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Resonances and Spectral Shift Function Singularities
for Magnetic Quantum Hamiltonians

By
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Abstract

In this survey article we consider the operator pair (H, H_{0}) where H_{0} is the shifted 3\mathrm{D}

Schrödinger operator with constant magnetic field, H:=H_{0}+V ,
and V is a short‐range elec‐

tric potential of a fixed sign. We describe the asymptotic behavior of the Krein spectral shift

function (SSF)  $\xi$(E;H, H_{0}) as the energy E approaches the Landau levels 2bq, q\in \mathbb{Z}+ ,
which

play the role of thresholds in the spectrum of H_{0} . The main asymptotic term of  $\xi$(E;H, H_{0}) as

E\rightarrow 2bq with a fixed q\in \mathbb{Z}+\mathrm{i}\mathrm{s} written in terms of appropriate compact Berezin‐Toeplitz op‐

erators. Further, we investigate the relation between the threshold singularities of the SSF and

the accumulation of resonances at the Landau levels. We establish the existence of resonance‐

free sectors adjoining any given Landau level and prove that the number of the resonances in

the complementary sectors is innite. Finally, we obtain the main asymptotic term of the local

resonance counting function near an arbitrary fixed Landau level; this main asymptotic term

is again expressed via the Berezin‐Toeplitz operators which govern the asymptotics of the SSF

at the Landau levels.

§1. Introduction

This article is a survey of our results on two closely related topics:
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\bullet The threshold singularities of the Krein spectral shift function (SSF) for the oper‐

ator pair (H, H_{0}) where H_{0} is the shifted 3\mathrm{D} Schrödinger operator with constant

magnetic field, and H:=H_{0}+V with an appropriate short‐range potential V of a

fixed, positive or negative, sign;

\bullet The accumulation of the resonances of the operator  H at its spectral thresholds.

The self‐adjoint unperturbed operator

(1.1) H_{0}=H_{0}(b) :=(-i\nabla-A)^{2}-b

is dened initially on C_{0}^{\infty}(\mathbb{R}^{3}) and then is closed in L^{2}(\mathbb{R}^{3}) . Here A= (- \displaystyle \frac{bx_{2}}{2}, \frac{bx_{1}}{2},0) is

a magnetic potential generating the magnetic field B= curl A=(0,0, b) where b>0 is

the constant scalar intensity of B.

It is well known that the spectrum  $\sigma$(H) of the operator H_{0} is absolutely continuous

and coincides with [0, \infty ) (see e.g. [1]). Moreover, the so called Landau levels  2bq,

q\in \mathbb{Z}_{+}:=\{0 , 1, 2, . . play the role of thresholds in  $\sigma$(H) (see below Subsection 2.2).
The perturbation of H_{0} is the electric potential V : \mathbb{R}^{3}\rightarrow \mathbb{R} . Assume that V is Lebesgue

measurable, and bounded. On the domain of H_{0} dene the perturbed operator

(1.2) H:=H_{0}+V

which obviously is self‐adjoint in L^{2}(\mathbb{R}^{3}) .

In order to describe the assumptions on the decay of V we need the following notations.

For x\in \mathbb{R}^{3} we will occasionally write x=(X\perp, x_{3}) where x_{\perp}=(x_{1}, x_{2})\in \mathbb{R}^{2} are the

variables in the plane perpendicular to the magnetic field, and X3\in \mathbb{R} is the variable

along the magnetic field. We will suppose that V satises one of the following estimates:

\bullet \mathrm{D} (anisotropic decay): V(x)=O(\langle X_{\perp}\rangle^{-m\perp}\langle x_{3}\rangle^{-m_{3}}) with m\perp>2, m_{3}>1 ;

\bullet \mathrm{D}_{0} (isotropic decay): V(x)=O(\langle x\rangle^{-m_{0}}) with m_{0}>3 ;

\bullet Dxp (fast decay with respect to  x_{3} ) :V(x)=O(\langle X_{\perp}\rangle^{-m\perp}\exp(NX)) with some

m\perp>0 and any N>0.

Note that assumption \mathrm{D}_{0} implies D. Moreover, evidently, assumption Dxp with m\perp>2

again implies D.

The article is organized as follows. In Section 2 we discuss the behavior of the SSF for

the operator pair (H, H_{0}) near the Landau levels 2bq, q\in \mathbb{Z}_{+} . Its main asymptotic term

(see Theorem 2.1) is given in terms of auxiliary Berezin‐Toeplitz operators discussed

in detail in Subsection 2.3. As an example of the possible applications of Theorem 2.1,
a generalized Levinson formula is deduced from it (see Corollary 2.1). In Subsection

2.6 we describe briey the extensions of Theorem 2.1 to Pauli and Dirac operators with
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non constant magnetic field.

Further, Section 3 is dedicated to the resonances and the embedded eigenvalues of H . In

Subsection 3.1 we state Theorem 3.1 which implies that under very general assumptions
about the decay of V the operator H has innitely many eigenvalues embedded in

its essential spectrum, provided that V is axisymmetric and non positive. Next, in

Subsection 3.2 we dene the resonances of H as the poles of a meromorphic continuation

of the resolvent (H-z)^{-1}, {\rm Im} z>0 ,
to an appropriate innitely sheeted Riemann

surface. Further, we establish the existence of resonance‐free regions and of regions
with innitely many resonances in a vicinity of each Landau levels (see Theorem 3.3).
Finally, for every q\in \mathbb{Z}_{+} fixed, we obtain in Theorem 3.4 the main asymptotic term

of the number of the resonances on an annulus centered at the Landau level 2bq as its

inner radius tends to zero.

We have been working on the problems discussed in the article for almost a decade.

Some of the results obtained have already been surveyed (see e.g [4, 34]). We decided to

include them again in the present opus since we wanted to tell here our story from the

very beginning, referring the reader when necessary to the original works but preferably
not to other surveys.

§2. Singularities of the spectral shift function at the Landau levels

§2.1. The spectral shift function  $\xi$(E;H, H_{0})

Let V satisfy D. Then the diamagnetic inequality easily implies that the operator

|V|^{1/2}(H_{0}+1)^{-1} is Hilbert‐Schmidt, and hence the resolvent difference (H-i)^{-1}-
(H_{0}-i)^{-1} is a trace‐class operator. Therefore, there exists a unique

 $\xi$= $\xi$ H, H_{0})\in L^{1} (; (1+E^{2})^{-1}dE)

such that the Lifshits‐Krein trace formula

Tr (f(H)-f(H_{0}))=\displaystyle \int_{\mathbb{R}} $\xi$(E;H, H_{0})f'(E)dE
holds for each f\in C_{0}^{\infty}() and the normalization condition  $\xi$(E;H, H_{0})=0 is fullled

for each  E\in (; \displaystyle \inf $\sigma$(H)) (see the original works [29, 25] or [48, Chapter 8]). Then

 $\xi$  H, H_{0}) is called the spectral shift function (SSF) for the operator pair (H, H_{0}) .

By the Birman‐Krein formula, for almost every E>0=\displaystyle \inf$\sigma$_{\mathrm{a}\mathrm{c}}(H) ,
the SSF  $\xi$(E;H, H_{0})

coincides with the scattering phase for the operator pair (H, H_{0}) (see the original work

[2] or the monograph [48]).
Further, for almost every E<0 we have

- $\xi$(E;H, H_{0})=\mathrm{T}\mathrm{r}1_{(-\infty,E)}(H) ,
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where Tr 1_{(-\infty,E)}(H) is just the number of the eigenvalues of H less than E
,

counted

with their multiplicities.
The above properties follow directly from the general abstract theory of the SSF (see
e.g. [48, Chapter 8]). By [8, Proposition 2.5], the SSF for the operator pair dened in

(1.1) and (1.2) possesses the following more particular features:

\bullet  $\xi$  H, H_{0}) is bounded on every compact subset of \mathbb{R}\backslash 2b\mathbb{Z}_{+} ;

\bullet  $\xi$  H, H_{0}) is continuous on \mathbb{R}\backslash (2b\mathbb{Z}_{+}\mathrm{U}$\sigma$_{\mathrm{p}\mathrm{p}}(H)) where $\sigma$_{\mathrm{p}\mathrm{p}}(H) is the set of the

eigenvalues of H.

Our first goal is to describe the asymptotic behavior of the SSF  $\xi$(E;H, H_{0}) as E\rightarrow 2bq,

q\in \mathbb{Z}_{+} . This behavior will be described in terms of auxiliary Berezin‐Toeplitz operators

studied in more detail in Subsection 2.3. The next subsection deals with the well‐known

properties of the Landau Hamiltonian, i.e. the 2\mathrm{D} Schrödinger operator with constant

magnetic fields.

§2.2. The Landau Hamiltonian

We have

(2.1) H_{0}=H_{\perp}\otimes I_{\Vert}+I_{\perp}\otimes H_{\Vert}

where  I\perp and  I_{\Vert} are the identities in L^{2}(\mathbb{R}_{x_{\perp}}^{2}) and L^{2}(\mathbb{R}_{x_{3}}) respectively,

H\displaystyle \perp:=(-i\frac{\partial}{\partial x_{1}}+\frac{bx_{2}}{2})^{2}+(-i\frac{\partial}{\partial x_{2}}-\frac{bx_{1}}{2})^{2}-b
is the (shifted) Landau Hamiltonian, self‐adjoint in L^{2}(\mathbb{R}_{x_{\perp}}^{2}) ,

and

H_{\Vert}:=-\displaystyle \frac{d^{2}}{dx_{3}^{2}}
is the 1\mathrm{D} free Hamiltonian, self‐adjoint in L^{2}(\mathbb{R}_{x_{3}}) . Note that H\perp=a^{*}a where

a:=-2ie^{-b|z|^{2}/4}\displaystyle \frac{\partial}{\partial\overline{z}}e^{b|z|^{2}/4}, z=x_{1}+ix_{2}, \overline{z}=x_{1}-ix_{2},
is the magnetic annihilation operator, and

a^{*}:=-2ie^{b|z|^{2}/4}\displaystyle \frac{\partial}{\partial z}e^{-b|z|^{2}/4}
is the magnetic creation operator, adjoint to a in L^{2}(\mathbb{R}^{2}) . Moreover, [a, a^{*}]=2b . There‐

fore,  $\sigma$(H_{\perp})=\displaystyle \bigcup_{q=0}^{\infty}\{2bq\} . Furthermore,

\displaystyle \mathrm{K}\mathrm{e}\mathrm{r}H\perp=\mathrm{K}\mathrm{e}\mathrm{r}a=\{f\in L^{2}(\mathbb{R}^{2})|f=ge^{-b|z|^{2}/4}, \frac{\partial g}{\partial\overline{z}}=0\}
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is the classical Fock−Segal−Bargmann space (see e.g. [21]), and

\mathrm{K}\mathrm{e}\mathrm{r}(H\perp-2bq)=(a^{*})^{q}\mathrm{K}\mathrm{e}\mathrm{r}H\perp, q\geq 1.

Evidently,

\dim \mathrm{K}\mathrm{e}\mathrm{r}(H\perp-2bq)=\infty

for each  q\in \mathbb{Z}_{+}.
Representation (2.1) shows that the operator H_{0} has a waveguide structure since the

transversal operator  H\perp has a purely point spectrum and the set of its eigenvalues is a

discrete subset of the real axis, while the longitudinal operator  H_{\Vert} has a purely abso‐

lutely continuous spectrum. This waveguide structure of H_{0} explains the qualication
of the Landau levels, i.e. the eigenvalues of the transversal operator  H\perp ,

as thresholds

in the spectrum of the \backslash total� 3\mathrm{D} operator H_{0} . The important difference with the usual

waveguides (see e.g. [20, 10]) is that the eigenvalues 2bq, q\in \mathbb{Z}_{+} ,
of the transversal

operator  H\perp are of innite multiplicity. We would like to underline here that most of

the phenomena discussed in the present article are due to the innite degeneracy of the

Landau levels regarded as eigenvalues of  H\perp.

§2.3. Berezin{Toeplitz operators

Fix q\in \mathbb{Z}_{+} . Denote by p_{q} the orthogonal projection onto \mathrm{K}\mathrm{e}\mathrm{r}(H\perp-2bq) . As

discussed in the previous subsection, we have rank p_{q}=\infty.

Let U : \mathbb{R}^{2}\rightarrow \mathbb{C} be a Lebesgue measurable function. Introduce the Bere\mathrm{z}in- Toeplitz

operator

p_{q}Up_{q}:p_{q}L^{2}(\mathbb{R}^{2})\rightarrow p_{q}L^{2}(\mathbb{R}^{2}) .

We will call U the symbol of the operator p_{q}Up_{q} . Evidently, if U\in L^{\infty}(\mathbb{R}^{2}) then p_{q}Up_{q}
is bounded, and \Vert p_{q}Up_{q}\Vert\leq\Vert U\Vert_{L^{\infty(\mathbb{R}^{2})}} . Moreover, if U\in L^{p}(\mathbb{R}^{2}) ,  p\in[1, \infty ), then

by [33, Lemma 5.1] or [13, Lemma 3.1], we have  p_{q}Up_{q}\in S_{p} ,
the pth Schatten‐von

Neumann class, and

\displaystyle \Vert p_{q}Up_{q}\Vert_{S_{p}}^{p}\leq\frac{b}{2 $\pi$}\Vert U\Vert_{L^{p}(\mathbb{R}^{2})}^{p}.
As a corollary, if U\in L_{1\mathrm{o}\mathrm{c}}^{1}(\mathbb{R}^{2}) and U(x)\rightarrow 0 as |x|\rightarrow\infty ,

then  p_{q}Up_{q} is compact.

Further, p_{0}Up_{0} with domain p_{0}L^{2}(\mathbb{R}^{2}) is unitarily equivalent to the  $\Psi$ \mathrm{D}\mathrm{O}:L^{2}(\mathbb{R})\rightarrow
 L^{2}() with anti‐Wick symbol

 $\omega$(y,  $\eta$):=U(b^{-1/2} $\eta$, b^{-1/2}y) , (y,  $\eta$)\in T^{*}\mathbb{R},

while by [8, Lemma 9.2] the operator p_{q}Up_{q} with any q\in \mathbb{Z}_{+} is unitarily equivalent to

(2.2) p_{0}(\displaystyle \sum_{s=0}^{q}\frac{q!}{(2b)^{s}(s!)^{2}(q-s)!}\triangle^{s}U)p_{0}
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which is quite useful when we want to reduce the analysis at the higher Landau levels

to analysis at the first Landau level. Note that the differential operation occurring in

(2.2) can be written as \mathrm{L}_{q} (- \displaystyle \frac{\triangle}{2b}) where

\displaystyle \mathrm{L}_{q}(t):=\sum_{s=0}^{q}\frac{q!}{(s!)^{2}(q-s)!}(-t)^{s}, t\in \mathbb{R},
is the qth Laguerre polynomial. A more abstract point of view concerning the unitary

equivalence between p_{q}Up_{q} and the operator dened in (2.2) could be found in [16].
The following three lemmas deal with the spectral asymptotics for compact Berezin‐

Toeplitz operators whose symbols U admit respectively a power‐like decay, an exponen‐

tial decay, or have a compact support. More precisely, we discuss the asymptotics as

s\downarrow 0 of the eigenvalue counting function Tr 1_{(s,\infty)}(p_{q}Up_{q}) .

Lemma 2.1. [33, Theorem 2.6] Let 0\leq U\in C^{1}(\mathbb{R}^{2}) ,
and

U(X_{\perp})=u_{0}(X\perp/|x_{\perp}|)|x_{\perp}|^{- $\alpha$}(1+o(1)) ,

|\nabla U(x_{\perp})|=O(|x_{\perp}|^{- $\alpha$-1}) ,

as |x_{\perp}|\rightarrow\infty ,
with  $\alpha$>0 ,

and 0<u_{0}\in C(\mathrm{S}^{1}) . Fix q\in \mathbb{Z}_{+} . Then

(2.3)
Tr 1_{(s,\infty)}(p_{q}Up_{q})=\displaystyle \frac{b}{2 $\pi$}|\{x_{\perp}\in \mathbb{R}^{2}|U(X_{\perp})>s\}|(1+o(1))=$\psi$_{ $\alpha$}(s)(1+o(1)) , s\downarrow 0,

where | | denotes the Lebesgue measure, and

(2.4) $\psi$_{ $\alpha$}(s):=s^{-2/$\alpha$_{\frac{b}{4 $\pi$}}}\displaystyle \int_{\mathrm{S}^{1}}u_{0}(t)^{2/ $\alpha$}dt.
Lemma 2.2. [36, Theorem 2.1, Proposition 4.1] Let 0\leq U\in L^{\infty}(\mathbb{R}^{2}) and

\ln U(X_{\perp})=- $\mu$|X\perp|^{2 $\beta$}(1+o(1)) , |x_{\perp}|\rightarrow\infty,

with  $\beta$\in(0, \infty) ,  $\mu$\in(0, \infty) . Fix q\in \mathbb{Z}_{+} . Then

(2.5) Tr 1_{(s,\infty)}(p_{q}Up_{q})=$\varphi$_{ $\beta$}(s)(1+o(1)) , s\downarrow 0,

where

(2.6) $\varphi$_{ $\beta$}(s) :=\left\{\begin{array}{l}
\frac{\frac{b}{2$\mu$^{1/ $\beta$}\ln(1+1}|\ln s}{2 $\mu$/b)}|\ln s|\mathrm{i}\mathrm{f} $\beta$=1|^{1/ $\beta$}\mathrm{i}\mathrm{f}0< $\beta$<1,\\
\frac{ $\beta$}{ $\beta$-1}(\ln|\ln s|)^{-1}|\ln s| \mathrm{i}\mathrm{f} 1< $\beta$<\infty.
\end{array}\right.
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Lemma 2.3. [36, Theorem 2.2, Proposition 4.1] Let 0\leq U\in L^{\infty}(\mathbb{R}^{2}) , supp U be

compact, and U\geq C>0 on an open non‐empty subset of \mathbb{R}^{2} . Fix q\in \mathbb{Z}_{+} . Then

(2.7) Tr 1_{(s,\infty)}(p_{q}Up_{q})=$\varphi$_{\infty}(s)(1+o(1)) , s\downarrow 0,

where

(2.8) $\varphi$_{\infty}(s):=(\ln|\ln s|)^{-1}|\ln s|.

Asymptotic relation (2.3) is of semiclassical nature in the sense that it is written

in terms of the measure of that part of \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} phase space� \mathbb{R}^{2} where the symbol U of

the operator p_{q}Up_{q} is greater than s>0 . Similarly, asymptotic relation (2.5) with

 $\beta$\in(0,1) is of semiclassical nature. Asymptotic relation (2.5) with  $\beta$=1 is the border‐

line one: the order is semiclassical but the coefficient \displaystyle \frac{1}{\ln(1+2 $\mu$/b)} is not. Note that the

main asymptotic term of \displaystyle \frac{1}{\ln(1+2 $\mu$/b)} as  b\rightarrow\infty coincides with the semiclassical coefficient

\displaystyle \frac{b}{2 $\mu$} . Finally, asymptotic relation (2.5) with  $\beta$\in(1, \infty) as well as asymptotic relation

(2.7) are not of semiclassical nature.

Lemmas 2.1, 2.2, 2.3 have been cited in a similar form in several works of the present

authors (see e.g. [13, 5, 6]). We have chosen this form since, in our opinion, it contains a

reasonable scale of the possible types of decay of V , which, in particular, reveals clearly

enough the passage from semiclassical to non semiclassical asymptotic behavior of the

eigenvalue counting function for p_{q}Up_{q} . Of course, these three lemmas do not cover all

possible symbols U for which the main asymptotic term of Tr 11 (pUp) as s\downarrow 0
can be found explicitly. For example, if U\geq C>0 on an open non‐empty subset of

\mathbb{R}^{2}
,

and

\displaystyle \lim_{|x_{\perp}|\rightarrow\infty}\frac{\ln(-\ln U(X_{\perp}))}{\ln|X_{\perp}|}=\infty,
then (2.5) and (2.7) easily imply that

1\displaystyle \leq\lim_{s\downarrow}\inf_{0}\frac{\mathrm{T}\mathrm{r}1_{(s,\infty)}(p_{q}Up_{q})}{(\ln|\ln s|)^{-1}|\ln s|}\leq\lim_{s\downarrow}\sup_{0}\frac{\mathrm{T}\mathrm{r}1_{(s,\infty)}(p_{q}Up_{q})}{(\ln|\ln s|)^{-1}|\ln s|}\leq\frac{ $\beta$}{ $\beta$-1}
for any  $\beta$\gg 1 . Letting  $\beta$\rightarrow\infty ,

we find that (2.7) again holds true.

§2.4. Asymptotics of  $\xi$(E;H, H_{0}) as E\rightarrow 2bq

Let V satisfy D. For x_{\perp}\in \mathbb{R}^{2},  $\lambda$\geq 0 ,
set

(2.9) W(x_{\perp}) :=\displaystyle \int_{\mathbb{R}}|V(X\perp, x_{3})|dx_{3},

\mathcal{W}_{ $\lambda$}=\mathcal{W}_{ $\lambda$}(x_{\perp}):=\left(\begin{array}{ll}
w_{11} & w_{12}\\
w_{21} & w_{22}
\end{array}\right),
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where

w_{11}:=\displaystyle \int_{\mathbb{R}}|V(X\perp, x_{3})|\cos^{2}(\sqrt{ $\lambda$}x_{3})dx_{3}, w_{22} :=\displaystyle \int_{\mathbb{R}}|V(X\perp, x_{3})|\sin^{2}(\sqrt{ $\lambda$}x_{3})dx_{3},
w_{12}=w_{21}:=\displaystyle \int_{\mathbb{R}}|V(X\perp, x_{3})|\cos(\sqrt{ $\lambda$}x_{3})\sin(\sqrt{ $\lambda$}x_{3})dx_{3}.

Unless V=0 almost everywhere, we have

rank  p_{q}Wp_{q}=\infty ,
rank  p_{q}\mathcal{W}_{ $\lambda$}p_{q}=\infty,  $\lambda$\geq 0.

If F_{j}(V; $\lambda$) , j=1 , 2, are two real non decreasing functionals of V , depending on  $\lambda$>0,
we write

F_{1}(V; $\lambda$)\sim F_{2}(V; $\lambda$) ,  $\lambda$\downarrow 0,

if for each  $\epsilon$\in(0,1) we have

F_{2}((1- $\epsilon$)V; $\lambda$)+O_{ $\epsilon$}(1)\leq F_{1}(V; $\lambda$)\leq F_{2}((1+ $\epsilon$)V; $\lambda$)+O_{ $\epsilon$}(1) .

We also use analogous notations for non increasing functionals F_{j}(V; $\lambda$) of V.

Theorem 2.1. [13, Theorems 3.1, 3.2] Let V satisfy \mathrm{D}_{0} ,
and V\geq 0 or V\leq 0 . Fix

q\in \mathbb{Z}_{+} . Then we have

(2.10)  $\xi$(2bq- $\lambda$;H, H_{0})=O(1) ,  $\lambda$\downarrow 0,

if V\geq 0 ,
and

(2.11)  $\xi$(2bq- $\lambda$;H, H_{0})\sim −Tr  1_{(2\sqrt{ $\lambda$},\infty)}(p_{q}Wp_{q}) ,  $\lambda$\downarrow 0,

if V\leq 0 . Moreover,

(2.12)  $\xi$(2bq+ $\lambda$;H, H_{0})\displaystyle \sim\frac{1}{ $\pi$} Tr \displaystyle \arctan(\frac{p_{q}\mathcal{W}_{ $\lambda$}p_{q}}{2\sqrt{ $\lambda$}}) ,  $\lambda$\downarrow 0,

if V\geq 0 ,
and

(2.13)  $\xi$(2bq+ $\lambda$;H, H_{0})\displaystyle \sim-\frac{1}{ $\pi$} Tr \displaystyle \arctan(\frac{p_{q}\mathcal{W}_{ $\lambda$}p_{q}}{2\sqrt{ $\lambda$}}) ,  $\lambda$\downarrow 0,

if V\leq 0.

Note that in the case q=0 asymptotic relation (2.11) concerns the distribution of

the discrete eigenvalues of the operator H with V\leq 0 near the origin which coincides

with the inmum of its essential spectrum. Results of this type have been known for a

long time, and could be found in:
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\bullet [42, 43, 45, 33, 22] in the case of a power‐like decay of  V ;

\bullet [36] in the case of an exponential decay of  V ;

\bullet [36, 30] in the case of compactly supported potentials  V.

Inserting the results of Lemmas 2.1, 2.2, or 2.3 into (2.11), (2.12), and (2.13), we could

obtain the main asymptotic term of the SSF as E\rightarrow 2bq . We omit here these explicit
formulae referring the reader to the original work (see [13, Corollary 3.1]), and prefer
to state here only the following intriguing

Corollary 2.1. [34] Let V satisfy \mathrm{D}_{0} ,
and V\leq 0 . Fix q\in \mathbb{Z}_{+} . Then

(2.14) \displaystyle \lim_{ $\lambda$\downarrow 0}\frac{ $\xi$(2bq+ $\lambda$;H,H_{0})}{ $\xi$(2bq- $\lambda$;H,H_{0})}=\frac{1}{2\cos\frac{ $\pi$}{ $\alpha$}}
if W satises the assumptions of Lemma 2.1, i.e. if W admits a power‐like decay with

decay rate  $\alpha$>2 ,
or

(2.15) \displaystyle \lim_{ $\lambda$\downarrow 0}\frac{ $\xi$(2bq+ $\lambda$;H,H_{0})}{ $\xi$(2bq- $\lambda$;H,H_{0})}=\frac{1}{2}
if W satises the assumptions of Lemma 2.2 or Lemma 2.3, i.e. if W decays exponen‐

tiallyl or has a compact support.

Relations (2.14)-(2.15) could be interpreted as generalized Levinson formulae. We

recall that the classical Levinson formula relates the number of the negative eigenvalues
of -\triangle+V with V which decays sufficiently fast at innity, and \displaystyle \lim_{E\downarrow 0} $\xi$(E;-\triangle+V, -\triangle)
(see the original work [28] or the survey article [38]).

§2.5. Sketch of the proof of Theorem 2.1

We start with a representation of the SSF due to A. Pushnitski [32, 8]. Assume

that V satises D. Then the norm limit

T(E) :=\displaystyle \lim_{ $\delta$\downarrow 0}|V|^{1/2}(H_{0}-E-i $\delta$)^{-1}|V|^{1/2}
exists for every  E\in \mathbb{R}\backslash 2b\mathbb{Z}+\cdot Moreover,  T(E) is compact, and 0\leq{\rm Im} T(E)\in S_{1} (see
[8, Lemma 4.2]). Assume in addition that \pm V\geq 0 . Then for E\in \mathbb{R}\backslash 2b\mathbb{Z}+\mathrm{w}\mathrm{e} have

 $\xi$(E;H, H_{0})=\displaystyle \pm\frac{1}{ $\pi$}\int_{\mathbb{R}} \mathrm{T}\mathrm{r}1_{(1,\infty)}(\mp({\rm Re} T(E)+t{\rm Im} T(E)))\frac{dt}{1+t^{2}}
lIn the case of exponential decay of W we should also suppose that V satises \mathrm{D} with m\perp>2 and

m3>2.
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(see [32, Theorem 1.2], [8, Subsection 3.3]).
The first important step in the proof of Theorem 2.1 is the estimate

(2.16) \displaystyle \pm $\xi$(E;H, H_{0})\sim\frac{1}{ $\pi$}\int_{\mathbb{R}} Tr1 (1,\displaystyle \infty)(\mp({\rm Re} T_{q}(E)+t{\rm Im} T_{q}(E)))\frac{dt}{1+t^{2}}, E\rightarrow 2bq,

where

T_{q}(E) :=\displaystyle \lim_{ $\delta$\downarrow 0}|V|^{1/2}(p_{q}\otimes I_{\Vert})(H_{0}-E-i $\delta$)^{-1}|V|^{1/2}
=\displaystyle \lim_{ $\delta$\downarrow 0}|V|^{1/2}(p_{q}\otimes(H_{\Vert}+2bq-E-i $\delta$)^{-1})|V|^{1/2}, E\neq 2bq.

If  E=2bq- $\lambda$ with  $\lambda$>0 ,
then T_{q}(E)=T_{q}(E)^{*} ,

and (2.16) implies

(2.17) \pm $\xi$(E;H, H_{0})\sim \mathrm{T}\mathrm{r}1_{(1,\infty)}(\mp T_{q}(E)) , E\rightarrow 2bq.

Moreover, we have T_{q}(E)\geq 0 ,
i.e. Tr 1_{(1,\infty)}(-T_{q}(E))=0 . Then (2.17) with the upper

sign implies

 $\xi$(E;H, H_{0})=O(1) , E\uparrow 2bq,

provided that V\geq 0 ,
i.e. we obtain (2.10).

Assume now that V\leq 0 . The second important step in the proof of Theorem 2.1 is the

estimate

(2.18) Tr 1_{(1,\infty)}(T_{q}(2bq- $\lambda$))\sim \mathrm{T}\mathrm{r}1_{(1,\infty)}(|V|^{1/2}(p_{q}\otimes S_{-}( $\lambda$))|V|^{1/2}) ,  $\lambda$\downarrow 0,

where S_{-}() denotes the operator with constant integral kernel \displaystyle \frac{1}{2\sqrt{ $\lambda$}} . Note that \displaystyle \frac{1}{2\sqrt{ $\lambda$}}
could be interpreted as the divergent part as  $\lambda$\downarrow 0 of the integral kernel

(2.19) \displaystyle \frac{e^{-\sqrt{ $\lambda$}|x_{3}-x_{3}'|}}{2\sqrt{ $\lambda$}} ,
X3, x_{3}'\in \mathbb{R},

of the resolvent (H_{\Vert}+ $\lambda$)^{-1} . Our next step requires the following abstract

Lemma 2.4. [3, Theorem 8.1.4] Let L be a linear compact operator acting be‐

tween two, possible different, Hilbert spaces. Then for each s>0 we have

Tr 1_{(s,\infty)}(L^{*}L)=\mathrm{T}\mathrm{r}1_{(s,\infty)}(LL^{*}) .

Applying Lemma 2.4 with appropriate L
,

we immediately find that

(2.20)

Tr 1_{(1,\infty)}(|V|^{1/2}(p_{q}\displaystyle \otimes S_{-}( $\lambda$))|V|^{1/2})=\mathrm{T}\mathrm{r}1_{(1,\infty)}(\frac{p_{q}Wp_{q}}{2\sqrt{ $\lambda$}})=\mathrm{T}\mathrm{r}1_{(2\sqrt{ $\lambda$},\infty)}(p_{q}Wp_{q}) .
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Putting together (2.17), (2.18), and (2.20), we obtain (2.11).
Let now  E=2bq+ $\lambda$ with  $\lambda$\downarrow 0 . Then the next important step is the estimate

\displaystyle \frac{1}{ $\pi$}\int_{\mathbb{R}} Tr 1_{(1,\infty)}(\displaystyle \mp({\rm Re} T_{q}(E)+t{\rm Im} T_{q}(E)))\frac{dt}{1+t^{2}}\sim\frac{1}{ $\pi$}\int_{\mathbb{R}} Tr 1_{(1,\infty)}(\displaystyle \mp t{\rm Im} T_{q}(E))\frac{dt}{1+t^{2}}
(2.21) =\displaystyle \frac{1}{ $\pi$} Tr \displaystyle \arctan({\rm Im} T_{q}(E))=\frac{1}{ $\pi$} Tr \arctan(|V|^{1/2}(p_{q}\otimes S+( $\lambda$))|V|^{1/2})
where s_{+}() is the operator with integral kernel \displaystyle \frac{\cos\sqrt{ $\lambda$}(x_{3}-x_{3}')}{2\sqrt{ $\lambda$}} , X3, x_{3}'\in \mathbb{R} . Applying
Lemma 2.4 with appropriate L

,
we get

(2.22) \displaystyle \frac{1}{ $\pi$} Tr \displaystyle \arctan(|V|^{1/2}(p_{q}\otimes S_{+}( $\lambda$))|V|^{1/2})=\frac{1}{ $\pi$} Tr \displaystyle \arctan(\frac{p_{q}\mathcal{W}_{ $\lambda$}p_{q}}{2\sqrt{ $\lambda$}}) .

Now the combination of (2.16), (2.21), and (2.22), yields (2.12)-(2.13) .

§2.6. Extensions of Theorem 2.1 to Pauli and Dirac operators

Theorem 2.1 admits extensions to Pauli and Dirac operators with non constant

magnetic fields (0,0, b) of constant direction. Here

b=b_{0}+\tilde{b},

b_{0}\neq 0 is a constant, and the function \tilde{b}:\mathbb{R}^{2}\rightarrow \mathbb{R} is such that the Poisson equation

\triangle\tilde{ $\varphi$}=\tilde{b}

has a solution \tilde{ $\varphi$}\in C_{\mathrm{b}}^{2}(\mathbb{R}^{2}) . In particular, b may belong to a fairly large class of periodic
or almost periodic functions of non zero mean value.

In the case of the Pauli operator, the role of the Landau levels is played by the origin.
The analogue of Theorem 2.1 could be found in [35]. Related results for negative energies

(when the SSF is proportional to the eigenvalue counting function) are contained in [23].
In the case of the Dirac operator, the role of the Landau levels is played by the points
\pm m where m>0 is the mass of the relativistic quantum particle. The analogue of

Theorem 2.1 could be found in [46].

§3. Resonances near the Landau levels

§3.1. Embedded eigenvalues of H

The singularity of the SSF as E\uparrow 0 in the case V\leq 0 has a simple explanation:
the existence of innitely many negative discrete eigenvalues of H accumulating at the

origin which coincides with the inmum of the essential spectrum of H . The explanation
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of the singularities of the SSF at the higher Landau levels is much less transparent.

There is no evidence that in the general case these singularities are due (only) to the

accumulation at the Landau levels of embedded eigenvalues of H . That is why the

natural conjecture is that the singularities of the SSF at the higher Landau levels are

related to the accumulation of resonances of H at these levels; we discuss this possible
accumulation in the several following subsections.

Our next theorem however stresses the fact that the magnetic Hamiltonians in the

presence of an appropriate symmetry are much apter to have embedded eigenvalues
than the non magnetic ones.

Theorem 3.1. Let the operator V(H_{0}+1)^{-1} be compact in L^{2}(\mathbb{R}^{3}) . Assume

moreover, that V is axisymmetric, i.e. it depends only on  $\rho$:=|x_{\perp}| and X3.

(i) Suppose that V satises

(3.1) -2b<V(x)\leq-C1_{K}(x) , x\in \mathbb{R}^{3},

where C>0 ,
and K\subset \mathbb{R}^{3} is an open non empty set. Then each interval

(2b(q-1), 2bq) , q\in \mathbb{N},

contains at least one (embedded) eigenvalue of H.

(ii) Suppose now that V satises

(3.2) -2b<V(x)\leq-C1_{K^{-}}(X_{\perp})\langle x_{3}\rangle^{-m_{3}}, x=(X\perp, x_{3})\in \mathbb{R}^{3},

where C>0, m_{3}\in(0,2) ,
and \tilde{K}\subset \mathbb{R}^{2} is an open non empty set. Then each interval

(2b(q-1), 2bq) , q\in \mathbb{N},

contains a sequence of (embedded) eigenvalues of H which converges to 2bq.

The first part of the theorem is contained in [1, Theorem 5.1], and the simple
modications needed for the second part are briey outlined in [34, Subsection 3.1].
Nonetheless, due to some imprecise statements of the results of Theorem 3.1 which

appeared in [13, p. 385] and [9, p. 3457], and were already commented in [34, Subsection

3.1], we include in the Appendix a detailed sketch of the proof of Theorem 3.1.

On the contrary, it is expected that H has no (embedded) eigenvalues in the case

V\geq 0 . The fact that the SSF rests bounded below each Landau level (see (2.10))
conrms this conjecture. It has been proved for small V . More precisely, we have

Theorem 3.2. [5, Proposition 7] Let V\geq 0 satisfy \mathrm{D} with m\perp>0 and m_{3}>2.

There exists $\kappa$_{0}>0 such that, for any 0\leq $\kappa$\leq$\kappa$_{0}, H_{0}+ $\kappa$ V has no (embedded)
eigenvalues in \mathbb{R}\backslash 2b\mathbb{Z}_{+}.
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Moreover, without the smallness assumption, [6, Corollary 6.7] states that the

(embedded) eigenvalues of H form a discrete set for generic potentials V\geq 0 satisfying

\mathrm{D}_{\exp} . Nevertheless, the absence of eigenvalues for general non‐negative V remains an

open problem.

§3.2. Meromorphic continuation of the resolvent of H and denition of

resonances

As mentioned in the previous subsection, it is expected that in the generic case

the singularities of the SSF described in Theorem 2.1 are related to the accumulation

of the resonances of H at the Landau levels. The first step in this investigation is, of

course, the denition of the resonances themselves. As is generally accepted nowadays,
we will dene these resonances as the poles of a meromorphic extension of the resolvent

(H-z)^{-1} to an appropriate Riemann surface \mathcal{M} . For z\in \mathbb{C}+:=\{ $\zeta$\in \mathbb{C}|{\rm Im} $\zeta$>0\} we

have

(H_{0}-z)^{-1}=\displaystyle \sum_{q=0}^{\infty}p_{q}\otimes(H_{\Vert}+2bq-z)^{-1}
Recall that the resolvent (H_{\Vert}-z)^{-1} with z\in \mathbb{C}+ admits the integral kernel

-\displaystyle \frac{e^{i\sqrt{z}|x_{3}-x_{3}'|}}{2i\sqrt{z}} ,
X3, x_{3}'\in \mathbb{R}, {\rm Im}\sqrt{z}>0,

(cf. (2.19)). Hence, for any q\in \mathbb{Z}_{+} the operator p_{q}\otimes(H_{\Vert}+2bq-z)^{-1} admits a standard

analytic extension to the two‐sheeted Riemann surface of the square root \sqrt{z-2bq} which

however depends on q . Therefore, we dene \mathcal{M} as the innite‐sheeted Riemann surface

of the countable family

(3.3) \{\sqrt{z-2bq}\}_{q\in \mathbb{Z}_{+}}
Let \mathcal{P}_{G}:\mathcal{M}\rightarrow \mathbb{C}\backslash 2b\mathbb{Z}_{+} be the corresponding covering.
The properties of the Riemann surface \mathcal{M} have been studied in detail in [5, Section

2]. Similar innite‐sheeted Riemann surfaces appearing in the spectral and resonance

theory for perturbed waveguides have been introduced e.g. in [20, 12, 10]. In this case

the family analogous to (3.3) is

\{\sqrt{z-$\mu$_{q}}\}_{q\in \mathbb{Z}_{+}}
where $\mu$_{q}, q\in \mathbb{Z}_{+} ,

are the distinct eigenvalues of the transversal operator which in the

case of a waveguide is lower bounded, and has a discrete spectrum.

The global structure of the Riemann surface \mathcal{M} is quite complicated and may make

difficult the analysis of the resonances of H . The investigation of their asymptotic
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distribution near a fixed Landau level 2bq, q\in \mathbb{Z}_{+} ,
however is facilitated by the fact

that in this case we are concerned with the local properties of \mathcal{M} ,
and in a domain

analytically diffeomorphic to a vicinity of 2bq ,
the surface \mathcal{M} resembles the two‐sheeted

Riemann surface of the square root \sqrt{z-2bq} . Namely, if we put

D($\lambda$_{0},  $\epsilon$):=\{ $\lambda$\in \mathbb{C}|| $\lambda-\lambda$_{0}|< $\epsilon$\}, D($\lambda$_{0},  $\epsilon$)^{*}:=\{ $\lambda$\in \mathbb{C}|0<| $\lambda-\lambda$_{0}|< $\epsilon$\},

for $\lambda$_{0}\in \mathbb{C} and  $\epsilon$>0 ,
then there exists a domain D_{q}^{*}\subset \mathcal{M} ,

and an analytic bijection

(3.4) D(\mathrm{o}, \sqrt{2b})^{*}\ni k\mapsto z_{q}(k)\in D_{q}^{*}\subset \mathcal{M},

such that \mathcal{P}_{G}(z_{q}(k))=2bq+k^{2}.
For N>0 denote by \mathcal{M}_{N} the part of \mathcal{M} where {\rm Im}\sqrt{z-2bq}>-N for all q\in \mathbb{Z}_{+}.
Then, \displaystyle \bigcup_{N>0}\mathcal{M}_{N}=\mathcal{M}.

Proposition 3.1. [5, Propositions 1,2] (i) For each N>0 the operator‐valued
function

(H_{0}-z)^{-1}:e^{-N\langle x_{3}\rangle}L^{2}(\mathbb{R}^{3})\rightarrow e^{N\langle x_{3}\rangle}L^{2}(\mathbb{R}^{3})

has an analytic extension from \mathbb{C}+\mathrm{t}\mathrm{o}\mathcal{M}_{N}.

(ii) Suppose that V satises Dxp with m\perp>0 . Then for each N>0 the operator‐

valued function

(H-z)^{-1}:e^{-N\langle x_{3}\rangle}L^{2}(\mathbb{R}^{3})\rightarrow e^{N\langle x_{3}\rangle}L^{2}(\mathbb{R}^{3}) ,

has a meromorphic extension from \mathbb{C}+\mathrm{t}\mathrm{o}\mathcal{M}_{N} whose poles and residue ranks do not

depend on N.

We dene the resonances of H as the poles of the meromorphic extension of the

resolvent (H-z)^{-1} ,
and denote their set by {\rm Res}(H) . For z_{0}\in{\rm Res}(H) dene its

multiplicity by

mult (z_{0}) := rank \displaystyle \frac{1}{2i $\pi$}\int_{ $\gamma$}(H-z)^{-1}dz,
where  $\gamma$ is a circle centered at  z_{0} and run over in the clockwise direction, such that \overline{\mathrm{I}\mathrm{n}\mathrm{t} $\gamma$}
contains no elements of {\rm Res}(H)\backslash \{z_{0}\}.

§3.3. Resonance‐free regions and regions with innitely many resonances

One of the main technical achievements of our article [5] was the identication

of the resonances (together with their multiplicities) as the zeroes of an appropriate
2‐determinant. We recall that for a Hilbert‐Schmidt operator T the 2‐determinant is

dened as

\det_{2}(I+T)=\det(I+T)e^{-T}
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{\rm Im} \mathrm{k} {\rm Im} \mathrm{k}

\mathrm{R}\mathrm{e}\mathrm{k} {\rm Re} \mathrm{k}

Figure 1. Resonances near a Landau level for V of denite sign, concentrated near the

semi‐axis k=-i(sgnV) (0, +\infty) .

Proposition 3.2. [5, Proposition 3] Suppose that V satises Dxp with m\perp>2.

Introduce \mathcal{T}_{V}(z) ,
the analytic extension from \mathbb{C}+\mathrm{t}\mathrm{o}\mathcal{M}_{N} ,

of

(3.5) \mathcal{T}_{V}(z) := sign V |V|^{1/2}(H_{0}-z)^{-1}|V|^{1/2}

Then z_{0}\in \mathcal{M} is a resonance of H if and only if‐1 is an eigenvalue of \mathcal{T}_{V}(z_{0}) . Moreover,

(3.6) \det_{2}((H-z)(H_{0}-z)^{-1})=\det_{2}(I+\mathcal{T}_{V}(z))

has an analytic continuation from \mathbb{C}+\mathrm{t}\mathrm{o}\mathcal{M} whose zeroes are the resonances of H
,

and

if z_{0} is a resonance, then there exists a holomorphic function f(z) ,
for z close to z_{0} ,

such

that f(z_{0})\neq 0 and

\det_{2}(I+\mathcal{T}_{V}(z))=(z-z_{0})^{\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}(z_{0})}f(z) .

In the case of a trace‐class perturbation H-H_{0} the determinant \det((H-z)(H_{0}-
z)^{-1}) , z\in \mathbb{C}+ ,

coincides with the classical perturbation determinant introduced by M.

G. Krein in [26] (see also [17, Section IV.3]). In the case of Hilbert‐Schmidt perturba‐
tions H-H_{0}\in S_{2} (or relatively Hilbert‐Schmidt perturbations (H-H_{0})(H_{0}-z)^{-1}\in
 S_{2}) the (generalized) perturbation 2‐determinants were introduced by L. S. Koplienko
in [24] where he considered as well the whole Schatten‐von Neumann scale H-H_{0}\in S_{r}

(or (H-H_{0})(H_{0}-z)^{-1}\in S_{r} ), r\geq 1.

The identication of the resonances of H as zeroes of the 2‐determinant (3.6) al‐

lowed us to obtain in [5] various local estimates of the number of resonances near any
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fixed Landau level 2bq, q\in \mathbb{Z}_{+} . As a typical and important example, we state be‐

low Theorem 3.3. It shows that if V is small, and its sign is fixed, then the possible
resonances of H near 2bq , parametrized according to (3.4), are concentrated in sectors

centered at 2bq , adjoining the imaginary axis, and depending on the sign of V ,
as illus‐

trated in Figure 1. Moreover, for rapidly decaying V ,
the number of the resonances of

H in each of these sectors is innite.

Theorem 3.3. [5, Theorem 2] Let 0<r_{0}<\sqrt{2b} and q\in \mathbb{Z}_{+} . Assume V satises

Dxp with m\perp>2 ,
and is of denite sign J. Then for any  $\delta$>0 there exists x_{0}>0

such that:

(i) H_{0}+xV has no resonances in

{z=z_{q}(k)|0<|k|<r_{0} , −JIm k\displaystyle \leq\frac{1}{ $\delta$} je k| }

for any 0\leq x\leq x_{0}.

(ii) If the function W dened in (2.9), satises \ln W(X_{\perp})\leq-C\langle X_{\perp}\rangle^{2} ,
then for any

0<x\leq x_{0} ,
the operator H_{0}+xV has an innite number of resonances in

{z=z_{q}(k)|0<|k|<r_{0} , −JIm k>\displaystyle \frac{1}{ $\delta$} je k| }.

In the above result, the assumption m\perp>2 is not necessary. It was made in [5] in

order to dene the 2‐determinant, but using the notion of index (see Subsection 3.5),
Theorem 3.3 can be proved also for m\perp>0.

§3.4. Asymptotics of the resonance counting function

In spite of the undisputable usefulness of the methods developed and applied in

[5], they led to a loss of sharpness in some of the crucial estimates which hindered us

to obtain the main asymptotic term of the number of the resonances of H lying on an

annulus centered at the Landau level 2bq, q\in \mathbb{Z}_{+} ,
as the inner radius of the annulus

tends to zero. This result central in the theory of the resonances of H
,

was obtained

recently in [6] using methods different from those of [5], and is contained below in

Theorem 3.4.

For q\in \mathbb{Z}_{+} and z\in D(0, \sqrt{2b}) set

\displaystyle \mathcal{A}_{q}(z):=J|V|^{1/2}(\frac{1}{2}(p_{q}\otimes e^{z|x_{3}-x_{3}'|})-z\sum_{j\neq q}(p_{j}\otimes(H_{\Vert}+2b(j-q)+z^{2})^{-1}))|V|^{1/2}
Note that for q\in \mathbb{N} and k\in D(0, \sqrt{2b})^{*} we have

(3.7) I+\displaystyle \mathcal{T}_{V}(z_{q}(k))=I-\frac{\mathcal{A}_{q}(ik)}{ik},
the operator‐valued function \mathcal{T}_{V}(z) being dened in (3.5). Let $\Pi$_{q} be the orthogonal

projection onto \mathrm{K}\mathrm{e}\mathrm{r}\mathcal{A}_{q}(0) .
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Theorem 3.4. [6, Theorem 6.5] Let V satisfy Dxp with m\perp>0 and have a

denite sign J =\pm 1 . Let the function W dened in (2.9) satisfy the assumptions of

Lemma 2.1, 2.2, or 2.3. Fix q\in \mathbb{Z}_{+} ,
and assume that I-\mathcal{A}_{q}'(0)$\Pi$_{q} is invertible. Then

the conclusions of Theorem 3.3 hold for r_{0} small enough and we have

\displaystyle \sum_{z_{q}(k)\in{\rm Res}(H);r<|k|<r_{0}}
mult (z_{q}(k))=\mathrm{T}\mathrm{r}1_{(2r,\infty)}(p_{q}Wp_{q})(1+o(1))

as r\downarrow 0.

A sketch of the proof of Theorem 3.4 can be found in the next subsection. Here we

make some brief comments on its hypotheses as well on some related results.

First, the assumption that I-\mathcal{A}_{q}'(0)$\Pi$_{q} is invertible is essential and does not have a

purely technical character. As shown in [6, Section 7], abstract results close by spirit to

Theorem 3.4 may cease to be valid if this assumption is canceled. On the other hand, it

holds true for generic potentials V because it is satised for gV provided that g\in \mathbb{R} is

not in a given discrete set (1/g has to be distinct from the eigenvalues of the compact

operator \mathcal{A}_{q}'(0)$\Pi$_{q} ). A simple sufficient condition is that the norm \Vert V\Vert_{L^{\infty(\mathbb{R}^{3})}} is small

enough.
As explained at the end of Subsection 2.3 the assumptions of Lemma 2.1, 2.2, or 2.3

could be replaced by more general ones. We stick to these assumptions of the sake of a

coherent exposition of the article.

Theorem 3.4 has been extended recently by Sambou in [39] to the setting of Pauli and

Dirac Hamiltonians with non constant magnetic fields. In the case of the Pauli (resp.,
Dirac) operator, Sambou obtained the main asymptotic term of the resonance counting
function for an annulus centered at the origin (resp., for annuli centered at \pm m ). The

class of the magnetic fields considered in [39] is quite close to the one described in

Subsection 2.6 above.

In a more general context, Theorem 3.4 belongs to a large group of results concerning the

asymptotic behavior of various resonance counting functions. Among the best known

problems of this type, notorious for its hardness, is the problem of finding the first

asymptotic term as  r\rightarrow\infty of the number  N(r) of the resonances lying on the disk

\{z\in \mathbb{C}||z|<r\} for the operator -\triangle+V with, say, compactly supported V ,
self‐

adjoint in L^{2}(\mathbb{R}^{n}) , n\geq 1 . Actually, the first asymptotic term as  r\rightarrow\infty of  N(r) is

known in the general case only if n=1 . Then we have

(3.8) N(r)=\displaystyle \frac{2a}{ $\pi$}r(1+o(1)) , r\rightarrow\infty,
where a is the diameter (not the Lebesgue measure!) of the support of V (see [49, 15

Hence, asymptotic relation (3.8) is not of Weyl type. In the case n\geq 3, n odd, only

sharp upper bounds of N(r) are known in the general case (see e.g. [50, 47, 44]). The
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main asymptotic term of N(r) is known only in the exceptional cases when V is radial

and satises some additional properties (see [50, 44 again this main term is not of

Weyl type. Note that lower bounds for generic perturbations are also known (see for

instance [11]) and recently Sjöstrand [41] obtained a probabilistic Weyl law for random

perturbations.
For more information on the asymptotics of N(r) as  r\rightarrow\infty

,
we refer the reader to the

evolving lecture notes [51].

§3.5. Sketch of the proof of Theorem 3.4

In order to outline the proof of Theorem 3.4, we need the following abstract results.

Let \mathcal{D} be a domain of \mathbb{C} containing 0 ,
and let \mathcal{H} be a separable Hilbert space. Consider

the analytic function

A:\mathcal{D}\rightarrow S_{\infty}(\mathcal{H}) .

Let  $\Pi$(A) be the orthogonal projection onto \mathrm{K}\mathrm{e}\mathrm{r}A(0) .

In the sequel we will suppose that the following assumptions are fullled:

\bullet  C_{1} : The operator A(0) is self‐adjoint;

\bullet  C_{2} : The operator I-A'(0)(A) is invertible.

Let  $\Omega$\subset \mathcal{D}\backslash \{0\} . Dene the characteristic values of I-A(z)/z on  $\Omega$ as the points  z\in $\Omega$

for which the operator  I-A(z)/z is not invertible. We will denote the characteristic

values of I-A(z)/z on  $\Omega$ by \mathcal{Z}_{A}( $\Omega$) . By C_{1} and C_{2} the set \mathcal{Z}_{A}( $\Omega$) is discrete. For

z_{0}\in \mathcal{Z}_{A}( $\Omega$) dene its multiplicity by

Mult(z) :=\displaystyle \frac{1}{2 $\pi$ i} Tr \displaystyle \int_{ $\gamma$}(I-\frac{A(z)}{z})'(I-\frac{A(z)}{z})^{-1}dz
where  $\gamma$ is an appropriate circle centered at  z_{0}.

Proposition 3.3. [6, Corollary 3.4] Assume C_{1} and C_{2} . Suppose that the origin is

an accumulation point of \mathcal{Z}_{A}(\mathcal{D}\backslash \{0\}) . Then we have

|{\rm Im} z_{0}|=o(|z_{0}|) , z_{0}\in \mathcal{Z}_{A}(\mathcal{D}\backslash \{0\}) ,

as z_{0}\rightarrow 0 . If, moreover, \pm A(0)\geq 0 ,
then \pm{\rm Re} z_{0}\geq 0 for z_{0}\in \mathcal{Z}_{A}(\mathcal{D}\backslash \{0\}) with |z_{0}|

small enough.

Set

\mathcal{N}_{A}() := \displaystyle \sum Mult(z):
 z_{0}\in \mathcal{Z}_{A}( $\Omega$)
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If @  $\Omega$ is sufficiently regular, and \mathcal{Z}_{A}() \cap@ $\Omega$=\emptyset ,
then we have

\displaystyle \mathcal{N}_{A}( $\Omega$)=\mathrm{i}\mathrm{n}\mathrm{d}_{\partial $\Omega$}(I-\frac{A(z)}{z}) :=\displaystyle \frac{1}{2 $\pi$ i} Tr \displaystyle \int_{\partial $\Omega$}(I-\frac{A(z)}{z})'(I-\frac{A(z)}{z})^{-1}dz.
The index \displaystyle \mathrm{i}\mathrm{n}\mathrm{d}_{\partial $\Omega$}(I-\frac{A(z)}{z}) plays a central role in the proof of Theorem 3.4. More

information about its properties could be found in [19], [18, Section 4], and [6, Section

2] (see also [41] where the notion of index allows to dene generalized determinants).
For  0<a<b<\infty and  $\theta$>0 dene the domain

(3.9) C_{ $\theta$}(a, b) :=\{x+iy\in \mathbb{C}|a<x<b, |y|< $\theta$ x\}.

Proposition 3.4. [6, Corollary 3.11] Assume C_{1} and C_{2} . Suppose moreover that

Tr 1_{(r,\infty)}(A(0))= $\Phi$(r)(1+o(1)) , r\downarrow 0,

where  $\Phi$ satises  $\Phi$(r)\rightarrow\infty as  r\downarrow 0 ,
and

(3.10)  $\Phi$(r(1\pm $\delta$))= $\Phi$(r)(1+o(1)+O( $\delta$)) , r\downarrow 0,

for each sufficiently small  $\delta$>0 . Then we have

\mathcal{N}_{A}(C_{ $\theta$}(r, 1))= $\Phi$(r)(1+o(1)) , r\downarrow 0,

for any  $\theta$>0.

It is easy to check that the functions  $\Phi$(r)=Cr^{- $\gamma$},  $\Phi$(r)=C|\ln r|^{ $\gamma$} ,
or  $\Phi$(r)=

C\displaystyle \frac{|\ln r|}{\ln|\ln r|} ,
with some  $\gamma$, C>0 , satisfy asymptotic relation (3.10). Hence the functions

$\psi$_{ $\alpha$}, $\varphi$_{ $\beta$} ,
and $\varphi$_{\infty} dened respectively in (2.4), (2.6), and (2.8), satisfy it as well.

Now we are in position to prove Theorem 3.4. By (3.7) we have that z_{q}(k)\in{\rm Res}(H) if

and only if ik is a characteristic value of I-\mathcal{A}_{q}(z)/z . Moreover,

mult (z_{q}(k))= Mult (ik):

By Proposition 3.3 with A=\mathcal{A}_{q},

\{z_{q}(k)\in{\rm Res}(H)|r<|k|<r_{0}\}=\{z_{q}(k)\in{\rm Res}(H)|\pm ik\in C_{ $\theta$}(r, r_{0})\}+O(1) , r\downarrow 0.

Now the claim of Theorem 3.4 follows from Proposition 3.4 with A=\mathcal{A}_{q} combined

with Lemmas 2.1, 2.2, and 2.3, since, by Lemma 2.4 with appropriate L
,

we have

Tr 1_{(r,\infty)}(\mathcal{A}_{q}(0))=\mathrm{T}\mathrm{r}1_{(2r,\infty)}(p_{q}Wp_{q}) .

§3.6. Link between the SSF and the resonances

The spectral shift function and the resonances are usually connected by the Breit‐

Wigner formula. This formula represents the derivative of the SSF as a sum of a har‐

monic measure associated to the resonances, and the imaginary part of a holomorphic
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function. When the resonances are close to the real axis, the Breit‐Wigner approxima‐
tion can be exploited to obtain asymptotic expansions of the SSF (see e.g. [7]). On the

contrary, it can be used to localize resonances as in [31, Appendix]. Eventually, it can

imply local trace formulas in the spirit of [40].

Theorem 3.5. [5, Theorem 3] Let V satises Dxp with m\perp>2 . Then for q\in \mathbb{Z}_{+}
and  $\epsilon$,  $\theta$>0 ,

there exist r_{0}>0 and functions  g\pm r) holomorphic in \pm C_{ $\theta$}(1 ,
2 ) ,

such

that, for  $\lambda$\in r[1+ $\epsilon$, 2- $\epsilon$] ,
we have

$\xi$'(2bq\displaystyle \pm $\lambda$;H, H_{0})=\sum_{2bq\pm w\in{\rm Res}(H)}\frac{{\rm Im} w}{ $\pi$| $\lambda$-w|^{2}}-\sum_{2bq\pm w\in{\rm Res}(H)} $\delta$( $\lambda$-w)+\frac{1}{r}{\rm Im} g'\pm(\frac{ $\lambda$}{r}, r) ,

w\in rC_{ $\theta$}(1,2)\backslash \mathbb{R} w\in r[1,2]

where g\pm(z, r) satises the estimate

g_{\pm}(z, r)=O(|\ln r|r^{-\frac{1}{m\perp}}) ,

uniformly with respect to 0<r<r_{0} and z\in C_{ $\theta$}(1+ $\epsilon$, 2- $\epsilon$) .

A more general statement and some applications of this formula can be found in

[5]. Note that this Breit‐Wigner approximation implies that the SSF is analytic outside

of the resonances (including the embedded eigenvalues) and their complex conjugate.
We close this subsection with the remark that we are not able yet to make the link

between Theorem 2.1 and Theorem 3.4 using Theorem 3.5 for V of denite sign. We

believe that such a result would shed additional light on the relation between the SSF

threshold singularities and the resonances of H
,

and hope to obtain it in a future

work. Nevertheless, we can formally deduce the localization of the resonances from the

asymptotics of the SSF. Indeed, for V\leq 0 ,
the singularities of the main term in (2.11)

are the numbers 2bq+k^{2} with 2k\in i $\sigma$(p_{q}Wp_{q}) ,
which is in agreement with Theorem

3.4. For V\geq 0 ,
the uniform bound in (2.10) should be explained by some cancelations

in the Breit‐Wigner formula due to the particular form of the Riemann surface \mathcal{M} and

the localization of the resonances. Finally, the leading terms of (2.12) and (2.13) have

singularities at 2bq+k^{2} with 2k\in\pm i $\sigma$(p_{q}Wp_{q}) which can be explained by Theorem 3.4

and the symmetry of the singularities of the SSF with respect to the real axis.

§4. Appendix: Sketch of the proof of Theorem 3.1

Passing to cylindrical coordinates (;  $\varphi$, x_{3}) ,
and decomposing  u\in Dom  H_{0} into a

Fourier series with respect to  $\varphi$ ,
we find that the operator  H_{0} is unitarily equivalent to

the orthogonal sum \oplus_{m\in \mathbb{Z}}H_{0}^{(m)} where

H_{0}^{(m)}:=-\displaystyle \frac{1}{ $\rho$}\frac{\partial}{\partial $\rho$} $\rho$\frac{\partial}{\partial $\rho$}+(b $\rho$+\frac{m}{ $\rho$})^{2}-\frac{\partial^{2}}{\partial x_{3}^{2}}-b
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is self‐adjoint in L^{2}(;  $\rho$ d $\rho$ dx_{3}) ,
while H is unitarily equivalent to \oplus_{m\in \mathbb{Z}}H^{(m)} with

H^{(m)} :=H_{0}^{(m)}+V(; x_{3}) . We have

 $\sigma$(H_{0}^{(m)})=[2bm_{+}, \infty) , m\in \mathbb{Z}_{+},
where m+:=\displaystyle \max\{m, 0\} is the positive part of m . Fix q\in \mathbb{N} . Since the operator V(H_{0}+
1)^{-1} is compact in L^{2}(\mathbb{R}^{3}) ,

the operator V(H_{0}^{(q)}+1)^{-1} is compact in L^{2}(;  $\rho$ d $\rho$ dx_{3}) .

Therefore, the eigenvalues of the operator H^{(q)} lying on the interval (2b(q-1), 2bq) are

discrete, and at the same time they are embedded eigenvalues of the \backslash total� operator H

since $\sigma$_{\mathrm{e}\mathrm{s}\mathrm{s}}(H)=[0, \infty ). Let us estimate from below the quantity Tr  1_{(2b(q-1),2bq)}(H^{(q)}) .

By the lower bounds in (3.1)-(3.2) we have

Tr 1_{(2b(q-1),2bq)}(H^{(q)})= Tr 1_{(-\infty,2bq)}(H^{(q)}) .

Evidently, it suffices to show that

(4.1) Tr 1_{(-\infty,2bq)}(H^{(q)})\geq 1
in order to prove the first part of Theorem 3.1. Moreover, since the spectrum of H^{(q)}

on (; 2bq) is discrete and can accumulate only at 2bq ,
it suffices to show that

(4.2) Tr  1_{(-\infty,2bq)}(H^{(q)})=\infty
in order to prove the second part of this theorem. Let $\varphi$_{q} : \mathbb{R}_{+}\rightarrow \mathbb{R} be an eigenfunction
of the transversal part of the operator H^{(q)} satisfying

-\displaystyle \frac{1}{ $\rho$}\frac{d}{d $\rho$}( $\rho$\frac{d$\varphi$_{q}}{d $\rho$})+(b $\rho$+\frac{q}{ $\rho$})^{2}$\varphi$_{q}-b$\varphi$_{q}=2bq$\varphi$_{q},
and \displaystyle \int_{0}^{\infty}$\varphi$_{q}^{2} $\rho$ d $\rho$=1 . On \mathrm{H}^{2}(\mathbb{R}_{x_{3}}) introduce the 1\mathrm{D} Schrödinger operator h_{q}:=-\displaystyle \frac{d^{2}}{dx_{3}^{2}}+v_{q}
where

v_{q}(x_{3}):=\displaystyle \int_{0}^{\infty}V( $\rho$, x_{3})$\varphi$_{q}( $\rho$)^{2} $\rho$ d $\rho$, X3\in \mathbb{R}.
Restricting the quadratic form of the operator H^{(q)} onto the subspace

\{u:\mathbb{R}_{+}\times \mathbb{R}\rightarrow \mathbb{C}|u( $\rho$, x_{3})=$\varphi$_{q}( $\rho$)w(x_{3}), w\in \mathrm{H}^{1}(\mathbb{R})\},

we find that the mini‐max principle implies

(4.3) Tr 1_{(-\infty,2bq)}(H^{(q)})\geq \mathrm{T}\mathrm{r}1_{(-\infty,0)}(h_{q}) .

Further, we could assume without loss of generality that the set K in (3.1) is bounded

and axisymmetric, while the set \tilde{K} in (3.2) is radially symmetric. By the upper bounds

in (3.1)-(3.2) and the mini‐max principle, we have

(4.4) Tr 1_{(-\infty,0)}(h_{q})\geq \mathrm{T}\mathrm{r}1_{(-\infty,0)}(\overline{h_{q}})
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where \overline{h_{q}} :=-\displaystyle \frac{d^{2}}{dx_{3}^{2}}+\overline{v_{q}} ,
and

\overline{v_{q}}(x_{3}):=-C\left\{\begin{array}{l}
\int_{0}^{\infty}1_{K}(_{;} x_{3})$\varphi$_{q}( $\rho$)^{2} $\rho$ d $\rho$ \mathrm{i}\mathrm{f} (3.1) \mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s} \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e};\\
\langle x_{3}\rangle^{-m_{3}}\int_{0}^{\infty}1_{K^{-}}( $\rho$)$\varphi$_{q}( $\rho$)^{2} $\rho$ d $\rho$ \mathrm{i}\mathrm{f} (3.2) \mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s} \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e};
\end{array}\right. X3\in \mathbb{R}.

Now note that the operator \overline{h_{q}} has at least one negative eigenvalue if (3.1) holds true

(see e.g. [1, Lemma 5.2]), and it has an innite sequence of negative discrete eigenvalues

accumulating at the origin if (3.2) holds true (see e.g. [37, Theorem XIII.82]). Therefore,
estimates (4.1)-(4.2) now follow from (4.3)-(4.4) .
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