element in \mathfrak{H} is

called an elliptic point of order n
,

where n is the order of the isotropy subgroup of  $\tau$ in
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 $\Gamma$(\mathcal{O})/\{\pm 1\} . The fixed point of a parabolic element is called a cusp. This can appear

only when B=M(2, \mathbb{Q}) .

Note that if B\neq M(2, \mathbb{Q}) ,
then the quotient space  $\Gamma$()\mathrm{H} has a complex structure

as a compact Riemann surface; for the matrix algebra B=\mathrm{M}(2, \mathbb{Q}) ,
we compactify the

Riemann surface  $\Gamma$()\mathrm{H} by adding cusps. We denote X() the quotient space  $\Gamma$(\mathcal{O})\backslash \mathfrak{H},
or  $\Gamma$(\mathcal{O})\backslash (\mathfrak{H}\cup \mathbb{P}_{\mathbb{Q}}^{1}) if B=\mathrm{M}(2, \mathbb{Q}) . This is the so‐called Shimura curve associated to

\mathcal{O} . In the case of B=\mathrm{M}(2, \mathbb{Q}) ,
the curves X() are known as the classical modular

curves. In a broader setting, if  $\Gamma$ is any discrete subgroup of \mathrm{S}\mathrm{L}(2, \mathbb{R}) commensurable

with  $\Gamma$(\mathcal{O}) ,
then the quotient space  $\Gamma$\backslash \mathfrak{H} will also be called a Shimura curve.

Now suppose that the compact Riemann surface X() has genus g . Then a classical

result says that there exist hyperbolic elements A_{1} ,
. .

:; A_{g}, B_{1} ,
.

::, B_{g} ,
and elliptic or

parabolic elements C_{1} ,
. .

:, C_{r} that generate  $\Gamma$(\mathcal{O})/\{\pm 1\} with relations

[ A_{1} , Bl]. . . [A_{g}, B_{g}] Cl. . . C_{r}=1

where [A_{i}, B_{i}]=A_{i}B_{i}A_{i}^{-1}B_{i}^{-1} is the commutator of A_{i} and B_{i} . We let (g;e_{1}, . ::, e_{r})
be the signature of X where  e_{i}=\infty if  C_{i} is parabolic and e_{i}=n is the order of

the elliptic point  $\tau$ fixed by  C_{i} if C_{i} is elliptic.

Example 2.1.

1. In B=M(2, \mathbb{Q}) ,
the corresponding subgroup of \mathrm{S}\mathrm{L}(2, \mathbb{R}) related to the maximal

order \mathcal{O}=M(2, \mathbb{Z}) is  $\Gamma$(\mathcal{O})=\mathrm{S}\mathrm{L}(2, \mathbb{Z}) and X() is the modular curve X_{0}(1) ,
whose

signature is (0;2,3, \infty) .

2. Let \mathcal{O} be the order \displaystyle \mathcal{O}=\mathbb{Z}+\mathbb{Z}i+\mathbb{Z}j+\mathbb{Z}\frac{1+i+j+ij}{2} of the quaternion algebra B=

(\displaystyle \frac{-1,3}{\mathbb{Q}}) . (Note that B ramies at 2 and 3.) An embedding  $\iota$ :  B\rightarrow M(2, \mathbb{R}) is

i\mapsto\left(\begin{array}{ll}
0 & -1\\
1 & 0
\end{array}\right),
and

j\mapsto(_{0-\sqrt{3}}^{\sqrt{3}0}) ,

 $\Gamma$(\displaystyle \mathcal{O})=\{\frac{1}{2}(_{-\overline{ $\beta$}} $\alpha$\frac{ $\beta$}{ $\alpha$}): $\alpha$\overline{ $\alpha$}+ $\beta$\overline{ $\beta$}=4,  $\alpha$\equiv $\beta$ \mathrm{m}\mathrm{o}\mathrm{d} 2,  $\alpha$,  $\beta$\in \mathbb{Z}[\sqrt{3}]\}
where \overline{ $\alpha$}=a-b\sqrt{3} if  $\alpha$=a+b\sqrt{3} in \mathbb{Q}(\sqrt{3}) . The signature of X() is (0;2,2,3,3).

§2.3. Triangle groups

Suppose that a Shimura curve X() has signature (0;e_{1}, e_{2}, e_{3}) . Then we say the

group  $\Gamma$(\mathcal{O}) is an arithmetic triangle group, and we denote it by  $\Gamma$(\mathcal{O})=(e_{1}, e_{2}, e_{3}) .
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The complete lists of all arithmetic triangle groups and their commensurability classes

were determined by Takeuchi [4, 5].
If we cut each fundamental domain of an arithmetic triangle group  $\Gamma$(\mathcal{O}) into 2

halves in a suitable way, then the fundamental half‐domains give a tessellation of the

upper half‐plane \mathfrak{H} by congruent triangles with internal angles  $\pi$/e_{1},  $\pi$/e_{2} ,
and  $\pi$/e_{3}.

The following figure shows the tessellation of the unit disc, which is conformally equiv‐
alent to \mathfrak{H} , by fundamental half‐domains of the arithmetic triangle group (2, 3, 7).

Here each triangle represents a fundamental half‐domain. Any combination of a grey

triangle with a neighboring white triangle will be a fundamental domain for the triangle

group (2, 3, 7).
In general, for any discrete subgroup  $\Gamma$ of \mathrm{S}\mathrm{L}(2, \mathbb{R}) such that  $\Gamma$\backslash \mathfrak{H} has finite volume,

we can dene its signature in the same way. If the signature is (0;e_{1}, e_{2}, e_{3}) ,
then we

say  $\Gamma$ is \mathrm{a} (hyperbolic) triangle group.

§2.4. Automorphic forms on Shimura curves

The denition of an automorphic form on Shimura curves is the same as that of a

modular form on classical modular curves.

From now on, for simplicity, we assume that B\neq M(2, \mathbb{Q}) so that we do not need

to consider cusps. For an integer k
,

an automorphic form of weight k on  $\Gamma$(\mathcal{O}) is a

holomorphic function f : \mathfrak{H}\rightarrow \mathbb{C} such that

(2.1) f(\displaystyle \frac{a $\tau$+b}{c $\tau$+d})=(c $\tau$+d)^{k}f( $\tau$)
for all \left(\begin{array}{l}
ba\\
cd
\end{array}\right)\in $\Gamma$(\mathcal{O}) and all  $\tau$\in \mathfrak{H} . If f is meromorphic and k=0 ,

then f is an

automorphic function. If the curve X() has genus 0 ,
we call an automorphic function

a Hauptmodul if it generates the field of automorphic functions on  $\Gamma$(\mathcal{O}) .

For a given integer k
,

the automorphic forms of weight on  $\Gamma$ forms a vector space,

denoted by  S_{k}() . We can calculate the dimension of S_{k}() by using the Riemann‐Roch

formula.
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Proposition 2.2 ([3, Theorem 2.23]). Assume that B\neq M(2, \mathbb{Q}) . Suppose that

the Shimura curve X() associated to an order \mathcal{O} in B has signature (g;e_{1}, . ::, e_{r}) .

Then for even integers k
,

we have

\dim S_{k}(\mathcal{O})=\left\{\begin{array}{ll}
0, & if k<0,\\
1, & if k=0,\\
g, & if k=2,\\
(k-1)(g-1)+\sum_{j=1}^{r}\lfloor\frac{k}{2}[Matrix]\rfloor, & if k\geq 4.
\end{array}\right.
In the case B\neq M(2, \mathbb{Q}) ,

there are very few explicit methods to construct auto‐

morphic forms on Shimura curves. Very recently, Yang [9] had a breakthrough in such

area. When a Shimura curve has genus 0 , Yang showed that all automorphisms can be

expressed in terms of solutions of the so‐called Schwarzian differential equation associ‐

ated to a Haputmodul. We summarize the results in the following proposition. Note

that here we assume that the quaternion algebra is not M(2, \mathbb{Q}) .

Proposition 2.3 ([9, Theorem 4, Propositions 1 and 6 Assume that a Shimura

curve X has genus zero with elliptic points $\tau$_{1} ,
. .

:; $\tau$_{r} of order e_{1} ,
. .

:, e_{r} , respectively.
Let t( $\tau$) be a Hauptmodul of X and set a_{i}=t($\tau$_{i}) ,

i=1
,

.

::,
r . For a positive even

integer k\geq 4 ,
let

 d_{k}=\displaystyle \dim S_{k}() =1-k+\sum_{j=1}^{r}\lfloor\frac{k}{2}\left(\begin{array}{l}
1-\underline{1}\\
e_{j}
\end{array}\right)\rfloor
Then a basis for the space of automorphic forms of weight  k on X is

t'( $\tau$)^{k/2}t( $\tau$)^{j}\displaystyle \prod_{1\leq j\leq r}(t( $\tau$)-a_{j})^{-\lfloor k(1-1/e_{1})/2\rfloor}, j=0 ,
. . .

, d_{k}-1.

Moreover, the functions t'( $\tau$)^{1/2} and  $\tau$ t'( $\tau$)^{1/2} ,
as functions of t

, satisfy the differential

equation

f''+Q(t)f=0,

where

Q(t)=\displaystyle \frac{1}{4}\sum_{a_{j}\neq\infty}1\leq j\leq r\frac{1-1/e_{j}^{2}}{(t-a_{j})^{2}}+1\leq j\leq r\sum_{a_{j}\neq\infty}\frac{B_{j}}{t-a_{j}}, B_{j}\in \mathbb{C}.
In particular, if  a_{j}\neq\infty for all  j ,

then the constants B_{j} satisfy

\displaystyle \sum_{j=1}^{r}B_{j}=\sum_{j=1}^{r}(a_{j}B_{j}+\frac{1}{4}(1-1/e_{j}^{2}))=\sum_{j=1}^{r}(a_{j}^{2}B_{j}+\frac{1}{2}a_{j}(1-1/e_{j}^{2}))=0 ;
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if  a_{r}=\infty ,
then  B_{j} satisfy

\displaystyle \sum_{j=1}^{r-1}B_{j}=0, \sum_{j=1}^{r-1}(a_{j}B_{j}+\frac{1}{4}(1-1/e_{j}^{2}))=\frac{1}{4}(1-1/e_{r}^{2}) .

Remark.

(1) In [9], the differential equation f''+Q(t)f=0 is called the Schwarzian diffe rential

equation associated to t because Q(t) is related to the Schwarzian derivative by the

relation

2Q(t)t'( $\tau$)^{2}+\{t,  $\tau$\}=0,

where

\displaystyle \{t,  $\tau$\}=\frac{t'''( $\tau$)}{t'( $\tau$)}-\frac{3}{2}(\frac{t''( $\tau$)}{t'( $\tau$)})^{2}
is the Schwarzian derivative.

(2) In general, in literature [1], if f is a thrice‐differentiable function of z
,

then

D(f, z):=-\displaystyle \frac{\{f,z\}}{2f'(z)^{2}}
is called the automorphic derivative associated to f and z . In the case f is an

automorphic function on a Shimura curve, then D(f,  $\tau$) is also an automorphic
function. In particular, if t is a Hauptmodul on a Shimura curve of genus 0 ,

then

Q(t)=D(t,  $\tau$) is a rational function of t.

Proposition 2.4. Automorphic derivatives have the following properties.

1. D((az+b)/(cz+d), z)=0 for all \left(\begin{array}{l}
ba\\
cd
\end{array}\right)\in \mathrm{G}\mathrm{L}(2, \mathbb{C}) .

2. D(g\circ f, z)=D(g, f(z))+D(f, z)/(dg/df)^{2}.

Proposition 2.5. Let z( $\tau$) be a Hauptmodul for a Shimura curve X() of genus

0. Let R(x)\in \mathbb{C}(x) be the rational function such that the automorphic derivative Q(z)=
D(z,  $\tau$) is equal to R(z) . Assume that  $\gamma$ is an element of \mathrm{S}\mathrm{L}(2, \mathbb{R}) normalizing the

norm‐one group of \mathcal{O} and let  $\sigma$ be the automorphism of  X(\mathcal{O}) induced by  $\gamma$ . If  $\sigma$ :  z\mapsto

(az+b)/(cz+d) ,
then R(x) satises

\displaystyle \frac{(ad-bc)^{2}}{(cx+d)^{4}}R(\frac{ax+b}{cx+d})=R(x) .
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§2.5. Hypergeometric functions as automorphic forms on Shimura curves

In the case that the Shimura curve of genus 0 has exactly 3 elliptic points, since the

number of singularities of the differential equation is 3, the differential equation is es‐

sentially a hypergeometric differential equation. Then one can express the automorphic
forms by using {}_{2}F_{1} ‐hypergeometric functions.

To be more precise, when a Shimura curve has signature (0;e_{1}, e_{2}, e_{3}) ,
we let

$\tau$_{1}, $\tau$_{2}, $\tau$_{3} be the three elliptic points corresponding to e_{1}, e_{2}, e_{3} . Since X has genus

0 ,
there exists a unique Hauptmodul z that takes values 0 , 1, \infty at $\tau$_{1}, $\tau$_{2}, $\tau$_{3} , respec‐

tively. According to Proposition 2.3, the functions z'( $\tau$)^{1/2} and  $\tau$ z'( $\tau$)^{1/2} ,
as functions

of z
, satisfy the differential equation f''+Q(z)f=0 ,

where

Q(z)=\displaystyle \frac{1}{4}(\frac{1-1/e_{1}^{2}}{z^{2}}+\frac{1-1/e_{2}^{2}}{(z-1)^{2}})+\frac{B_{1}}{z}+\frac{B_{2}}{z-1}
with

B_{2}=\displaystyle \frac{1}{4}(-1+\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}-\frac{1}{e_{3}^{2}}) , B_{1}=-B_{2}.
The local exponents at 0 , 1, \infty are \{1/2-1/(2e_{1}), 1/2+1/(2e_{1})\}, \{1/2-1/(2e_{2}) , 1/2−

1/(2e_{2})\} ,
and \{-1/2-1/(2e_{3}), -1/2+1/(2e_{3})\} , respectively. Therefore, the function

z^{-1/2+1/(2e_{1})}(1-z)^{-1/2+1/(2e_{2})}z'( $\tau$)^{1/2} ,
as a function of z

,
satiSes the hypergeometric

differential equation

 $\theta$( $\theta$+c-1)F-z( $\theta$+a)( $\theta$+b)F=0,  $\theta$=z\displaystyle \frac{d}{dz}
with

a=\displaystyle \frac{1}{2}(1-\frac{1}{e_{1}}-\frac{1}{e_{2}}-\frac{1}{e_{3}}) , b=a+\displaystyle \frac{1}{e_{3}}, c=1-\displaystyle \frac{1}{e_{1}}
Combining this with Proposition 2.3, we see that every automorphic form on X can be

expressed in terms of hypergeometric functions.

Proposition 2.6 ([9, Theorem 9 Assume that a Shimura curve X has signa‐
ture (0;e_{1}, e_{2}, e_{3}) . Let z( $\tau$) be the Hauptmodul of X with values 0 , 1, and \infty at the

elliptic points of order  e_{1}, e_{2} ,
and e_{3} , respectively. Let k\geq 4 be an even integer. Then

a basis for the space of automorphic forms of weight k on X is given by

z^{\{k(1-1/e_{1})/2\}}(1-z)^{\{k(1-1/e_{2})/2\}}z^{j}(F(a, b;c;z)+C_{Z^{1/e_{1}}}{}_{2}F_{1}(a', b', c';z))^{k},
j=0 ,

. . .

, \lfloor k(1-1/e_{1})/2\rfloor+\lfloor k(1-1/e_{2})/2\rfloor+\lfloor k(1-1/e_{3})/2\rfloor-k , for some constant

C ,
where for a rational number x

,
we let \{x\} denote the fractional part of x,

a=\displaystyle \frac{1}{2}(1-\frac{1}{e_{1}}-\frac{1}{e_{2}}-\frac{1}{e_{3}}) , b=a+\displaystyle \frac{1}{e_{3}}, c=1-\displaystyle \frac{1}{e_{1}}
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and

a'=a+\displaystyle \frac{1}{e_{1}}, b'=b+\frac{1}{e_{1}}, c'=c+\frac{2}{e_{1}}.
§3. Algebraic transformations of hypergeometric functions

Suppose that $\Gamma$_{1}<$\Gamma$_{2} are two arithmetic triangle groups with Hauptmoduls z_{1}

and z_{2} , respectively. Since any automorphic function on $\Gamma$_{2} is also an automorphic
function on $\Gamma$_{1} ,

we have z_{2}=S(Z) for some S(x)\in \mathbb{C}(x) . Likewise, if f_{1} and f_{2} are two

automorphic forms of the same weight k on $\Gamma$_{1} and $\Gamma$_{2} , respectively, then the ratio f_{1}/f_{2}
is an automorphic function on $\Gamma$_{1} and hence is equal to R(Z) for some R(x)\in \mathbb{C}(x) .

After taking the kth roots of the two sides of f_{1}/f_{2}=R(z_{1}) ,
we obtain an algebraic

transformation of hypergeometric function. This explains the existence of Kummer�s,
Goursat�s and VidUnas� transformations. (Of course, the triangle groups appearing in

their transformations may not be arithmetic, but the argument above is still valid.)
More generally, if $\Gamma$_{1} and $\Gamma$_{2} are two commensurable arithmetic triangle groups such

that the Shimura curve associated to  $\Gamma$=$\Gamma$_{1}\cap$\Gamma$_{2} has genus 0 . Let z be a Hauptmodul
on  $\Gamma$ . Then each of  z_{1} and z_{2} is a rational function of z . Similarly, the ratio f_{1}/f_{2}
is also a rational function of z . In view of Theorem 2.6, we can obtain an algebraic
transformation of the form

{}_{2}F_{1}(a_{1}, b_{1};c_{1};S_{1}(z))=R(z)_{2}F_{1}(a_{2}, b_{2};c_{2};S(z))

for some rational functions S(z) and S(z) and some algebraic function R(z) . This is

the key idea to obtain new algebraic transformations of hypergeometric functions in [6].

§3.1. Kummer�s quadratic transformation

Here, we will use our arguments to prove Kummer�s quadratic transformation

{}_{2}F_{1}(2a, 2b;a+b+\displaystyle \frac{1}{2};x)={}_{2}F_{1}(a, b;a+b+\frac{1}{2};4x(1-x))
Note that the triangle group (q, q,p) is a subgroup of (q, 2,2p) of index 2. The

(q, q,p) ‐triangle is decomposed by 2 copies of (q, 2,2p) ‐triangle.
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Let x be a Hauptmodul of $\Gamma$_{1}=(q, q, p) and z be a Hauptmodul of $\Gamma$_{2}=(q, 2,2p) .

Label the elliptic points of X_{j}=$\Gamma$_{i}\backslash \mathfrak{H} by P_{q}, P_{q}', P_{p} for X_{1} and Q_{q}, Q_{2}, Q_{2p} for X_{2}

such that the ramication data are given by

P_{q} P_{q}' P_{p} P

1\backslash _{\bullet}/1\bullet\bullet 2 2
Q_{q} Q_{2p} Q_{2}

Here the numbers next to the lines are the ramication indices.

Assume that the values of x and z at these elliptic points are

x(P_{q})=0, x(P_{q}')=1,  x(P_{p})=\infty ,
and  z(Q_{q})=0, z(Q_{2})=1, z(Q_{2p})=\infty,

Then the corresponding hypergeometric functions are

{}_{2}F_{1}(2 $\alpha$, 2 $\beta$; $\alpha$+ $\beta$+\displaystyle \frac{1}{2};x) ,
and {}_{2}F_{1}( $\alpha$,  $\beta$; $\alpha$+ $\beta$+\displaystyle \frac{1}{2};z) ,

where

 $\alpha$=\displaystyle \frac{1}{4}-\frac{1}{4p}-\frac{1}{2q},
Also, the ramication data

 $\beta$=\displaystyle \frac{1}{4}+\frac{1}{4p}-\frac{1}{2q}.
\mathrm{z} 0

\mathrm{x} 0; 1 \mathrm{a}; \mathrm{a} ;

at z=0, \infty implies  z=ux(1-x) for some constant u ; the data at z=1 implies

ux(1-x)=1 has a repeated root, which shows u=4 and a=1/2 . Therefore, the

relation between the Hauprmoduls z and x is z=4x(1-x) ,
and thus the ratio between

{}_{2}F_{1}(2 $\alpha$, 2 $\beta$; $\alpha$+ $\beta$+\displaystyle \frac{1}{2};x) ,
and {}_{2}F_{1}( $\alpha$,  $\beta$; $\alpha$+ $\beta$+\displaystyle \frac{1}{2};4x(1-x))

is an algebraic function of x . By considering the analytic behaviors, one can see that

they are equal.
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Remark. Here, we give another way to determine the value  $\alpha$=x(P) . Let

G be the group of all symmetries of the tessellation of the hyperbolic plane by the

(q, q,p) ‐triangles and G_{0} be the subgroup generated by the reections across the edges
of (q, q,p) ‐triangles. Then the factor group G/G_{0} is of order 2. Since the group relation

$\Gamma$_{1}<$\Gamma$_{2} admits the decomposition, the triangle group $\Gamma$_{2}=(q, 2,2p) corresponds to the

group G/G_{0} . Therefore, any element of $\Gamma$_{2} not in $\Gamma$_{1} induces an automorphim of order

2 on the curve X_{2} . Such an automorphism must fix the points P, P_{p} and permute the

elliptic points P_{q}, P_{q}' . In terms of the Hauptmodul x
,

such an automorphism is given

by

7! $\sigma$:x\mapsto 1-x

which implies that x(P)=1/2.

§3.2. Automorphic forms on arithmetic triangle groups in Takeuchi�s

class II and the associate algebraic transformations

Let us take Takeuchi�s Class II of commensurable arithmetic triangle groups as an

example, which comes from the quaternion algebra over \mathbb{Q} with discriminant 6. This is

a sub‐diagram of the subgroup diagram of Class II.

(2, 4, 6)

(2, 6, 6) (3, 4, 4)

(2, 2, 3, 3)

The node (2,2,3,3) in the diagram means that the related curve X
,

obtained by  $\Gamma$=

(2,6,6)\cap(3,4,4) ,
has signature (0;2,2,3,3). The relations of these subgroups admit

the Coxeter decompositions of a quadrilateral polygon that is symmetric with respect
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to both the diagonals as shown below.

/2 \backslash _{2}

\backslash ^{2} /2

Associated to groups (3, 4, 4), (2, 6, 6) and  $\Gamma$
,

we have the identities

{}_{2} F_{1}(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};\frac{z^{2}}{4(z-1)})=(1-z)^{1/12_{2}}F_{1}(\frac{1}{12}, \frac{1}{4};\frac{1}{2};z(2-z))
and

\displaystyle \sqrt{2}{}_{2}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};\frac{z^{2}}{4(z-1)})=(1-z)^{1/3}(2-z)^{1/2}{}_{2}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};z(2-z))
Moreover, we can express all automorphic forms on  $\Gamma$ in terms of hypergeometric func‐

tions. (The algebraic transformation associated to the pair of groups (2, 4, 6), (3, 4, 4),
and the pair of (2, 4, 6), (2, 6, 6) are Kummer�s quadratic transformations, so we skip
the associated transformations here.)

Let the Hauptmoduls be denoted by

\overline{\overline{(2,3_{Z}3,2)(4,4,3)(2,6,6)ut}}
where for (e_{1}, e_{2}, e_{3}) ,

we choose the uniformizers in a way such that the values at the

vertices e_{1}, e_{2}, e_{3} are 0 , 1, and \infty
, respectively. For (2,2,3,3), we assume that  z takes

values 0 at one of the elliptic point of order 2 and values 1 and \infty the two elliptic points
of order 3, respectively. Then from the ramication data, we have the relations

 u=\displaystyle \frac{z^{2}}{4(z-1)} and t=z(2-z) .

The Hilbert‐Poincaré series for X is

\displaystyle \sum_{k\geq 0}\dim S_{k}( $\Gamma$)x^{k}=1+x^{4}+x^{6}+x^{8}+x^{10}+3x^{12}+\cdots+5x^{24}+\cdots
=\displaystyle \frac{1+x^{12}}{(1-x^{4})(1-x^{6})}
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which means that there are automorphic forms f_{4}, f_{6}, f_{12} of wight 4, 6, and 12 that

generate the graded ring of automorphic forms. Moreover, there exists a linear relation

among f_{4}^{6}, f_{6}^{4}, f_{12}^{2}, f_{4}^{3}f_{6}^{2}, f_{4}^{3}f_{12} ,
and f_{6}^{2}f_{12}.

According to Proposition 2.2, we can find the dimensions of S_{k}() on $\Gamma$_{1}=(3,4,4)
and $\Gamma$_{2}=(2,6,6) are

\dim S_{6}()=1, \dim S_{8}()=1, \dim S_{12}()=1

\dim S_{6}()=0, \dim S_{8}()=1, \dim S_{12}()=2

Moreover, the space S_{6}() can be spanned by

F_{6}(u)=u^{1/4}(1-u)^{1/4}(F(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};u)+C_{1}u^{1/4_{2}}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};u))^{6},
for some constant C_{1} ,

the space S_{8}() can be spanned by

F_{8}(u)=(F(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};u)+C_{1}u^{1/4_{2}}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};u))^{8},
and F_{6}(u)^{2} spans the automorphic forms of wight 12 on $\Gamma$_{1} . Similarly, on $\Gamma$_{2} ,

the sets

\{G_{8}(t)\} and \{G_{12,1}(t), G_{12,2}(t)\} span the spaces of automorphic forms of weight 8 and

12, respectively, where

G_{8}(t)=(1-t)^{1/3}(F(\displaystyle \frac{1}{12}, \frac{1}{4};\frac{1}{2};t)+C_{2}t^{1/2_{2}}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};t))^{8},
G_{12,1}(t)=(F(\displaystyle \frac{1}{12}, \frac{1}{4};\frac{1}{2};t)+C_{2}t^{1/2}{}_{2}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};t))^{12},

and

G_{12,1}(t)=t(F(\displaystyle \frac{1}{12}, \frac{1}{4};\frac{1}{2};t)+C_{2}t^{1/2_{2}}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};t))^{12},
for some C_{2}\in \mathbb{C}.

Substituting u=z^{2}/4(z-1) and t=z(2-z) into F_{6}(u) , F_{8}(u) , F_{6}(u)^{2}, G_{8}(t) ,

G_{12,1}(t) ,
and G_{12,2}(t) , they become automorphic forms on  $\Gamma$ . Also, the space  S_{6}() is

equal to the space spanned by F_{6}(z^{2}/(4z-4)) ,
and the automorphic form

F_{8}(z^{2}/(4z-4))=CG_{8}(z(2-z)) , C\in \mathbb{C}

is a basis of S_{8}() . Comparing the behaviors of these functions, we can find that the

constant C is equal to 1, and C_{2}=\displaystyle \frac{(-1)^{1/4}C_{1}}{2} . Thus, by taking 8th roots of the two

sides, we can get the algebraic transformation

{}_{2}F_{1}(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};\frac{z^{2}}{4(z-1)})=(1-z(2-z))^{1/24}{}_{2}F_{1}(\frac{1}{12}, \frac{1}{4};\frac{1}{2};z(2-z))
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\displaystyle \sqrt{2}{}_{2}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};\frac{z^{2}}{4(z-1)})=(1-z)^{1/3}(2-z)^{1/2}{}_{2}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};z(2-z))
Observe that since the \dim S_{4}() =\dim S_{8}() =1

,
if S_{4}() is spanned by some au‐

tomorphic form f_{4} then f_{4}^{2} spans S_{8}() ,
which can be also spanned by F_{8}(z^{2}/(4z-4)) .

So we can choose

f_{4}=(F(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};u)+C_{1}u^{1/4_{2}}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};u))^{4},
and we can find the set

\{F_{4}^{3}(z^{2}/(4z-4)), G_{12,1}(2z-z^{2}), F_{6}^{2}(z^{2}/(4z-4))\}
forms a basis of S_{12}() . (We remark that 4F_{6}^{2}(z^{2}/(4z-4))=iG_{12,2}(2z-z^{2}). )

As a conclusion, the graded ring of automorphic forms on  $\Gamma$ can be generated by
the following functions

 f_{4}=(F(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};\frac{z^{2}}{4z-4})+c_{1\frac{z^{2}}{4z-4}}^{1/4_{2}}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};\frac{z^{2}}{4z-4)}))^{4},
f_{6}=(\displaystyle \frac{z^{2}}{4(z-1)})^{1/4}(\frac{(z-2)^{2}}{4(1-z)})^{1/4}

(F(\displaystyle \frac{1}{12}, \frac{5}{12};\frac{3}{4};\frac{z^{2}}{4z-4})+C_{1}(\frac{z^{2}}{4z-4)})^{1/4}{}_{2}F_{1}(\frac{1}{3}, \frac{2}{3};\frac{5}{4};\frac{z^{2}}{4z-4}))^{6},
f_{12}=(F(\displaystyle \frac{1}{12}, \frac{1}{4};\frac{1}{2};z(2-z))+\frac{(-1)^{1/4}C_{1}}{2}(z(2-z))^{1/2}{}_{2}F_{1}(\frac{7}{12}, \frac{3}{4};\frac{3}{2};z(2-z)))^{12},
with the relation f_{4}^{6}-4if_{6}^{2}f_{12}-f_{12}^{2}=0.

§4. Algebraic transformations associated to Class VI

According to [6], the subgroup diagram for Takeuchi�s Class VI is

(2, 4, 5)

21
(2, 5, 5) (4, 4, 5)

(2, 4, 10)

12
(2, 10, 10)

2 2

(2,2,5,5) (5,10,10)

2

(5, 5, 5, 5)
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Theorem 4.1.

(1) Associated to the groups (2, 5, 5), (4, 4, 5), and (2,2,5,5) are the identities

{}_{2}F_{1}(\displaystyle \frac{3}{20}, \frac{2}{5};\frac{4}{5};\frac{-4z}{(1-z)^{2}})
={}_{\frac{(1-z)^{3/10}(2-z/ $\alpha$)^{1/8}}{(2-3z $\alpha$+2z^{2})^{1/8}(1-2z $\alpha$)^{1/8}}2}F_{1}(\displaystyle \frac{1}{20}, \frac{1}{4};\frac{4}{5};\frac{-z(2 $\alpha$-z)^{5}}{(1-2z $\alpha$)^{5}}) ,

2_{2}F_{1}(\displaystyle \frac{7}{20}, \frac{3}{5};\frac{6}{5};\frac{-4z}{(z-1)^{2}})
={}_{\frac{(1-z)^{7/10}(2-z/ $\alpha$)^{9/8}}{(2-3 $\alpha$ z+2z^{2})^{1/8}(1-2z $\alpha$)^{9/8}}2}F_{1}(\displaystyle \frac{1}{4}, \frac{9}{20};\frac{6}{5};\frac{-z(2 $\alpha$-z)^{5}}{(1-2z $\alpha$)^{5}}) ,

where  $\alpha$ is a root of  x^{2}+1.

(2) The following equalities are obtained by the groups (2,10,10), (2, 5, 5), and (2,2,5,5).

{}_{2}F_{1}(\displaystyle \frac{3}{20}, \frac{1}{4};\frac{9}{10};z^{2})
={}_{\frac{(2-z/ $\alpha$)^{1/8}}{(2-3 $\alpha$ z+2z^{2})^{1/8}(1-2z $\alpha$)^{1/8}}2}F_{1}(\displaystyle \frac{1}{20}, \frac{1}{4};\frac{4}{5};\frac{-z(2 $\alpha$-z)^{5}}{(1-2z $\alpha$)^{5}}) ,

2_{2}F_{1}(\displaystyle \frac{1}{4}, \frac{7}{20};\frac{11}{10};z^{2})
={}_{\frac{(2-z/ $\alpha$)^{9/8}}{(2-3 $\alpha$ z+2z^{2})^{1/8}(1-2z $\alpha$)^{9/8}}2}F_{1}(\displaystyle \frac{1}{4}, \frac{9}{20};\frac{6}{5};\frac{-z(2 $\alpha$-z)^{5}}{(1-2z $\alpha$)^{5}}) ,

where  $\alpha$ is a root of  x^{2}+1.

(3) From the groups (2,10,10), (4,4,5), and (2,2,5,5), we can obtain the algebraic

transfO rmations

{}_{2}F_{1}(\displaystyle \frac{3}{20}, \frac{2}{5};\frac{4}{5};\frac{-4z}{(1-z)^{2}})=(1-z)^{3/10_{2}}F_{1}(\frac{3}{20}, \frac{1}{4};\frac{9}{10};z^{2}) ,

{}_{2}F_{1}(\displaystyle \frac{7}{20}, \frac{3}{5};\frac{6}{5};\frac{-4z}{(z-1)^{2}})=(1-z)^{7/10_{2}}F_{1}(\frac{1}{4}, \frac{7}{20};\frac{11}{10};z^{2})
Proof. Now we let $\Gamma$_{1}=(2,5,5) , $\Gamma$_{2}=(4,4,5) , $\Gamma$_{3}= (2,10,10), $\Gamma$_{4}= (2,2,5,5),

and X_{1}, X_{2}, X_{3}, X_{4} be the related Shimura curves. Let the Hauptmoduls be denoted

by

\overline{\overline{(5,2,5)(5,4,4)}}(10,2,10)(5,2,5,2)
z_{1} z_{2} z_{3} t
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where for (e_{1}, e_{2}, e_{3}) ,
we choose the uniformizers in a way such that the values at the

vertices e_{1}, e_{2}, e_{3} are 0 , 1, and \infty
, respectively. For (5,2,5,2), we assume that  t takes

values 1 at one of the elliptic point of order 2 and values 0 and \infty the two elliptic points
of order 5, respectively.

Then  t takes value -1 at the other elliptic point of order 2, and the relations

Z3=t^{2} and z_{2}=\displaystyle \frac{-4t}{(1-t)^{2}}
can be easily determined.

If we label the elliptic points of X_{j} by P_{2}, P_{5}, P_{5}' for X_{1} ,
and T_{2}, T_{2}', T_{5}, T_{5}' for X_{4}

such that the ramications data are given by

T_{2} T_{2}' T_{5} T_{5}'

 1\backslash _{\bullet}/5\bullet\bullet 1\backslash _{\bullet}/5\bullet\bullet
 P_{2} P_{5} P_{5}'

then from the ramication data

\mathrm{t} 0; \mathrm{a}

for some unknowns a, b, c, d\in \mathbb{C} ,
we can find

z_{1}=\displaystyle \frac{t(2 $\alpha$-t)^{5}}{(2t $\alpha$-1)^{5}},
By Proposition 2.2, we have

with $\alpha$^{2}+1=0.

\dim S_{8}($\Gamma$_{1})=\dim S_{8}($\Gamma$_{3})=1, \dim S_{8}($\Gamma$_{2})=2 and \dim S_{8}($\Gamma$_{4})=3.

Therefore, the space S_{8}() is spanned by

(4.1) F_{1}=z_{1}^{1/5}(F(\displaystyle \frac{1}{20}, \frac{1}{4};\frac{4}{5};z_{1})+C_{1}z_{1}^{1/5_{2}}F_{1}(\frac{1}{4}, \frac{9}{20};\frac{6}{5};z_{1}))^{8}
for some constant C_{1} ; the function

(4.2) F_{2}=z_{2}^{1/5}(F(\displaystyle \frac{3}{20}, \frac{2}{5};\frac{4}{5};z_{2})+C_{2}z_{2}^{1/5_{2}}F_{1}(\frac{7}{20}, \frac{3}{5};\frac{6}{5};z_{2}))^{8}
is an automorphic form of weight 8 on $\Gamma$_{2} ,

for some constant C_{2} ,
and the space S_{8}()

is spanned by

(4.3) F_{3}=z_{3}^{3/5}(F(\displaystyle \frac{3}{20}, \frac{1}{4};\frac{9}{10};z_{3})+C_{3}z_{3}^{1/10_{2}}F_{1}(\frac{1}{4};\frac{7}{20};\frac{11}{10};z_{3}))^{8},
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for some constant C_{3} . To get a basis for S_{8}() ,
we need to work out the Schwarzian

differential equation associated to t.

By Theorem 2.3, the function t'( $\tau$) ,
as a function of t

,
satises

\displaystyle \frac{d^{2}}{dt^{2}}f+Q(t)f=0,
where

Q(t)=\displaystyle \frac{1}{4}(\frac{24}{25t^{2}}+\frac{3}{4(1-t)^{2}}+\frac{3}{4(1+t)^{2}}+\frac{B_{1}}{t}+\frac{B_{2}}{t-1}+\frac{B_{3}}{t+1})
for some complex numbers satisfying

(4.4) B_{1}+B_{2}+B_{3}=0, B_{2}-B_{3}+\displaystyle \frac{3}{2}=0.
To determine the all the values of B_{1}, B_{2} ,

and B_{3} ,
we need another condition. Here, we

use the automorphism of X_{4} coming from the normal subgroup relation $\Gamma$_{4}\triangleleft$\Gamma$_{3} . Let  $\gamma$

be an element of  $\Gamma$_{3} not in $\Gamma$_{4} . Then such an element  $\gamma$ leads to the relation

 t( $\gamma \tau$)=-t( $\tau$) .

Now by Proposition 2.4, we have

D(-t( $\tau$),  $\tau$)=D(t( $\gamma \tau$),  $\tau$)=D(t( $\gamma \tau$),  $\gamma \tau$)+D(_{;}  $\tau$)/(d $\gamma \tau$/d $\tau$)^{2}=Q(t( $\gamma \tau$)) ;

on the other hand, we also have, by the same proposition,

D(-t( $\tau$),  $\tau$)=D(-t( $\tau$), t( $\tau$))+D(t( $\tau$),  $\tau$)/(-1)^{2}=Q(t( $\tau$))

Thus, we have

(4.5) Q(t)=Q(-t) .

The condition (4.4) and the identity (4.5) give us

B_{1}=0, B_{2}=-\displaystyle \frac{3}{4}, B_{3}=\frac{3}{4},
and hence

Q(t)=\displaystyle \frac{6}{25t^{2}}+\frac{3}{16}(\frac{1}{(1-t)^{2}}+\frac{1}{(1+t)^{2}}-\frac{1}{1-t}+\frac{1}{1+t})
Then if we let

f_{1}=t^{2/5}(1-\displaystyle \frac{5}{24}t^{2}-\frac{215}{2432}t^{4}-\frac{91015}{1692672}t^{6}-\frac{2047105}{54165504}t^{8}-\frac{1529715}{53215232}t^{10}-\cdots) ,

f_{2}=t^{3/5}(1-\displaystyle \frac{15}{88}t^{2}-\frac{115}{408}t^{4}-\frac{18145}{349184}t^{6}-\frac{17144865}{458129408}t^{8}-\frac{105957295}{3665035264}t^{10}-\cdots)
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be a basis for the solution space of the Schwarzian differential equation d^{2}f/dt^{2}+Q(t)f=
0 ,

then by Theorem 2.3, a basis for the space S_{8}() is given by

\displaystyle \{g, tg; t^{2}g\}, g=\frac{(f_{1}+Cf_{2})^{8}}{t^{3}(1-t)^{2}(1+t)^{2}},
for some constant C.

After substituting Z3=t^{2}, z_{2}=-4t/(1-t)^{2} ,
and z_{1}=-t(2 $\alpha$-t)^{5}/(1-2t $\alpha$)^{5}

into (4.1), (4.2) and (4.3), respectively, by comparing their t‐series, we find

F_{1}=$\alpha$^{1/5}(-2+3 $\alpha$ t-2t^{2})g,
(4.6) F_{2}=(-4)^{1/5}(1-2t+t^{2})g,

F_{3}=tg.

Simplifying the relation

tF_{1}=$\alpha$^{1/5}(-2+3 $\alpha$ t-2t^{2})F_{3},

(-4)^{1/5}(1-2t+t^{2})F_{1}=$\alpha$^{1/5}(-2+3 $\alpha$ t-2t^{2})F_{2},
and

tF_{2}=(-4)^{1/5}(1-2t+t^{2})F_{3}
together with

\displaystyle \frac{C_{1}}{C_{2}}=-\frac{1}{2}(\frac{ $\alpha$}{4})^{1/5}, \frac{C_{1}}{C_{3}}=\frac{$\alpha$^{1/5}}{2},
we can get the identities. \square 

§5. Algebraic transformations associated to Class III

In this section, we consider some algebraic transformations associated to the Class

III. Here is a sub‐diagram of the subgroup diagram.

10

(2, 6, 8)

21
(4, 6, 6) (3, 8, 8)

(2, 3, 8)

21
(3, 3, 4)

10
2

(3, 4, 3, 4)

Theorem 5.1.
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(1) Corresponding to the pair of (4, 6, 6) and (3, 3, 4) are the following identities

S^{1/8_{2}}F_{1}(\displaystyle \frac{5}{24}, \frac{3}{8};\frac{3}{4};\frac{4t}{(t+1)^{2}})=(1+t)^{3/8_{2}}F_{1}(\frac{1}{24}, \frac{3}{8};\frac{3}{4};\frac{(28+16 $\beta$)tR^{4}}{(1+t)S^{3}}) ,

S^{7/8_{2}}F_{1}(\displaystyle \frac{11}{24}, \frac{5}{8};\frac{5}{4};\frac{4t}{(t+1)^{2}})=R(1+t)^{5/8_{2}}F_{1}(\frac{7}{24}, \frac{5}{8};\frac{5}{4};\frac{(28+16 $\beta$)tR^{4}}{(1+t)S^{3}}) ,

(2) Corresponding to the pair of (3, 8, 8) and (3, 3, 4) are the following identities

{}_{2}F_{1}(\displaystyle \frac{1}{24}, \frac{3}{8};\frac{3}{4};\frac{(28+16 $\beta$)tR^{4}}{(1+t)S^{3}})=S^{1/8}(1+t)^{1/24_{2}}F_{1}(\frac{5}{24}, \frac{1}{3};\frac{7}{8};t^{2}) ,

R{}_{2}F_{1}(\displaystyle \frac{7}{24}, \frac{5}{8};\frac{5}{4};\frac{(28+16 $\beta$)tR^{4}}{(1+t)S^{3}})=S^{7/8}(1+t)^{7/24_{2}}F_{1}(\frac{1}{3}, \frac{11}{24};\frac{9}{8};t^{2}) ,

(3) Associated to the groups (3, 8, 8), (4, 6, 6) are the following identities

{}_{2}F_{1}(\displaystyle \frac{5}{24}, \frac{3}{8};\frac{3}{4};\frac{4t}{(1+t)^{2}})=(1+t)^{5/12_{2}}F_{1}(\frac{5}{24}, \frac{1}{3};\frac{7}{8};t^{2}) ,

{}_{2}F_{1}(\displaystyle \frac{11}{24}, \frac{5}{8};\frac{5}{4};\frac{4t}{(1+t)^{2}})=(1+t)^{11/12}{}_{2}F_{1}(\frac{1}{3}, \frac{11}{24};\frac{9}{8};t^{2}) ,

where

R=1+\displaystyle \frac{-17+56 $\beta$}{81}t^{2}, S=1+\frac{13+8 $\beta$}{3}t-\frac{25+32 $\beta$}{9}t^{2}+\frac{17-56 $\beta$}{81}t^{3},
and  $\beta$ is a root of  x^{2}+2.

Proof. Let $\Gamma$_{1}=(4,6,6) , $\Gamma$_{2}=(3,8,8) , $\Gamma$_{3}=(3,3,4) ,
 $\Gamma$= (3,4,3,4), and the

Hauptmoduls be denoted by

\overline{\overline{(4,6,6)(8,3,8)(4,3,3)(4,3,4,3)z_{1}z_{2}z_{3}t}}
where for (e_{1}, e_{2}, e_{3}) ,

we choose the Hauptmoduls such that the values at the vertices

e_{1}, e_{2}, e_{3} are 0 , 1, and \infty
, respectively. For (3,4,3,4), we assume that  t takes value 1

at one of the elliptic point of order 3 and values 0 and \infty the two elliptic points of order

4, respectively.
Then we can find that  t takes value -1 at the other elliptic point of order 3, and

the relations between these Hauptmoduls are

(5.1) z_{1}=\displaystyle \frac{4t}{(1+t)^{2}}, z_{2}=t^{2}, z_{3}=\displaystyle \frac{4(7+4 $\beta$)t(1+\frac{-17+56 $\beta$}{81}t^{2})^{4}}{(t+1)(1+\frac{13+8 $\beta$}{3}t-\frac{25+32 $\beta$}{9}t^{2}+\frac{17-56 $\beta$}{81}t^{3})^{3}}.



Algebraic transformations 0F hypergeometric functions 243

(For more detail, please see Lemma 7 in [6].)
By Proposition 2.2, we have

\dim S_{6}($\Gamma$_{1})=\dim S_{6}($\Gamma$_{2})=\dim S_{6}($\Gamma$_{3})=1 and \dim S_{6}( $\Gamma$)=3.

Therefore, the space S_{6}() is spanned by

(5.2) F_{1}=z_{1}^{1/4}(1-z_{1})^{1/2}(F(\displaystyle \frac{5}{24}, \frac{3}{8};\frac{3}{4};z_{1})+C_{1}z_{1}^{1/4_{2}}F_{1}(\frac{11}{24}, \frac{5}{8};\frac{5}{4};z_{1}))^{6}
for some constant C_{1} ; the space S_{6}() is spanned by

(5.3) F_{2}=z_{2}^{5/8}(F(\displaystyle \frac{5}{24}, \frac{1}{3};\frac{7}{8};z_{2})+C_{2}z_{2}^{1/8_{2}}F_{1}(\frac{1}{3}, \frac{11}{24};\frac{9}{8};z_{2}))^{6}
for some constant C_{2} ,

and the space S_{6}() is spanned by

(5.4) F_{3}=z_{3}^{1/4}(F(\displaystyle \frac{1}{24}, \frac{3}{8};\frac{3}{4};z_{3})+C_{3}z_{3}^{1/4_{2}}F_{1}(\frac{7}{24}, \frac{5}{8};\frac{5}{4};z_{3}))^{6}
for some constant C_{3}.

By Theorem 2.3, a basis for the space S_{6}() is

\displaystyle \{g, tg; t^{2}g\}, g=\frac{(f_{1}+Cf_{2})^{6}}{t^{2}(1-t)^{2}(1+t)^{2}},
for some constant C ,

where \{f_{1}, f_{2}\} is a basis for the solution space of the Schwarzian

differential equation d^{2}f/dt^{2}+Q(t)f=0 associate to t.

By Theorem 2.3, the rational function Q(t) must be

Q(t)=\displaystyle \frac{1}{4}(\frac{15}{16t^{2}}+\frac{8}{9(1-t)^{2}}+\frac{8}{9(1+t)^{2}}+\frac{B_{1}}{t}+\frac{B_{2}}{t-1}+\frac{B_{3}}{t+1})
satisfying

(5.5) B_{1}+B_{2}+B_{3}=0, B_{2}-B_{3}+\displaystyle \frac{16}{9}=0.
Note that for any element  $\gamma$ of  $\Gamma$_{2} not  $\Gamma$

,
we have the equality

 t( $\gamma \tau$)=-t( $\tau$) .

Now by Proposition 2.4, we have

D(-t( $\tau$),  $\tau$)=D(t( $\gamma \tau$),  $\tau$)=D(t( $\gamma \tau$),  $\gamma \tau$)+D(_{;}  $\tau$)/(d $\gamma \tau$/d $\tau$)^{2}=Q(t( $\gamma \tau$)) ,

D(-t( $\tau$),  $\tau$)=D(-t( $\tau$), t( $\tau$))+D(t( $\tau$),  $\tau$)/(-1)^{2}=Q(t( $\tau$)) ,
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and thus

(5.6) Q(t)=Q(-t) .

Therefore, from the information (5.5) and (5.6), we can get

Q(t)=\displaystyle \frac{15}{64t^{2}}+\frac{2}{9}(\frac{1}{(1-t)^{2}}+\frac{1}{(1+t)^{2}}-\frac{1}{t-1}+\frac{1}{t+1})
Here, we choose a basis for the solution space of the Schwarzian differential equation

d^{2}f/dt^{2}+Q(t)f=0 with t‐series

f_{1}=t^{5/8}(1-\displaystyle \frac{16}{81}t^{2}-\frac{1168}{12393}t^{4}-\frac{99568}{1673055}t^{6}-\frac{1922128}{45172485}t^{8}-\frac{32018768}{980508645}t^{10}-\cdots) ,

f_{2}=t^{3/8}(1-\displaystyle \frac{16}{63}t^{2}-\frac{176}{1701}t^{4}-\frac{65008}{1056321}t^{6}-\frac{1792496}{42101937}t^{8}-\frac{254491952}{7957266093}t^{10}-\cdots)
After substituting (5.1) into (5.2), (5.3) and (5.4), one has

C^{6}F_{1}=\sqrt{2}(1-t^{2})g,
C^{6}F_{2}=tg,(5.7)

C^{6}F_{3}=\displaystyle \sqrt{2}(7+4 $\beta$)^{1/4}(1+\frac{(-17+56 $\beta$)}{81}t^{2})g.
Simplifying the relations

(7+4 $\beta$)^{1/4}(1+\displaystyle \frac{-17+56 $\beta$}{81}t^{2})F_{1}=(1-t^{2})F_{3},

tF_{3}=\displaystyle \sqrt{2}(7+4 $\beta$)^{1/4}(1+\frac{-17+56 $\beta$}{81}t^{2})F_{2},
and

tF_{1}=\sqrt{2}(1-t^{2})F_{2},

we can get the identities described in the theorems. \square 
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