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Abstract

We discuss several aspects of discrete bilinear equations of the following two types.

1. Type A equation

[z1 exp(D1) + z2 exp(D2) + z3 exp(Ds)]7 - 7 = 0,
21+ 22+ 23 = 0.

2. Type B equation

[21 exp(D1) + 22 exp(D2) + 23 exp(D3) + z0 exp(Do)]7 - 7 = 0,
z1+22+234+20=0, D14+ Do+ D3+ Dy =0.

§1. Preliminaries

§1.1. Parameter Transformation

We have Type A equation
[216P" 4 20eP2 4 2z3eP2)7 -7 =0, (1)

under the condition z; + z9 + 23 = 0.
Equation (1) is transformed into a bilinear form of the discrete KP equation type,

[a(b—c)ePt +b(c — a)eP? 4 c(a — b)eP?)r -7 =0, (2)

through the transformation of the parameters,
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and the discrete KP type equation is trasformed into Type A equation through the same
transformation of the parameters.

On the other hand the discrete BKP equation by Miwa
(@+b)a+c)b—a)r(l+1,mn)r(l,m+1,n+1)
+b+c)b+a)(c—a)r(l,m+1,n)T(l+1,m,n+1)

+(c+a)(c+b)(a—b)T(l,mn+ )7l +1,m+1,n)

+a—-0)(b—c)c—a)r(l,m,n)T(l+1,m+1,n+1)=0, (3)
can not be transformed, through any parameter transformation, into Type B equation
[216P1 4 20eP2 + 23eP2 + 29eP0)7 - 7 = 0, (4)
z21+2204+23+20=0 and D;+ Dy + D3+ Dy =0. (5)

However Typ B equation is easily transformed into the discrete BKP equation through
the parameter transformation,

z1=(a+b)(a+c)(b—a), z2=(b+c)(b+a)(c—a), (6)
z3=(c+a)(c+b)(a—b), zp=(a—0b)(b—c)(c—a) (7)

and the coordinates transformation, which will be discussed in the next subsection.

§1.2. Coordinates transformation I
We define the bilinear operators expd(D;),j = 1,2,---, operating on an ordered
pair of f and g,
exp 6(Dj) f(ki, ko, -+ kjv) - glhr ko, Ky, o)
:f(k17k27"'7kj+17"')'g(k17k27"'7kj_17"')7 fOI‘jzl,Q,"'. (8)

where § being a parameter.
Equation (8) is reduced, in the small limit of § to,

_of Jg .
D;f-g= 8_kjg 8—]%7 Jj=12,---. (9)

We consider a coordinates transformation among discrete variables, {ly,l2,l3,...} and
{k1, ko, ks,...},
li = a1k + bika + c1ks,
l2 = azky + baka + coks,
l3 = asky + bska + c3ks,
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where a;, b;, ¢c; for 1 = 1,2, 3 are constant.
The coordinates transformation gives

B 5.9
o~ 20y
B 5.9
o ~ 231y
0 N, 0
Oks <= " ol;’

Accordingly we find the bilinear operators are transformed into the following form

D, = Dy, = a1Dy, +asDy, + asDy,,
D2 Dkz_lel]_ +b2Dl2 +b3Dl37
D5 = Dk3 = ClDll + Cng2 + C3Dl3

Hence Eq.(1),
[a(b — ¢) exp(D1) + b(c — a) exp(D2) + ¢(a — b) exp(D3)]T - 7 = 0. (10)
is transformed into the discrete KP equation,

la(b— ¢) exp[%(Dl Dy — Dy)] + b(c — a) exp[%(—Dl + Dy — D)

1
+c(a —b) eXp[E(—Dl — Dy, + D) -7 =0, (11)
where we put D11 = Dl,Dl2 =Dy, D, = D,, and a1 = %,ag = —%,ag = —%,bl =
s.ba=35,bs=—3,c1=—3,c0=—%,c3=3.

Equatlon(ll) is expressed without using the bilinear operators by

alb—c)yr(l+1,m,n)r(l,m+1,n+1)+
bc—a)r(l,m+1,n)r(l+1,m,n+1)+
cla—=b)r(l,m,n+1)7(l+1,m+1,n) =0, (12)

which is the discrete KP equation.
§1.3. Gauge transformation I.
The following bilinear equation

[216 1 —|— 22€D2 —|— Z3€D3 —|— 246 ] (kl, kQ, kg, k4) (kl, kQ, kg, k4) = 0, (13)
21+ 29 +23+24 =0, (14)
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is invariant under the gauge transformation,

c1ki1+coks+csks+cak
T — TeflR1TC2Ra+Caks 44’

It can be shown as follows.

ePire

D

ci1ki+cokatcsks+caky crkitcokatcezkztcaky

s TE
i T]eDj 6C1k1+82k2+csk3+c4k4 . 6C1k1+82k2+C3k3+C4k4

2(c1ki+4cokotcsks+caka)

=le

D

=le7iT- Tle

c1,Ca, C3, C4 being constant.

(15)

(16)

A gauge-invariant bilinear equation exhibits 2-soliton solution of the following form,

(ki ko, k3) = 1+ €™ + €™ +a(1,2)em 2,
where

n; = p1(4)k1 +p2(j) k2 +p3())ks + pa(g)ka, j=1,2

(17)

(18)

and ps(j)(s = 1,2.3,4) are constant and related to wave numbers of jth-soliton and

a(1,2) is a phase shift induced after colliding with each other.

§1.4. Gauge transformation II.
We consider a nonautonomous bilinear equation

[zl(kl)eDl + 22(k2)6D2 + 23(k3)€D3 + z4(k4)eD4]
T(kla k27 k37 k4) : 7—(1617 k27 k37 k4) =0.

We apply an extended gauge transformation to Eq.(19)

7 — rebrF)

Using one of the properties of the bilinear operators,
ePiref1(k1) | Lob1(ki)
— [eDlT . 7.] [€D1 €¢1 (k1) . e¢1(k1)]
_ [eDlT . 7_]€¢1(k1+1)+¢1(k1—1)
Eq.(19) is transformed into the bilinear equation
2 (kl)[eDlT . T]edn(k1+1)—2¢1(k1)+¢1(k1—1)

+2o(ko)eP2T - 7+ 23(k3)eP T - T+ z4(ka)ePiT - T = 0.

(19)

(21)

(22)
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Accordingly Eq.(19) is transformed into
[c1ePt 4 25(ko)eP? + z3(k3)eP? + z4(kg)eP4]r -7 =0, (23)

where the gauge-function ¢4 (k1) is determined by the second order linear difference
equation [1],

G1(k1 + 1) = 2¢1(k1) + @1 (ks — 1) = ha(ky), (24)
hi(k1) = [logei]/z1(k1), 1 being an arbitrary constant. (25)

Similarly we may tranform Eq.(19) into
[cleDl + coeP? + c3eP? + C4eD4]T -7 =0, (26)

introducing the gauge-functions ¢o(k2), ¢3(ks) and ¢4(ks). The nonautonomous bilinear
equation (19) is transformed, through the extended gauge transformation (20), into the
nonautonomous bilinear equation (26).

But we have to pay for it. The boundary condition on a usual soliton u(ky, ko, ---) is

w(ki, k2, -+ )|boundary = const.(independent of k1, kg, - ). (27)

After the extended gauge transformation, w(ki, k2, - )|poundary 15 DOt a constant any
more but it depends on ¢ (k1), ¢2(ka), .

We shall show in the next section that the integrability of a discrete system depends on
the boundary condition using the Toda equation as an example.

§1.5. Coordinates transformation II. From discrete to continuous

We have the KP hierarchy,

(D} — D1D3 +3D3)7r -7 =0,
(D} +2D3)Dy — 2D Dy)7 -7 =0,

(28)

The two-soliton solution 75 of the KP hierarchy is written as
(w1, o, -+ ) = 14 c1€™ + coe™ + a(1,2)crcoe™ 2, (29)
0(1,2) = (p1 —p2)(q1 — @2) (30)

(1 — @2)(q1 — p2)’
R e e R s O B ) (31)
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On the other hand we have the discrete KP hierarchy

CLl(CLQ — CL3)7’(k’1 + 1, kz, k3)7’(k’1, kz + 1, k‘3 + 1) —+
CLl(CLQ — CL3)7’(k’1 + 1, kg, k3)7’(k’1, kz + 1, k‘3 + 1) —+
0,1(0,2 — CL3)’7’(I€1 + 1, kQ, k3)’7’(l€1, kQ + 1, k3 + 1) = 0,

217(ky + 1, ko, ks, ka)T(k1, ko + 1, ks + 1, kg + 1) +

o (k1, ko + 1, kg, ka)T(k1 + 1, ko, ks + 1, ks + 1) +
( ) )+
( ) ) =

I\

237 (k1, ko, ks + 1, kg)T(k1 + 1, ko + 1, k3, kg + 1

(
(
(
247 (k1 ko kg, ko + 1)7(ky + 1, ko + 1, ks + 1, ky

(32)
where a1, a9, a3, -+ are the intervals of the discrete variables ki, ko, k3, -+ so that z; =
kiai,x2 = kaag,x3 = ksag,--- , and

z1 = z1(az,a3,a4), 22 = 22(ay,as,aq), (33)
z3 = z1(a1,a2,0a4), 24 = z1(ay,az,as). (34)
The two-soliton solution 75 of the discrete KP hierarchy is written as
To(ki, ko, -+ ) = 14 c1e™ + coe™ 4 a(1,2)crcoe™ T2, (35)
0(1,2) = (p1 —p2)(q1 — (J2), (36)
(P1 — q2)(q1 — p2)
enj _ (1 —pjal )—k1 1 —pjag)_k2(1 —pjag —ks :
1— qjal 1-— QjCI,Q 1-— Qja3
for j=1,2. (37)
The coordinates transformation between the continuous variables xi,xo,--- and
the discrete variables ki, ko, - - - is based on the fact that
T(:li'l,ili'g,"'):T(kl,kg,"'). (38)
The identity (38) implies that n; in Eq.(31) is equal to n; in Eq.(37),namely
> W = d)ay =) —knllog(l — pjan) — log(1 — gjan)]. (39)
v=1 n=1
The r.h.s of Eq.(39) is expanded, using Taylor expansion formula,
Clog(l-a) =3 L (40)
v 9
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in power series in a,,

rhs = Y =R (p —qY)al. (41)

v
n=1v=1
Comparing it with Lh.s, we obtain
1 >
T, =~ Zl kna, (42)
n=

by which the discrete KP hierarchy (32) is transformed into the continuous KP hierarchy
(28).

8§ 2. Integrability of a discrete system depends on the boundary condition

The Toda equation is known to be equivalent to the nonlinear LC circuit equation,
which is expressed in the following forms.
(i) Continuous-time Toda equation ,

d d
—108(Va) = It = Lo, < 1n = Vi = Va1, (43)
(ii) Discrete-time Toda eqaution,
vttt w14 8yt

= , = , (44)
van Wi [ A A

where I)7" = log W".

We show that the integrability of these equations depends on the boundary condi-
tion. We have three types of boundary condition on the Toda equation.

1. Periodic boundary conditions;
Lyio=1,, Vpyo=V,, Period 2.
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I I, I, I,

2. Il-type circuit: I,,_1 = I,,+1 = 0.

Vo Vi

3. T-type circuit: V,,_1 = V,4+1 = 0.

Lo I,

A

The continuous equation (43) is expressed under these boundary conditions as
follows.
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1. For the boundary conditon of Period 2,we have

d d
—logVy =1, — [ — Iy =Vy — V]
dt og Vo 1 05 dto 0 15
d d
%log‘/i:Io—Il, %11=V1—V07

which exhibit three conserved quantities;

Hy=1Iy+ Iy,
H, =V,

1
H2=V0-|—V1+§(102+112)'

Hence the equation is integrable.

2. For the boundary condition of II-type,we have

d

%logVo: —1Io,
d

— Iy =Vy — V]

dt 0 0 1
d

%log‘/l :IO7

which exhibit two conserved quantities;

Hy, =V,

1
H, :VO+V1+§(I§+112).

Hence the equation is integrable.

3. For the boundary condition of T-type, we have

d
Bl SRS v
dt 0 1,

d
—logVi =1y —1
dt og Vi 0 1,

d
—I g
dt 1 ‘/17

which exhibit two conserved quantities;
Ho = Iy + I,
1
Hy =V + 5([3 + I?).

Hence the equation is integrable.
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We find the continuous equation (43) is integrable for all cases.

Next we consider the discrete equation (44), which is expressed under the boundary

conditions as follows.

1. For the boundary conditon of Period 2,we have

Vom-‘,-l . Wim Wgn-‘,—l . 1+52V0m+1
(N we T 1—|—§2V1m+1
R 7 w18yt
v T W Wi T sy

We find two conserved quantities immediately:

Hy=WIWp, Hy = V"V

(45)

Let W = (Ho)Y?y,,, SQVOm = Zm, O%H, = c. Then Eq.(45) is reduced,

with the help of the conserved quantities, to

Tmt1 _ 1
Tm y2,
Ym+1 _ I+Tmyr

Ym 1+e/Tm41
whose conserved quantity Hs is found to be

2

1 1 T x x2 x2
Hy =2Tp +2— 4 yp + — + 25 +2c=2 + =0 4+ 22
T Y Y

2 2
m m m m ym

which shows the discrete equation (46) is integrable.

2. For the boundary condition of II-type, (W%, = W, = 1), we have

V0m+1 - 1

7 Wc’ﬁ
w1482yt
W T TRy
V1m+1 m

W = WO

We find one conserved quantity immediately:
H 1 = VOmV]_m.

Let W =ym, 6V =z, O6H =c
Then Eq.(48) is reduced, with the help of the conserved quantity, to

Tmt1 _ 1
Tm Ym
Ym+1 _ I+Tmy1r

Ym 1+c/Tm41

(46)

(49)
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whose conserved quantity Hs is found to be

Ym

T 1 1
Hy=—+2zn+c(=—+—)+ — + Ynm.

Hence the discrete equation (49) is integrable.

. For the boundary condition of T-type (V,,—1 = Vj,41 = 1),
we have

WT1+1 _ 1—1—52
R W
Vet owmy
N
w1482yt
W(;m - ]__|_52

Equation (51),is reduced, using the conserved quantity,
Hy = inlwgn to,

V0m+1 - HO
V0m+1 B (W(’%)? 1 -
Wo eyt
W(;n 1+92
Let
52 1
VI =z, W= (Hy) Yy, .
1462 14 62

Then Eq.(52) becomes

Tmp1 _ 1
Im y72n
Ym+1

g €T Tmpl

I have concluded that Eq.(53) is not integrable by the following reasons.

107

(50)

(a) Numerical calculations of the algebraic entropy of Eq.(53) indicate that it

approaches to log 2, which implies nonintegrability of the system.

(b) A numerical mapping of Eq.(53) for ¢ = 1/4 starting with xp = 2 and yg = 3

is given below
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3
2.5
oA
1.50
ety
l' ..o: - * - *
@a%e s *
0.5:0
-

which indicates non-integrability of Eq.(53).

§ 3. Bilinear Form of the Non-autonomous Discrete KdV Equation

Matsuura|2] has succeeded in obtaining the non-autonomous discrete KdV equation

1 1 1 1 1.1
(7~ ren il Gl b
m-4-1 Cn+1 Un_|_1 m Cn Uy
RN SRS R
— - — (= o4
(bm+1 + Cn, Jun (bm + Cn+1 Junias (54)
using “Discrete differential geometry”.
We have the non-autonomous discrete KP equation [3],[4],
ai(bym, — )T+ 1L, m,n)T(l,m+1,n+1)+
bn(cn —a)T(I,m+1,n)T(l+1,m,n+1)+
en(ap —bm)T(l,m,n+1)7(l+1,m+1,n) =0, (55)

which exhibits N-soliton solution.

It is known that the discrete (autonomous) KP equation can be transformed into the
discrete (autonomous) KdV equation by the reduction procedure so that solutions to
the discrete KdV equation could be obtained without any difficulty.

However the usual reduction procedure can not be applied to the non-autonomous
cases.

Kajiwara and Ohta [5] succeded in finding soliton solutions to the non-autonomous
discrete KAV equation bypassing the bilinear form.

We shall show a new reduction procedure to find the bilinear form of the non-
autonomous discrete KdV equation.
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The procedure is based on a coordinates transformation II. Let a; in Eq.(55) be a small
parameter a (=const.). We write Eq.(55) as

1 1

a(by — cn)T(1+ §,m,n) -7(l— E,m—i- I,n+1)
1 1

+bp (e, —a)T(l — 50 M +1,n)-7(l+ E,m,n—l— 1)

1 1
—I—cn(a—bm))T(l—§,m,n+1)-7(l+§,m—|—1,n):0. (56)

We introduce a continuous variable z by the relation [ = ax so that

0 0

3= %%n and D; = aD, (57)
Then Eq.(56) is written as

1
a(by, — cp) exp[Ean]T(aj, m,n)-7(x,m+1,n+1)
1
+bp(cn — a) exp[—gan]T(x, m+1,n) -7(z,m,n+ 1)
1
+en(a— b)) exp[—§an]T(x, m,n+1)-7(z,m+1,n)=0. (58)

Hereafter we put 7(xz,m,n) = f}” for short. Expanding Eq.(58) in power series of a we
obtain, from the coefficients of a and a?, a coupled semi-discrete bilinear equations

(bm — Cn)[fr?lfm—i_l fm+1 n+l] - menD:vf:zn+l ) 1%—1 =0, (59)

(b — o) Do fi - fAE 4 (b + o) Dy fHY - £ =0, (60)

which are the bilinear form of the non-autonomous discrete KdV equation.

We transform the coupled bilinear equations into the non-autonomous discrete KdV

equation of u]"
We write Eq.(59) as

(b = ¢n)

T L T ] = Da T (61)
m*n
Substituting it into Eq.(60) we obtain

O o) g s st ) = D g (62)

We introduce a dependent variable u;" defined by

fm—l—l IR
n = Ty (63)
fn—|——|:—[1 fm

U
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and shift operators p and ¢ operating on an arbitrary function h]"' defined by
ph =B and g I = BT . (64)

Dividing Eqgs.(61) and (62) by fi*!f™ | and f ferl respectively, we obtain

bm —cn) . 1 0 m ) .
( b ¢ )[u_m_l]:%[bgfn "t —log 1l = (p— Q)a—logf
and
bm + cn, m 0 m " o .
%[1 — Uy, = —%[logf —log '] = (pg — 1)%10gfn :

Operating the shift operators on the above equations we eliminate the term % log f"
and obtain a discrete equation of u"

(-1~ )1~ =) = (b= a)(— + )1~ ull) (65)

bm Cn unm m Cn
which is transformed into the non-autonomous discrete KdV equation,

1 1 1 1 1.1

(bm+1 Cnt1 u;”j'll B (E B Z)u_’”

1 1 1 1
— ( + = m+1 (
bm—l—l Cp, bm Cn+1

8§4. Discrete Soliton Equations of Type B

We have so many papers discussing discrete soliton equations. However they are
all concerned with Type A (discrete KP) equation except very few cases.

We have soliton equations of type B, which is expressed by

[21 exp(D1) + 22 exp(D3) + z3 exp(Ds) + zg exp(Dg)]7 - 7 = 0,
z1+29+23+20=0, Di+Dys+ D3+ Dy=0. (67)

A special case (z9 = 0) of type B equation is reduced to type A equation.
Type B equation is transformed into the discrete BKP equation by Miwa

(a+b)(a+c)b—a)yr(l+1,m,n)T(l,m+1,n+1)

—l—(b—l—c)(b a)ic—a)r(l,m+1,n)T(l+1,m,n+1)

b)(a —b)r(l,m,n+ )7l +1,m+1,n)
(c—a)r(l,m,n)r(l+1,m+1,n+1)=0. (68)
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Miwa obtained N-soliton solution [6] to it.

The structure of the higher order discrete BKP equations is clearified by an extended
form of the addition formula for phaffian [7] which can also be applied to the non-
autonomous BKP equations [8].

8§5. Type B equation

We have several difficulties in solving Type B equation:

1. Type B equation can not be transformed into the discrete BKP equation by the

parameter transformation.

2. Soliton solutions to Type B equation can not be expressed by determinants. So
we can not use the determinant technique which is very useful in finding N-soliton
solution to discrete KP equation.

3. It is not easy to prove N-soliton solution to Type B equation by the pfaffian tech-
nique up to now.

Only way to find soliton solutions to Type B equation is the perturbation method up

to now.

§5.1. Find Multi-Soliton Solution to Type B Equation

We shall solve a Type B equation of the following form,

zif(x1+ 1,22, 23) f(x1,22 + 1,23 + 1)
+2of(w1, 22 + 1, 23) f(21 + 1, 22,23 + 1)
+23f(z1, 22,33 + 1) f(z1 + 1,22 + 1, 23)
+20f(x1, 22, 23) f(x1 + 1,29 + 1,23+ 1) =0, (69)

where 21, 22, 23, 29 are arbtrary constant satisfying a condition z; + 29 + 23 + 29 = 0.
We note that Eq.(69) is invariant under the gauge transformation,

f— fno, 1o = coci'cy?cs?,
where ¢;,7 = 0,1,2,3 are arbitrary constants.

§5.2. One-soliton solution to Type B equation

We assume the following form of f for one-soliton solution to Eq.(69)
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f = 1 —|— 68(j1,$1,$2,333),
s(J1, @1, 22, 23) = c(J1)p1(41) " p2(31)"*p3 (1) "2,

(70)

for all j;, where € is a book-keeping apameter, ¢(j;) is an arbitrary parameter related to

a position of j;th-soliton and p;(j1),p2(j1), ps(j1) are parameters of j;th-soliton related

to the frequency and the wave numbers,namely
p1(j1) = exp(wi), p2(j1) =exp(q1), p3(j1) = exp(k1).
Substituting Eq.(70) into Eq.(69) gives the dispersion relation,

~z1p2(J1)p3 (1) + z2p2 (1) + 23p3(J1) + 20
z1 + z2p3(j1) + z3p2(J1) + 20p2(31)p3(j1)

p1(j1) =

§5.3. Two-soliton solution to Type B equation

Two-soliton solution is given by assuming f5 to be

fo=14+¢€[s(j1, 21, 22,23) + $(j2, x1, T2, 3)]

+e2a(ji, j2)s(jr, 21, T2, 3)5(j2, T1, T2, T3).

Substituting fo into Eq.(69) we find the phase shift a(ji, j2) is given by

a(j1,j2) = —An(j1, J2) /Aaldr, jo2),

An(J1, J2) = p1(J1)p2(J1)p3(j1) 20 + p1(j1)p2(j1)p3(j2)23
+p1(j1)p2(j2)p3(j1)22 + p1(j1)p2(j2)p3(j2) 21
+p1(j2)p2(j1)p3(j1) 21 + p1(j2)p2(j1)p3(j2) 22
+p1(j2)p2(j2)p3(j1) 23 + p1(j2)p2(j2)p3(j2) 20,

Aa(g1,J2) = p1(J1)p1(J2)p2(41)p2(J2)P3 (j1)p3(j2) 20

p1(j1)p1(J2)p2(j1)p2(d2) 23

p1(J1)p1(J2)ps(i1)p3(j2) 22

p1(j1)p1(j2)21 + p2(i1)p2(J2)p3(J1)p3(j2) 21

p2(j1)p2(j2)22 + p3(j1)pa(ja)2s + 2o

+ 4+ + F

(71)

(72)

(73)

(76)
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§5.4. Three-soliton solution

Three-soliton solution is given by assuming f3 to be

J3 =1+ €[s(j1,x1, 22, 23) + 8(jo, T1, T2, ¥3) + 5(j3, 1, T2, 23)]
+e%[a(j, j2)s(j1, x1, B2, 23)s(j2, 21, T2, T3)
+a(ji1, js
+a(jz2, j3

+e3a(ju, j2, j3)s(j1, ¥1, T2, 23)8(j2, T1, T2, T3)5(j3, T1, T2, T3). (77)

(J1, 21, 22, 23)8(j3, 21, T2, 3)

)s )s
)s(j2, 1, 2, x3)5(J3, X1, T2, T3)]

Substituting f3 into Eq.(69) we find,in the order of €3, the phase shift a(j1,j2,73) is
given by a form

a(j1, j2; j3) = —[a(j1, j2)b(j3) + a(j1, j3)b(j2) + a(jz2, 33)b(j1)] (78)

where b(js) for s=1,2,3 are rational polynomials of p;(j1),p2(Jjs), - -
The three soliton solution f3 solves Eq.(69) if the following condition holds

a(j1,J2,73) = a(j1, j2)a(j1, ja)a(jz, js)- (79)

Note that the condition is a sufficient condition not a necessary condition [9]. We have
Periodic Phase Soliton (PPS) equation whose 3-soliton solution does not satisfiy the
condition but is an exact solution.

We note that the number of terms in A,, and Ay (a(j1,Jj2) = —An/Aq)) are

A, =A,=124

so that the terms involved in the condition (79) are huge > 1003.

We have proved that the condition holds using a computer algebra system REDUCE(Free
CSL version,32bits).

Also we have checked it numerically that the condition (79) holds for 4-soliton solution,

a’(jlaj27j37j4) = H a’(jk)jl)'
1<k<i<4

These facts strongly support the conjecture that the integrability condition on N-soliton
solution

a(j17j27"' 7]11) = H a(jkajl)

1<k<i<n

holds forn =1,2,3,--- N.
We have not succeeded in proving it until now.
Lately we have revealed that type B equation play an important role in soliton theory.
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A extended discrete-time Toda equation
1 . 9,1 9 . 19,1
cosh(iaDm)[smh (§Dm) — 6°sinh (§Dn)]f -f=0. (80)

For a = 1 it is a discrete-time Toda equation of type B [10], whose N-soliton
solution is not obtained yet. We have obtained 3-soliton solution.

For o« = 2 it is not integrable but in the ultradiscrete limit, Eq.(80) for a = 2 is
transformed into an integrable equation by virtue of the convexity of the ultradiscrete
T-functions.

An extended Box and Ball system (BBs) equations [11],

1 1

[(14 62) exp(Dyy + §Dn) —(1—146y) exp(§Dn)
1 1

—61 exp(D,,, — §Dn) — dgexp[(a + §)D”]f - f=0, (81)

which is reduced, for d3 = 0, to discrete KdV equation being a discrete form of Box

and Ball system. Eq. (81) in general describes an interaction between solitons of
KdV type and those of Toda type.

Periodic Phase Solitons(PPS).
A discrete bilinear equation,

+1 +1 _ +1 +1
S I = B = 0 e S — B F e ) (82)

is introduced, where m and n are discrete time and space respectively, M and o
being a natural number and a time interval, respectively.
Equation (82) is invariant under the following gauge transformation,

fat = 1 o(n),
where ¢(n) is a periodic phase function of n, ¢(n + M) = ¢(n).
Hirota, Ohta and Nagai[9] have shown that the integrability condition a(1,2,3) =
a(1,2)a(1,3)a(2,3) of the phase shifts of solitons does not hold for the PPS solution

because of a long range interaction of soliton due to the periodic phase function
¢(n). Nevertheless Eq.(82) exhibits exact 3-soliton solutions.
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