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Variational formulations of the Funk and Apollonian
weak metrics on convex sets
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Sumio YAMADA *

Abstract

On a convex set in a Euclidean space, we consider two asymmetric distance functions,
called the Funk and Apollonian weak metrics. We show that both asymmetric metrics have

variational characterizations, which in turn tell that the straight lines are the Funk geodesics
while the circular arcs are the geodesics for the Apollonian weak metric which meet the bound‐

ary perpendicularly. If the convex set is a disc, the metrics lead respectively to the Beltrami‐

Klein model and the Poincaré model of the hyperbolic plane when the metrics are arithmeti‐

cally symmetrized. We will show that they have Finsler structures, determined by Minkowski

functionals dened on each tangent space.

§1. Introduction

We will consider two metrics dened on a convex set  $\Omega$
,

the Funk weak metric and

the Apollonian weak metric, both of which are asymmetric. When the convex set  $\Omega$ is

the unit ball in \mathbb{R}^{2}
,

their symmetrizations are both isometric to the hyperbolic metric,
the former identiable to the Beltrami‐Klein model, the latter to the Poincaré model.

The geodesics for the former model are the straight line segments connecting a pair of

points on the unit circle, and these are also geodesics for the Funk metric. The geodesics
for the latter model are the circular arcs which meet the unit circle perpendicularly, and

these are geodesics for the Apollonian weak metric. In this sense, even though these

two weak metrics are not conformally invariant, they both capture a certain aspect of

the hyperbolic geometry realized in the two well‐known models.
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The goal of this article is to introduce variational formulations of the Funk and

Apollonian weak metrics, and to contrast them. In particular, we note that each is

formulated as a supremum of logarithmic ratios of lengths of line segments, indexed by
the set of supporting hyperplanes of the given convex set. From these variational formu‐

lations, one can characterize the distance‐realizing curves for the two weak metrics. We

also investigate the innitesimal structure of the Apollonian weak metric, and identify
the Minkowski functional providing the metric with a Finsler structure when the metric

space is geodesic.
For historical reasons, and in order to be consistent with the existing literature, we

use the term
\backslash metric� in place of distance function; it does not refer to a Riemannian

metric. To be more precise, in this article we dene a metric on a set X to be a function

 $\delta$ :  X\times X\rightarrow \mathrm{R}_{+}\cup\{\infty\} satisfying:

1.  $\delta$(x, x)=0 for all x in X,

2.  $\delta$(x, z)\leq $\delta$(x, y)+ $\delta$(y, z) for all x, y and z in X.

In [11], for example, a function satisfying the above is named weak metric. Note that in

this denition neither the symmetry  $\delta$(x, y)= $\delta$(y, x) nor the non‐degeneracy  $\delta$(x, y)=
0\Rightarrow x=y is assumed. A weak metric which is also symmetric, but possibly degenerate,
is called a semi‐metric.

A systematic treatment of the geometry of weak metrics is given in the papers by

Papadopoulos‐Troyanov [11, 12].
In this article a path s : [a, b]\rightarrow(X, d) in a metric space (X;  $\delta$) is said to be geodesic

when for any a<t<b,  $\delta$(s(a), s(t))+ $\delta$(s(t), s(b))= $\delta$(s(a), s(b)) is satised.

We represent the convex set  $\Omega$ in \mathbb{R}^{n} as \displaystyle \bigcap_{ $\pi$(b)}{}_{\in \mathcal{P}}H_{ $\pi$(b)} where H_{ $\pi$(b)} is the half space

bounded by a supporting hyperplane  $\pi$(b) of  $\Omega$ at the boundary point  b
, containing the

convex set  $\Omega$ . The index set \mathcal{P} is the set of all supporting hyperplanes of  $\Omega$ . That

for every boundary point  p there exists a supporting hyperplane  $\pi$(b) follows from the

denition of the convexity of  $\Omega$ . In general, there can be more than one supporting

hyperplane of  $\Omega$ at  p\in@. The index set \mathcal{P} is identied with the set of unit normal

vectors to the supporting hyperplanes. It is identied with a subset of S^{n-1} ,
which is

equal to the entire sphere when the convex set is bounded. We denote by \mathcal{P}(b) the set

of supporting hyperplanes at b \in @.

The author thanks Masanori Ishida and Athanase Papadopoulos for valuable com‐

ments. He also thanks Marc Tryoanov for making him aware of the work of Barbilian.

§2. The Funk metric

We start with a collection of facts known about the Funk metric, which will be con‐

trasted with the geometry of the Apollonian weak metric. Let  d(x, y) be the Euclidean
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distance between the pair of points x and y in  $\Omega$ . We first dene the Funk metric as it

first appeared in [4], a weak metric dened on a convex set  $\Omega$\subset \mathbb{R}^{n}.

Denition For a pair of distinct points x and y in  $\Omega$
,

the Funk asymmetric metric is

dened by

 F(x, y)=\displaystyle \log\frac{d(x,b(x,y))}{d(y,b(x,y))}
where the point b(x, y) is the intersection of the boundary @  $\Omega$ and the ray  R(x, y) :=

\{x+t$\xi$_{xy}|t>0\} from x though y . Here $\xi$_{xy} is the unit vector along the ray. We dene

F(x, x) to be 0.

Despite the fact that the Funk metric is not well known in general, we note that

the idea of a Funk‐type metric is ubiquitous. For example, on a Teichmüller space, the

space of conformal structures dened on a topological surface, there are three different

Funk‐type metrics: the Teichmüller metric [10, 3], Thurston�s asymmetric metric [13]
and the most recently dened Weil‐Petersson‐Funk metric [14].

The Funk metric dened on a convex set in \mathbb{R}^{n} is known to be Finsler, and its

Minkowski functional can be written down [11, 14] in terms of the shape of the boundary
 $\Omega$.

Now let $\pi$_{0} be a supporting hyperplane at b(x, y) , namely $\pi$_{0}\in \mathcal{P}(b(x, y)) . Then

note the similarity of the triangles \triangle(x, $\Pi$_{$\pi$_{0}}(x), b(x, y)) and \triangle(y, $\Pi$_{$\pi$_{0}}(y), b(x, y)) ,
where

$\Pi$_{$\pi$_{0}}(p) is the foot of the point p on the hyperplane $\pi$_{0} ,
or in other words, $\Pi$_{$\pi$_{0}} : \mathrm{R}^{d}\rightarrow$\pi$_{0}

is the nearest point projection map. This says that

\displaystyle \log\frac{d(x,b(x,y))}{d(y,b(x,y))}=\log\frac{d(x,$\pi$_{0})}{d(y,$\pi$_{0})}.
Note that by the similarity argument of triangles, the right hand side of the equality is

independent of the choice of $\pi$_{0} in \mathcal{P}(b(x, y

Using the convexity of  $\Omega$
,
the quantity  F(x, y) can be characterized variationally as

follows. Dene T(x,  $\xi$,  $\pi$) by  $\pi$\cap\{x+t $\xi$|t>0\} with  $\pi$\in \mathcal{P} . Consider the case  $\xi$=$\xi$_{xy}.
When the hyperplane supports  $\Omega$ at  b(x, y) ,

we have T(x, $\xi$_{xy},  $\pi$)=b(x, y) and otherwise

the point T(x, $\xi$_{xy},  $\pi$) lies outside  $\Omega$ . When  $\pi$\not\in \mathcal{P}(b(x, y)) , by the similarity argument
between the triangles \triangle(x, F_{ $\pi$}(x), T(x, $\xi$_{xy},  $\pi$)) and \triangle(y, F_{ $\pi$}(y), T($\xi$_{xy},  $\pi$)) again we have

\displaystyle \frac{d(x, $\pi$)}{d(y, $\pi$)}=\frac{d(x,T(x,$\xi$_{xy}, $\pi$))}{d(y,T(x,$\xi$_{xy}, $\pi$))}.
Note that the closest point to x along the ray R(x, y)=\{x+t$\xi$_{xy}|t>0\} of the form

T(x, $\xi$_{xy},  $\pi$) is b(x, y) . This in turn says that a hyperplane  $\pi$ which supports  $\Omega$ at  b(x, y)
maximizes the ratio d(x, T(x, $\xi$_{xy},  $\pi$))/d(y, T(x, $\xi$_{xy},  $\pi$)) among all the elements of \mathcal{P} ;

\displaystyle \log\frac{d(x,b(x,y))}{d(y,b(x,y))}=\sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(y, $\pi$)}.
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Figure 1. Variations in the pencils of similar triangles

Figure 1 Above is the picture when the convex set  $\Omega$ is the unit disc.

Hence we have an alternative characterization of the Funk metric [14];

Theorem 1. The Funk metric on a convex subset  $\Omega$\subset \mathrm{R}^{d} has the following
variational formulation:

F(x, y)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(y, $\pi$)}.
Alternatively it can be written as

F(x, y)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x,T(x,$\xi$_{xy}, $\pi$))}{d(y,T(x,$\xi$_{xy}, $\pi$))}.
With this formulation, one can readily see that F(x, y) satises the triangle in‐

equality, for

F(x, y)+F(y, z)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(y, $\pi$)}+\sup_{ $\pi$\in \mathcal{P}}\log\frac{d(y, $\pi$)}{d(z, $\pi$)}
\displaystyle \geq\sup_{ $\pi$\in \mathcal{P}}(\log\frac{d(x, $\pi$)}{d(y, $\pi$)}+\log\frac{d(y, $\pi$)}{d(z, $\pi$)})=\sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(z, $\pi$)}=F(x, z)

Note that the triangle inequality becomes an equality when

\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(y, $\pi$)}+\sup_{ $\pi$\in \mathcal{P}}\log\frac{d(y, $\pi$)}{d(z, $\pi$)}=\sup_{ $\pi$\in \mathcal{P}}(\log\frac{d(x, $\pi$)}{d(y, $\pi$)}+\log\frac{d(y, $\pi$)}{d(z, $\pi$)})
is satiSed. For this to occur, we only need \mathcal{P}(b(x, y))\cap \mathcal{P}(b(y, z))\neq\emptyset . Let $\pi$_{0} be an

element in the set \mathcal{P}(b(x, y))\cap \mathcal{P}(b(y, z))\neq\emptyset . Then the boundary points  b(x, y) and

b(y, z) share the same supporting hyperplane $\pi$_{0} ,
and we have

\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(y, $\pi$)}=\log\frac{d(x,$\pi$_{0})}{d(y,$\pi$_{0})}, \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(y, $\pi$)}{d(z, $\pi$)}=\log\frac{d(y,$\pi$_{0})}{d(z,$\pi$_{0})}
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and

\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x, $\pi$)}{d(z, $\pi$)}=\log\frac{d(x,$\pi$_{0})}{d(z,$\pi$_{0})},
inducing the equality.

A notable situation where one has \mathcal{P}(b(x, y))\cap \mathcal{P}(b(y, z))\neq\emptyset is when  x, y and z

are collinear, with y lying between x and z . This in turn says that the straight line

segment \overline{xy} is a Funk geodesic. Hence the Funk metric is projective, in the sense that the

Euclidean line segments in the convex body are also Funk geodesics. On the other hand,
when $\pi$_{0} is in the set \mathcal{P}(b(x, y))\cap \mathcal{P}(b(y, z)) with b(x, y)\neq b(y, z) ,

the concatenation

of the line segment \overline{xy} and \overline{yz} is also a Funk geodesic, a situation occurring when the

boundary set @  $\Omega$ contains a Euclidean line segments.
We next consider the complementary situation where \mathcal{P}(b_{1})\cap \mathcal{P}(b_{2})=\emptyset for any pair

of distinct points  b_{1}, b_{2} in @. Geometrically this characterizes strict convexity of the

domain  $\Omega$
, namely, the case where the boundary @  $\Omega$ contains no closed line segments.

From the preceding argument, it follows that the only way equality in the triangle

inequality occurs is when the three points  x, y and z are collinear and in that order.

Hence for strictly convex domains, the Funk geodesics consist of line segments only, or

equivalently, given a pair of points, there is a unique Funk geodesic joining them. We

state the discussion above as

Proposition 2. Given any distinct points x and y in  $\Omega$
,

the straight line segment

\overline{xy} is a Funk geodesic. And when  $\Omega$ is strictly convex, the line segment is the unique

geodesic from  x to y.

For more comprehensive treatments, the reader is referred to [11] and [14].

§3. The Apollonian weak metric

§3.1. Denition and its associated Apollonian geometry

Denition For a pair of distinct points x and y in  $\Omega$
,

the Apollonian weak metric [12]
is dened by

 A(x, y)=\displaystyle \sup_{a\in\partial $\Omega$}\log\frac{d(x,a)}{d(y,a)}.
We dene A(x, x) to be 0.

Suppose now that the convex set  $\Omega$ is bounded. Then the boundary @  $\Omega$ is compact

and there exists some point  a(x, y) on @  $\Omega$ so that

 A(x, y)=\displaystyle \log\frac{d(x,a(x,y))}{d(y,a(x,y))}.



62 Sumio Yamada

We now describe the point a(x, y) as treated in Kelly�s paper [9], and further elaborate

on his argument.
For  $\lambda$>0 ,

denote by

C_{xy}( $\lambda$)=\displaystyle \{p\in $\Omega$ \frac{d(x,p)}{d(y,p)}= $\lambda$\}
the circle consisting of points where the ratio of distances to x and y is constant, and

equal to  $\lambda$ . As we are interested in taking the supremum of the ratio of the distances,
we are concerned with the range  $\lambda$>1 . Note then that the intersection of C_{xy}( $\lambda$) with

the ray R(x, y) from x through y is a pair of points I (for In‐between x and y) and O

(for Outside the interval \overline{xy} ) so that the collinear points (x, y, I, O) form a harmonic

quadruple; namely

\displaystyle \frac{d(x,I)}{d(y,I)}=\frac{d(x,O)}{d(y,O)}.
Equivalently when I and O satisfy the above equality, they are said to separate x and

y harmonically. Note that for each  $\lambda$>0, C_{xy}() is a circle whose center lies on the

ray R(x, y) ,
and as  $\lambda$ gets larger,  C_{xy}() becomes smaller, and it eventually converges

to y . Note that the appearance of such a pencil of circles is at the origin of the term

\backslash 

Apollonian�
Now we dene

 $\lambda$(x, y)=\displaystyle \inf\{ $\lambda$|C_{xy}( $\lambda$)\subset $\Omega$\}.

The boundary point a(x, y) that maximizes the value of \log[d(x, a)/d(y, a)] is described

as the point of tangency between the boundary set @  $\Omega$ and the circle  C_{xy} dened as

C_{xy}=C_{xy}( $\lambda$(x, y)) .

We observe that the point a(x, y) is a boundary point where the boundary set is at

least C^{1} . This follows from the fact that as one tracks the family of circles \{C_{xy}( $\lambda$)\}_{ $\lambda$}
starting from the degenerate one \{y\}=C_{xy}() ,

the first point of contact with the

boundary set @  $\Omega$ is a point which cannot be an isolated extremal point of \overline{ $\Omega$} . Otherwise,
the boundary set is Lipschitz‐continuous (C^{0,1}) ,

but not C^{1} at a(x, y) and one can

shrink the sphere C_{xy}( $\lambda$) to make  $\lambda$ larger. This in turn says that the set \mathcal{P}(a(x, y))
of hyperplanes supporting  $\Omega$ at  a(x, y) consists of a single element, which we write as

$\pi$_{a(x,y)}.
Now we note an elementary fact about the cross ratio in the complex plane.

Lemma 3. Let x, y and z be three distinct points, not collinearly located. Denote

by C_{x,y,z} the circle passing through x, y and z . Let  $\lambda$>0 be equal to d(x, z)/d(y, z) and

consider the circle C_{xy}( $\lambda$) . Then the circle C_{xy}( $\lambda$) and C_{x,y,z} meet perpendicularly at

two points.
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When x, y and z are collinear, the line through them, which we still denote by

C_{x,y,z} ,
cuts through the circle C_{xy}( $\lambda$) diametrically. By transforming the conguration

by an element of SL(2, \mathbb{R}) ,
a conformal map, we obtain the picture described in the

statement.

§3.2. Variational formulation

Now for a pair of points x and y in  $\Omega$
,

and  $\pi$\in \mathcal{P} a supporting hyperplane, there

exists a unique circular arc from x through y meeting  $\pi$ perpendicularly at  F_{xy}( $\pi$) . Note

that as  $\Omega$ is convex, the foot  F_{xy}( $\pi$) lies outside  $\Omega$ . In maximizing the value of  $\lambda$, F_{xy}()
needs to be closest possible to  $\Omega$

, namely a point of the boundary. Figure 2 below is

the picture when the convex set is the unit disc.

Figure 2. Variations in the pencil of circles

Hence we have the following alternative formulation of the value of the Apollonian
weak metric.

Theorem 4. The Apollonian weak metric  A(x, y) has the following representa‐
tion:

A(x, y)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x,F_{xy}( $\pi$))}{d(y,F_{xy}( $\pi$))}.
and the supremum is realized by a hyperplane  $\pi$ so that  F_{xy}( $\pi$) is a point of the boundary.

Note that such a hyperplane needs not be unique; consider the situation when the

convex set  $\Omega$ is an ellipsoid \{(s, t, u)|s^{2}+t^{2}+u^{2}/4<1\} ,
and x is the origin, and y is

on the positive u‐axis.

We note that this expression is similar to the expression for the Funk metric intro‐



64 Sumio Yamada

duced above,

F(x, y)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x,T(x,$\xi$_{xy}, $\pi$))}{d(y,T(x,$\xi$_{xy}, $\pi$))}
where the supremum is achieved when the point T(x, $\xi$_{xy},  $\pi$) lies on the boundary.

The circle C_{xy}( $\lambda$(x, y)) is characterized by having its center at the intersection I of

the ray R(x, y) and the line through F_{xy}($\pi$_{xy}) perpendicular to $\pi$_{xy} ,
with its radius equal

to d(I, F_{xy}($\pi$_{xy})) . Furthermore, the circle C_{xy}( $\lambda$(x, y)) cuts through the ray R(x, y) at

two points I and O so that I and O separate x and y harmonically. Also C_{xy}( $\lambda$(x, y))
cuts through the circle C_{x,y,F_{xy}($\pi$_{xy})} at two points so that they also separate the points
x and y harmonically.

By an argument almost identical to the one for the Funk metric, one sees that

A(x, y) satises the triangle inequality, for

A(x, y)+A(y, z)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x,F_{xy}( $\pi$))}{d(y,F_{xy}( $\pi$))}+\sup_{ $\pi$\in \mathcal{P}}\log\frac{d(y,F_{yz}( $\pi$))}{d(z,F_{yz}( $\pi$))}
\displaystyle \geq\sup_{ $\pi$\in \mathcal{P}}(\log\frac{d(x,F_{xy}( $\pi$))}{d(y,F_{xy}( $\pi$))}+\log\frac{d(y, $\pi$)}{d(z,F_{yz}( $\pi$))})=A(x, z)

The inequality becomes an equality when \mathcal{P}(F_{xy}($\pi$_{xy}))\cap \mathcal{P}(F_{yz}($\pi$_{yx}))\neq\emptyset . Recall

the variational formulation of the Funk metric

 F(x, y)=\displaystyle \sup_{ $\pi$\in \mathcal{P}}\log\frac{d(x,T(x,$\xi$_{xy}, $\pi$))}{d(y,T(x,$\xi$_{xy}, $\pi$))}
where T(x, $\xi$_{xy},  $\pi$) is the point where the ray R(x, y) meets the supporting hyperplane
 $\pi$ . In particular, since both formulations are about maximizing the value of logarithmic
ratio of lengths of two line segments that meet at a boundary point, by imitating the

argument of the triangle equality for the Funk metric, it follows that the circular arc

 C(x, y)\subset C_{x,y,F_{xy}($\pi$_{xy})} from x to y meeting $\pi$_{F_{xy}($\pi$_{xy})} perpendicularly is an A‐geodesic
from x to y provided that C(x, y) lies inside  $\Omega$ . We simplify the notation by setting

 a(x, y) :=F_{xy}($\pi$_{xy}) from now on. We have observed the following:

Proposition 5. The Apollonian weak metric A(x, y) dened on a convex set

 $\Omega$ is not geodesic in general, namely there may be a pair of points which cannot be

connected by a length‐minimizing path in  $\Omega$ . When the portion  C(x, y) of the circular

arc C_{x,y,a(x,y)} between x and y is entirely contained in  $\Omega$
,

it is a  A ‐geodesic fr om x to

y.

For an example of a non‐geodesic Apollonian weak metric space (; A) ,
consider a

very thin convex set  $\Omega$
,

where typically  C_{x,y,a(x,y)} spills out of  $\Omega$ . On the other hand,

regardless of the existence of  A‐geodesics, one can state the condition for A‐alignment
as follows. First the denition:
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Denition Let (X;  $\delta$) be a space with a weak metric and x, y and z be three points
in X . We say the three points x, y and z (in that order) are  $\delta$‐aligned if  $\delta$(x, z)=
 $\delta$(x, y)+ $\delta$(y, z) .

In particular three ordered points x, y and z on a geodesic are aligned. We now

have

Proposition 6. For a pair of points x and z
, suppose y lies on C_{x,z,a(x,z)} be‐

tween x and z . Then the three points are A ‐aligned.

In what follows, we call the circular arc C(x, y)\subset C_{x,y,a(x,y)} the A‐pseudo‐geodesic.
When C(x, y) lies entirely in  $\Omega$

,
we call  C(x, y) the A‐geodesic from x to y.

Note that the existence issue of geodesics did not arise in the case of Funk metric,
as the open line segment from x though y to b(x, y) is always entirely contained in the

convex set  $\Omega$.

§3.3. The Finsler structure

Even though the metric space (; A) is not geodesic in general, we can still inves‐

tigate the possibility of a Finsler structure. We prove the following:

Theorem 7. Suppose that a pair of points x and y in a convex set  $\Omega$ are con‐

nected by the  A ‐geodesic C(x, y)\subset C_{x,y,a(x,y)} ; namely C(x, y) is entirely contained in

 $\Omega$ . Then the  A ‐distance from x to y is realized by the following path integral

A(x, y)=\displaystyle \int_{a}^{b}p_{ $\Omega$}( $\sigma$(t), $\sigma$'(t))dt
where  $\sigma$ : [a, b]\rightarrow $\Omega$ is a  C^{1} path parameterizing the arc C(x, y) with  $\sigma$(a)=x and

 $\sigma$(b)=y ,
and the integrand is the Minkowski functional given by

p_{ $\Omega$}(x,  $\xi$)=\displaystyle \frac{| $\xi$|}{2\sup\{r|B(x+r\frac{ $\xi$}{| $\xi$|},r)\subset $\Omega$\}}
where x\in $\Omega$,  $\xi$\in T_{x} $\Omega$ and  B(x, r) is the Euclidean ball of radius r centered at x.

The expression for the Minkowski functional appeared in the work of P. Hästö

[6] where it was shown that linearizing the (symmetric) Apollonian metric d at x and

 $\xi$\in T_{x} $\Omega$ ,
one obtains a linear functional. The functional is symmetric, namely its

value for  $\xi$ equals that for - $\xi$ ,
as the distance function is symmetric. By taking the

asymmetric half of the argument, we obtain a candidate for the Minkowski functional

of the Apollonian weak metric. We outline the argument here.

In order to obtain a candidate for the linear functional on  T_{x} $\Omega$ ,
first note the

following equality

\displaystyle \lim_{t\rightarrow 0+}\frac{A(x,x+t $\xi$)}{t}=\sup_{a\in\partial $\Omega$}\lim_{t\rightarrow 0+}\frac{| $\xi$|}{t}\log(\frac{d(x,a)}{d(x+t $\xi$/| $\xi$|,a)})=\sup_{a\in\partial $\Omega$}\frac{\cos $\theta$}{d(x,a)}| $\xi$|
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where the second equality follows from expanding the Euclidean inner product

 d(x+t $\xi$, a)^{2}=d(x, a)^{2}+t^{2}| $\xi$|^{2}-2d(x, a)| $\xi$|t\cos $\theta$

with  $\theta$ the angle between  $\xi$ and the vector  x-a . We note that the last expression above

\displaystyle \sup_{a\in\partial $\Omega$}\frac{\cos $\theta$}{d(x,a)}| $\xi$|
is a convex functional dened on  T_{x} $\Omega$ ,

as for each fixed  a\in\partial $\Omega$ ,
the functional | $\xi$|\cos $\theta$/d(x, a)

is linear in  $\xi$ ,
in particular convex in  $\xi$ ,

and taking supremum of convex functionals re‐

sults in a convex functional.

Now let  $\rho$(a) be the radius of the spheres through x and a with center on the line

\{x+t $\xi$\} . An elementary geometric argument shows \cos $\theta$/d(x, a)=1/2 $\rho$(a) . Taking the

supremum of 1/2(a) over a \in @, we obtain the desired expression

 p_{ $\Omega$}(x,  $\xi$)=\displaystyle \frac{| $\xi$|}{2\sup\{r|B(x+r\frac{ $\xi$}{| $\xi$|},r)\subset $\Omega$\}}
where the value of the supremum is achieved at a(x) when the ball B(x+r\displaystyle \frac{ $\xi$}{| $\xi$|}, r) is

inscribed in  $\Omega$ and tangent to @  $\Omega$ at  a(x) .

Actually one can see the validity of the expression for p_{ $\Omega$}(x,  $\xi$) by looking at the

picture below (Figure 3), which is the limiting case of the left picture in Figure 2

when y approaches to x.

Figure 3. Geometry of the Minkowski functional

To see that the inmum of the lengths of all piecewise C^{1} curves connecting x and y

in  $\Omega$ with respect to this Minkowski functional  p_{ $\Omega$} indeed amounts to the value A(x, y) ,

we use the following observation.
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Proposition 8 (Monotonicity). For a pair of convex sets  $\Omega$ and \tilde{ $\Omega$} with  $\Omega$\subset\tilde{ $\Omega$},
the corresponding Apollonian weak metrics A_{ $\Omega$} and A_{\overline{ $\Omega$}} have the following inequality:

A_{ $\Omega$}(x, y)\geq A_{\overline{ $\Omega$}}(x, y)

for x, y in  $\Omega$.

This inequality is a direct consequence of the variational formulation (Theorem 4)
of A(x, y) .

Consider the situation where x and y are distinct points in  $\Omega$
,

and the circular arc

 C(x, y) lies entirely in  $\Omega$ . Now let \tilde{ $\Omega$} be the half plane whose boundary is the supporting

hyperplane $\pi$_{a(x,y)} of  $\Omega$ at  a(x, y) . Then from the inclusion  $\Omega$\subset\tilde{ $\Omega$} ,
we know that

A_{ $\Omega$}(x, y)\geq A_{\overline{ $\Omega$}}(x, y) .

On one hand, note that we know that the value of the A_{\overline{ $\Omega$}} ‐distance from x to y ;

A_{\overline{ $\Omega$}}(x, y)=1\displaystyle \mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{A_{\overline{ $\Omega$}}}C(x, y)=\int_{0}^{1}P_{\overline{ $\Omega$}}( $\sigma$(t), $\sigma$'(t))dt=\log\frac{|x-a(x,y)|}{|y-a(x,y)|}
where C(x, y) is the part of the circular arc C_{x,y,a(x,y)} and  $\sigma$ : [0, 1]\rightarrow C(x, y) is a

monotone parameterization of C(x, y) with  $\sigma$(0)=x and  $\sigma$(1)=y . The last equality
follows from the fact that

\displaystyle \frac{d}{dt}\log\frac{|x-a(x,y)|}{| $\sigma$(t)-a(x,y)|}=P_{\overline{ $\Omega$}}( $\sigma$(t), $\sigma$'(t)) .

Using the monotonicity of A_{ $\Omega$} ,
we have a lower bound for the A‐distance:

A_{ $\Omega$}(x, y)\displaystyle \geq\log\frac{|x-a(x,y)|}{|y-a(x,y)|}.
On the other hand, we calculate the A_{ $\Omega$} ‐length of the arc C(x, y)\subset C_{x,y,a(x,y)}

parameterized by  $\sigma$(t) ,
which is the unique A_{ $\Omega$} ‐geodesic from x to y . As seen above we

know the primitive function of the Minkowski functional along  $\sigma$ explicitly:

\displaystyle \frac{d}{d $\tau$}\log\frac{| $\sigma$(t)-a(x,y)|}{| $\sigma$(t+ $\tau$)-a(x,y)|}|_{ $\tau$=0}=P_{ $\Omega$}( $\sigma$(t), $\sigma$'(t)) ,

which follows from the observation that a(x, y)=a( $\sigma$(t),  $\sigma$(t')) for all 0\leq t<t'\leq 1.
Hence the A_{ $\Omega$} ‐length of C(x, y) is given as

\displaystyle \int_{0}^{1}p_{ $\Omega$}( $\sigma$(t), $\sigma$'(t))dt=\log\frac{|x-a(x,y)|}{|y-a(x,y)|},
in turn implying the inequality

A_{ $\Omega$}(x, y)\displaystyle \leq\frac{|x-a(x,y)|}{|y-a(x,y)|}.
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By combining these observations together, we have shown that for a pair of points x

and y whose A‐pseudo‐geodesic C(x, y) lies entirely in  $\Omega$
,
the Apollonian weak distance

 A_{ $\Omega$}(x, y) is realized as a Finsler structure

\displaystyle \inf_{ $\gamma$\in$\Gamma$_{xy}},\int_{ $\gamma$}p_{ $\Omega$}( $\gamma$(t), $\gamma$'(t))dt
where $\Gamma$_{x,y} is the set of piecewise C^{1} paths in  $\Omega$ joining  x and y.

§4. Symmetrization of the weak metrics

§4.1. Hilbert metric

Given an open convex body  $\Omega$ in a Euclidean space, Hilbert in 1895 ([5]) proposed
a natural metric  H(x, y) ,

now called the Hilbert metric, dened on  $\Omega$
,

as the logarithm
of the (unsigned/absolute) cross ratio of a quadruple,  x, y, b(x, y) and b(y, x) ,

where

b(x, y) is where the ray from x through y hits the boundary of  $\Omega$.

The logarithm of the cross ratio indeed denes a metric, which is Finslerian and

projective. A Finsler structure on a Euclidean space determines a norm on each tangent

space, and the norm itself is called the Minkowski functional. A metric is said to be

projective when Euclidean straight lines are geodesic. The unit disc with its Hilbert

metric H(x, y) is a prominent example; it is Klein�s model for the hyperbolic plane.
The Finsler structure of the Hilbert metric is known ([14]) to be determined by the

Minkowski functional p_{ $\Omega$}(x,  $\xi$) as

p_{ $\Omega$}(x,  $\xi$)=\displaystyle \sup\underline{\langle $\xi,\eta$_{ $\pi$}\rangle}+\sup^{\underline{\langle- $\xi,\eta$_{ $\pi$}\rangle}}
 $\pi$\in \mathcal{P}d(x,  $\pi$)  $\pi$\in \mathcal{P}d(x,  $\pi$)

where  $\eta$_{ $\pi$}\in T_{x} $\Omega$ is the unit vector perpendicular to the supporting hyperplane  $\pi$ directed

toward  $\pi$.

As the value H(x, y) can be written as

\displaystyle \log\frac{d(x,b(x,y))d(y,b(y,x))}{d(y,b(x,y))d(x,b(y,x))}=\log\frac{d(x,b(x,y))}{d(y,b(x,y))}+\log\frac{d(y,b(y,x))}{d(x,b(y,x))},
Funk [4] looked at the first term of the right hand side above as a metric, even though it

is asymmetric, which has been called the Funk metric. The reader is referred to [11, 12]
where the historical and technical backgrounds are presented comprehensively.

§4.2. Apollonian/Barbilian metric

In 1934, D. Barbilian [1] introduced a metric, which is the arithmetic symmetriza‐
tion of the Apollonian weak metric A(x, y) . Namely the symmetric metric is dened

as

\displaystyle \mathrm{A}\mathrm{p}(x, y)=\sup_{a\in\partial $\Omega$}\log\frac{d(x,a)}{d(y,a)}+\sup_{a\in\partial $\Omega$}\log\frac{d(y,a)}{d(x,a)}
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for a pair of distinct points x and y . This metric was dened independently in 1995 by
A. Beardon [2] who named it as the Apollonian semi‐metric. It is called semi‐metric,
for the distance function may not separate distinct points.

Having obtained the Minkowski functional for the Apollonian weak metric A(x, y)
in the previous section, we have the Minkowski functional for the Apollonian metric

\mathrm{A}\mathrm{p}(x, y) :

p_{ $\Omega$}(x,  $\xi$)=\displaystyle \frac{| $\xi$|}{2\sup\{r|B(x+r\frac{ $\xi$}{| $\xi$|},r)\subset $\Omega$\}}+\frac{| $\xi$|}{2\sup\{r|B(x-r\frac{ $\xi$}{| $\xi$|},r)\subset $\Omega$\}},
making the symmetric metric Ap Finsler when the metric space (; Ap) is geodesic. As

mentioned above, the expression for p_{ $\Omega$}(x,  $\xi$) appeared in [6].
Now we ask:

Question Find a necessary and sufficient condition for the convex set  $\Omega$ so that its

Apollonian metric is Riemannian, namely the Minkowski functional  p_{ $\Omega$}(x,  $\xi$) corresponds
to a positive denite bilinear form dened on T_{x} $\Omega$.

The analogous question for the Hilbert metric has been answered by D. Kay [8]: A

Hilbert geometry is Riemannian if and only if it is hyperbolic, namely the convex set  $\Omega$

is an ellipse. It is tempting to conjecture that the situation for the Apollonian metric

is the same, namely the metric space is Riemannian if and only if the convex set is an

ellipse.

Incidentally we mention here that there is another symmetrization of  A(x, y) ;

Ap (x, y)=\displaystyle \max(\sup_{a\in\partial $\Omega$}\log\frac{d(x,a)}{d(y,a)},\sup_{a\in\partial $\Omega$}\log\frac{d(y,a)}{d(x,a)})
which is equal to

\displaystyle \sup_{a\in\partial $\Omega$}|\log\frac{d(x,a)}{d(y,a)}|
which was introduced by Hästo‐Lindén [7], and is named the half‐Apollonian semi‐

metric. One should note that in the literature of these metrics, the domain  $\Omega$ is not

assumed to be convex; an assumption we have adhered to in this article for the sake of

comparison to the Funk metric.

§4.3. Comparison when  $\Omega$ is the unit disc

Much of the interest in those various weak metrics and their symmetrizations arises

partly from the fact that they are all closely related to the hyperbolic metric, when the

convex domain  $\Omega$ is the unit disc or the upper half plane. We list some known facts

about the Hilbert and Apollonian/Barbilian metrics.
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1. For the unit disc \mathrm{D}^{2}=\{z\in \mathbb{C}||z|<1\} ,
the Hilbert metric gives the Beltrami‐Klein

model of the hyperbolic plane, where the geodesics are the straight line segments,
and the distance function H(x, y) is the logarithm of the cross ratio between the

four ordered points b(y, x) , x, y, b(x, y) ; namely

H(x, y)=\displaystyle \log\frac{|x-b(x,y)||y-b(y,x)|}{|y-b(x,y)||x-b(y,x)|}
2. For the unit disc \mathrm{D}^{2}

,
the Apollonian weak metric has the expression ([12])

A(x, y)=\displaystyle \log(\frac{|x-y|+|x\overline{y}-1|}{|1-|y|^{2}|})
and the Apollonian metric \mathrm{A}\mathrm{p}(x, y) is the hyperbolic metric, with the expression

\displaystyle \mathrm{A}\mathrm{p}(x, y)=\log(\frac{|1-x\overline{y}|+|x-y|}{|1-x\overline{y}|-|x-y|})
where x and y are the complex coordinates of \mathbb{C}.

3. For the upper half plane \mathrm{U}=\{z\in \mathbb{C}|{\rm Im} z>0\} ,
the Apollonian weak metric is

given ([3]) by

A(x, y)=\displaystyle \log(\frac{|x-\overline{y}|+|x-y|}{|x-\overline{y}|})
and the Apollonian metric is the hyperbolic metric on \mathrm{U} , with the expression ([3])

\displaystyle \mathrm{A}\mathrm{p}(x, y)=\log(\frac{|x-\overline{y}|+|x-y|}{|x-\overline{y}|-|x-y|})
We consider the geodesics for these models of hyperbolic plane. As the unit disc is

strictly convex, given a pair of points, the Euclidean line segments connecting them is

the unique F‐geodesics in both ways;

F(x, y)=F(x, t)+F(t, y) and F(y, x)=F(y, t)+F(t, x)

for any point t on the line segment \overline{xy} . This in turn says that the line segments are the

geodesics for the Hilbert metric so that we have H(x, y)=H(x, t)+H(t, y) . This is the

Beltrami‐Klein model of the hyperbolic plane.
On the other hand, from the discussion from the previous section, the A‐geodesics

on the unit disc are the circular arcs which meet the unit circle perpendicularly. This

fact is also proved in [12]. Note that these arcs always exist in \mathrm{D}^{2}
, making the metric

space (\mathrm{D}^{2}, A) geodesic. In particular given any pair of points x and y ,
there always exists

a unique circular arc C_{x,y,a(x,y)} so that the portion of arc between x and y becomes the

A‐geodesic from x and y ,
as well as the A‐geodesic from y to x ; namely

A(x, y)=A(x, t)+A(t, y) and A(y, x)=A(y, t)+A(t, x)



Variational formulations oF the Funk and Apollonian weak metrics on convex sets 71

for any point t on the circular arc between x and y . This in turn says that the circular

arcs are geodesics for the Apollonian metric so that we have \mathrm{A}\mathrm{p}(x, y)=\mathrm{A}\mathrm{p}(x, t)+
\mathrm{A}\mathrm{p}(t, y) . This is the Poincaré model of the hyperbolic plane.

Between these two models for the hyperbolic plane, there is a canonical correspon‐

dence; the following map  $\Phi$ sends the unit disc to itself, and is an isometry from the

Beltrami‐Klein disc model (\mathrm{D}^{2}, H) to the Poincare disc model (; Ap)

 $\Phi$:z\displaystyle \mapsto\frac{z}{1+\sqrt{1-|z|^{2}}}.
Geometrically, this map  $\Phi$ is described as follows: start with a point  z on the unit disc

centered at the origin of the xy‐plane, and project it down to the southern hemisphere

\{x^{2}+y^{2}+z^{2}=1, z<0\} vertically, call the point  $\phi$(z) . The point  $\Phi$(z) is where the

line through the north pole (0,0,1) and  $\phi$(z) and the xy‐plane meet. By this map,

the straight edge whose endpoints are two points P and Q on the unit circle is sent to

the circular arc that meets the unit circle at P and Q perpendicularly, sending the H‐

geodesics to the Ap‐geodesics, and at the same time preserving the hyperbolic distance

H(z_{1}, z_{2})=\mathrm{A}\mathrm{p}( $\Phi$(z_{1}),  $\Phi$(z_{2})) . We also mention that the map  $\Phi$ is not an isometry
between (\mathrm{D}^{2}, A_{\mathrm{D}^{2}}) and (; A_{\mathrm{U}}) .
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