
RIMS Kôkyûroku Bessatsu
B48 (2014), 111−130

The growth series for pure Artin monoids

of dihedral type

By

Michihiko Fujii * and Takao Satoh **

Abstract

We study a positive monoid for the pure Artin group of dihedral type I_{2}(k) ,
where the

pure Artin group of dihedral type P_{I_{2}(k)} is the kernel of the natural projection from the Artin

group of dihedral type to the corresponding Coxeter group. We call this monoid the pure Artin

monoid of dihedral type and denote it by P_{I_{2}(k)}^{+} . We show that P_{I_{2}(k)}^{+} is naturally embedded in

P_{I_{2}(k)} . Moreover, we give a normal form for an element of P_{I_{2}(k)}^{+} ,
and present an exact rational

function form for the spherical growth series of P_{I_{2}(k)}^{+} with respect to its natural generating
set.

§1. Introduction

Let G be a finitely generated group with a finite generating set S . Set S^{-1} :=

\{s^{-1}|s\in S\} . The word length |\mathrm{j}|| of an element g\in G is the smallest integer n\geq 0

for which there exist s_{1} ,
. . .

, s_{n}\in S\cup S^{-1} such that g=s_{1}
. . .

s_{n} . The spherical growth
series of G relative to S is the formal power series

S_{G,S}(t):=\displaystyle \sum_{q\geq 0}$\alpha$_{q}(G, S)t^{q}\in \mathrm{Z}[[t]],
where \text{♯^{}\mathrm{f}} 2 \mathrm{j} \mathrm{j}\mathrm{j}\mathrm{j}\mathrm{j} \mathrm{g} for each 0.where $\alpha$_{q}(G, S) :=\#\{g\in G|||g||=q\} for each q\geq 0.
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The spherical growth series directly describes the distribution of elements in the

group according to length. To determine the spherical growth series of a group relative to

a generating set leads to a deep understanding of a combinatorial structure of the group

with respect to the generating set. It is obvious by the denition that the spherical

growth series strongly depends on a generating set. For many cases, including the

Coxeter groups with the standard generators, the spherical growth series are known to

be rational (see [4], [9], [10], [7], [8], [11], [13], [14], [15] and [28]). In general, however,
even if we can easily compute the spherical growth series for a certain generating set,

it might be quite difficult to determine it for another generating set. For instance, even

though Charney [10] determined the spherical growth series of the Artin group of finite

type for some generating set, it is still an open problem to determine that of it for the

standard Artin generators.

In order to compute the spherical growth series of a group, we have to choose

a unique geodesic representative for each element of the group, and count all of them.

Mairesse and Mathéus [23] have succeeded to do it for the Artin group G_{I_{2}(k)} of dihedral

type with respect to the standard Artin generators. More precisely, they constructed

finite‐state automata which recognize a unique geodesic representative of each element

of G_{I_{2}(k)} over the standard Artin generators, and obtained a concrete rational function

expression of its growth series. We remark that before Mairesse and Mathéus, Sabalka

[25] obtained an exact rational function expression for the case k=3 . For general Artin

groups, however, there are few computations for their growth series with respect to the

standard Artin generators.

In this paper, we consider the kernel of the projection from the Artin group G_{I_{2}(k)}
of dihedral type to its Coxeter group \overline{G}_{I_{2}(k)} . We call it the pure Artin group of dihedral

type, and denote it by P_{I_{2}(k)} . For k=3, P_{I_{2}(3)} is isomorphic to the pure braid group

with three strands. To begin with, by using the Reidemeister‐Schreier method, we give
the following finite presentation of P_{I_{2}(k)} for k\geq 3 :

P_{I_{2}(k)}:=\langle a_{1} ,
. . .

, a_{k}|a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1}=\cdots=a_{k}a_{1}\cdots a_{k-1}\rangle,

(see Proposition 2.1). Since all the words in the relations above consist of positive

letters, we can consider a positive monoid

P_{I_{2}(k)}^{+}:=\langle a_{1} ,
. . .

, a_{k}|a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1}=. . . =a_{k}a_{1}\cdots a_{k-1}\rangle^{+},

associated to the group P_{I_{2}(k)} . (The denition of the right‐hand side is given in Section

2. ) We call P^{+} the pure Artin monoid of dihedral type. One of the main theorems
I_{2}(k)

of this paper is the following:

Theorem 1.1 (= Theorem 2.9). The natural monoid homomorphism  P_{I_{2}(k)}^{+}\rightarrow
 P_{I_{2}(k)} is injective.
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We prove this theorem by using the structure of the quotient group of P_{I_{2}(k)} by
its center, which can be identied with the free group generated by a_{1} ,

. .

:, a_{k-1} . In

a subsequent paper [17], Fujii gives another proof of Theorem 1 based on a work of

Garside [19]. Theorem 1 implies that all the words containing only the positive letters,

a_{1} ,
.

::, a_{k} ,
are geodesic in the Cayley graph of P_{I_{2}(k)} with respect to the generators

a_{1} ,
.

::, a_{k} . Hence, the coefficient of the spherical growth series of P_{I_{2}(k)}^{+} is smaller than

or equal to that of P_{I_{2}(k)} for each degree.

In this paper, we consider an element \nabla:=a_{1}a_{2}\cdots a_{k} in the free monoid over the

set \{a_{1}, . . :; a_{k}\} . The element \nabla is a pure Artin group analogue of the fundamental

element given for the Artin group (cf. [6]). We also introduce fundamental blocks of

 P_{I_{2}(k)}^{+} . (The denition of them is given in Section 2.) Let \mathrm{F}\mathrm{B}^{+} be the set of all of the

fundamental blocks of P_{I_{2}(k)}^{+} . Then, from Theorem 1.1, we provide a normal form of

an element of P_{I_{2}(k)}^{+} (see Proposition 2.10). In Section 3, by using the normal form, we

construct deterministic finite‐state automata over subsets of \mathrm{F}\mathrm{B}^{+}\mathrm{U}\{\nabla\} that recognize
a unique geodesic representative for each element of P_{I_{2}(k)}^{+} . These automata lead us to

determine the spherical growth series S(t) of P_{I_{2}(k)}^{+} in principle. In fact, in Section 4,

by considering the structure of the automata, we determine the spherical growth series

S(t) exactly as follows.

Theorem 1.2 (= Theorem 4.3). For k\geq 3,

S(t)=\displaystyle \frac{1}{1-kt+(k-1)t^{k}}.
We remark that in a subsequent paper [17], Fujii obtained a rational function form

of the spherical growth series of P_{I_{2}(k)} with respect to the generating set \{a_{1}, . . :; a_{k}\}.
Contents
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§2. Pure Artin groups and monoids of dihedral type

In this section, for each k\in \mathrm{Z}_{\geq 3} ,
we dene the pure Artin group P_{I_{2}(k)} of dihedral

type, and give its finite presentation. Moreover, we introduce the positive monoid P^{+}
I_{2}(k)
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for P_{I_{2}(k)} in order to investigate the combinatorial group structure of P_{I_{2}(k)} with respect

to the finite presentation. In particular, we show that P_{I_{2}(k)}^{+} is naturally embedded in

P_{I_{2}(k)} ,
and give a normal form of each element of P_{I_{2}(k)}^{+}.

Let k be an integer greater than two, and G_{I_{2}(k)} the Artin group of dihedral type

I(k) dened by

G_{I_{2}(k)}:=\langle$\sigma$_{1}, $\sigma$_{2}|\langle$\sigma$_{1}$\sigma$_{2}\rangle^{k}=\langle$\sigma$_{2}$\sigma$_{1}\rangle^{k}\rangle,

\{\mathrm{z}where we dene

\langle$\sigma$_{i}$\sigma$_{j}\rangle^{k} := \mathrm{i}\mathrm{j}\mathrm{i}\mathrm{j}\mathrm{i}

k letters

The Coxeter group of dihedral type is the group presented by

\overline{G}_{I_{2}(k)}:=\langle$\sigma$_{1}, $\sigma$_{2}|\langle$\sigma$_{1}$\sigma$_{2}\rangle^{k}=\langle$\sigma$_{2}$\sigma$_{1}\rangle^{k}, $\sigma$_{1}^{2}=$\sigma$_{2}^{2}=1\rangle.

The group \overline{G}_{I_{2}(k)} is isomorphic to the dihedral group of order 2k . If we set  $\sigma$:=$\sigma$_{1}$\sigma$_{2}

and  $\tau$:=$\sigma$_{2} ,
then we have the following usual presentation:

\overline{G}_{I_{2}(k)}=\langle $\sigma$,  $\tau$|$\sigma$^{k}=$\tau$^{2}=( $\sigma \tau$)^{2}=1\rangle.
There is a natural homomorphism

p:G_{I_{2}(k)}\rightarrow\overline{G}_{I_{2}(k)}.

We call its kernel the pure Artin group of dihedral type, and denote it by P_{I_{2}(k)} . First,
we give a finite presentation of P_{I_{2}(k)}.

Proposition 2.1. For any k\geq 3 ,
the group P_{I_{2}(k)} has the following finite pre‐

sentation:

(2.1) P_{I_{2}(k)}=\{a_{1} ,
. . .

, a_{k}|a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1}=a_{3}\cdots a_{k}a_{1}a_{2}=\cdots=a_{k}a_{1}\cdots a_{k-1}\rangle.

Proof. In order to obtain the required presentation, we use the Reidemeister‐Schreier

method. (For details, see Chapter II. 4 in [22] for example.)

Case 1. k=2l and l\geq 2.

Here, we have

G_{I_{2}(k)}=\langle$\sigma$_{1}, $\sigma$_{2}|($\sigma$_{1}$\sigma$_{2})^{l}=($\sigma$_{2}$\sigma$_{1})^{l}\rangle.
If we set  $\sigma$:=$\sigma$_{1}$\sigma$_{2} and  $\tau$:=$\sigma$_{2} ,

we have

G_{I_{2}(k)}=\langle $\sigma$,  $\tau$|$\sigma$^{l}= $\tau \sigma$^{l}$\tau$^{-1}\rangle,

by the Tietze transformation. Then, by applying the Reidemeister‐Schreier method to

a generating set X:=\{ $\sigma$,  $\tau$\} for G_{I_{2}(k)} and a Schreier transversal

T :=\{1,  $\sigma$, . . . , $\sigma$^{k-1},  $\tau$,  $\sigma \tau$, . . . , $\sigma$^{k-1} $\tau$\}\subset G_{I_{2}(k)},
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we obtain finitely many generators and relations of P_{I_{2}(k)} as follows:

\bullet A generating set of  P_{I_{2}(k)} is given by

 $\Gamma$:=\{(t, x):=tx(\overline{tx})^{-1}|x\in X, t\in T, (t, x)\neq 1\},

where for any y\in G_{I_{2}(k)} ,
an element \overline{y}\in T is dened by p(y)=p(\overline{y}) . In fact,  $\Gamma$ consists

of the following finitely many elements:

 a:=$\sigma$^{k},

(2.2) b_{0}:= $\tau \sigma \tau$^{-1}$\sigma$^{-(k-1)}, b_{i}:=$\sigma$^{i} $\tau \sigma \tau$^{-1}$\sigma$^{-(i-1)} for 1\leq i\leq k-1,

c_{i} :=$\sigma$^{i}$\tau$^{2}$\sigma$^{-i} for 0\leq i\leq k-1.

\bullet A set of finitely many relations is given by

(2.3) \{ $\varphi$(t\cdot$\sigma$^{l} $\tau \sigma$^{-l}$\tau$^{-1}\cdot t^{-1})=1|t\in T\},

where  $\varphi$(w) is an element in the free group generated by  $\Gamma$ that is obtained from  w by

rewriting w as a product of a, b_{i} and c_{i} . In fact, this set consists of the following finitely

many relations:

(R1): b_{0}b_{2l-1}b_{2l-2}\cdots b_{l+1}=1, b_{1}b_{0}b_{2l-1}\cdots b_{l+2}=1, \cdots\cdots

,  b_{l-1}b_{l-2}\cdots b_{1}b_{0}=1,

(R2): a=b_{l}b_{l-1}\cdots b_{1}, a=b_{l+1}b_{l}\cdots b_{2}, \cdots\cdots

,  a=b_{2l-1}b_{2l-2}\cdots b_{l+1}b_{l},

(R3) : b_{0}b_{2l-1}b_{2l-2}\cdots b_{l+1}c_{l}c_{0}^{-1}=1, b_{1}b_{0}b_{2l-1}\cdots b_{l+2}c_{l+1}c_{1}^{-1}=1, \cdots\cdots

,

 b_{l-1}b_{l-2}\cdots b_{1}b_{0}c_{2l-1}c_{l-1}^{-1}=1,
(R4) : b_{l}b_{l-1}\cdots b_{1}c_{0}a^{-1}c_{l}^{-1}=1, b_{l+1}b_{l}\cdots b_{2}c_{1}a^{-1}c_{l+1}^{-1}=1, \cdots\cdots

,

 b_{2l-1}b_{2l-2}\cdots b_{l+1}b_{l}c_{l-1}a^{-1}c_{2l-1}^{-1}=1.

Below, we demonstrate how to derive the above relations. First, we consider the relations

 $\varphi$($\sigma$^{i}\cdot$\sigma$^{l} $\tau \sigma$^{-l}$\tau$^{-1}\cdot$\sigma$^{-i})=1,

where 0\leq i\leq k-1 . If i=0 ,
we have

$\sigma$^{l} $\tau \sigma$^{-1}$\tau$^{-1}$\sigma$^{-(l+1)} . $\sigma$^{l+1} $\tau \sigma$^{-1}$\tau$^{-1}$\sigma$^{-(l+2)} . . . $\sigma$^{2l-1} $\tau \sigma$^{-1}$\tau$^{-1}=1

\Leftrightarrow b_{l+1}^{-1}b_{l+2}^{-1}\cdots b_{2l-1}^{-1}b_{0}^{-1}=1
\Leftrightarrow b_{0}b_{2l-1}b_{2l-2}\cdots b_{l+1}=1.

The relation appearing on the last line is equal to the first relation of (R1). Similarly,
for the cases where i=1

, 2, . . .

;
k-1

,
we obtain the rest of (R1) and (R2). Next,

consider the relations

 $\varphi$($\sigma$^{i} $\tau$\cdot$\sigma$^{l} $\tau \sigma$^{-l_{\mathcal{T}}-1} $\tau$^{-1}$\sigma$^{-i})=1,
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where 0\leq i\leq k-1 . If i=0 ,
we have

 $\tau \sigma \tau$^{-1}$\sigma$^{-(2l1)} . $\sigma$^{2l-1} $\tau \sigma \tau$^{-1}$\sigma$^{-(2l2)} . . . $\sigma$^{l+1} $\tau \sigma \tau$^{-1}$\sigma$^{-l} . $\sigma$^{l}$\tau$^{2}$\sigma$^{-l} . $\tau$^{-2}=1

\Leftrightarrow b_{0}b_{2l-1}b_{2l-2}\cdots b_{l+1}c_{l}c_{0}^{-1}=1.

The relation appearing on the last line is equal to the first relation of (R3). Similarly,
for the cases where i=1

, 2, . .

:;
k-1

,
we obtain the rest of (R3) and (R4).

Using (R1) and (R2), we can transform the relations (R3) and (R4) into

(R3) : c_{l}=c_{0}, c_{l+1}=c_{1},
\cdots\cdots

,  c_{2l-1}=c_{l-1},

(R4) : ac_{0}=c_{l}a, ac_{1}=c_{l+1}a,
\cdots\cdots

,  ac_{l-1}=c_{2l-1}a,

respectively. Hence, it is seen that P_{I_{2}(k)} has the generators,

a, b_{1} ,
. . .

, b_{l-1}, c_{0} ,
. . .

, c_{l-1},

with the relations,

(R4) : ac_{0}=c_{0}a, ac_{1}=c_{1}a,
\cdots\cdots

,  ac_{l-1}=c_{l-1}a,

(R5) : ab_{1}=b_{1}a, ab_{2}=b_{2}a, \cdots\cdots

,  ab_{l-1}=b_{l-1}a,

because we can remove the generators, b_{l}, b_{l+1}, b_{l+2} ,
. .

:; b_{2l-1}, b_{0} and c_{l}, c_{l+1} ,
. . .

; c_{2l-1},

by using the relations,

the first relation in (R2), and all relations in (R1) and (R3)

Finally, if we set

a_{1}:=b_{1}, a_{2}:=b_{2} ,
. . .

, a_{l-1}:=b_{l-1}, a_{l}:=c_{0}, a_{l+1}:=c_{1} ,
. . .

, a_{2l-1}:=c_{l-1},

and a_{2l}:=a_{2l-1}^{-1}a_{2l-2}^{-1}\cdots a_{1}^{-1}a ,
then we obtain the desired presentation.

Case 2. k=2l+1 and l\geq 1.

If we set  $\sigma$:=$\sigma$_{1}$\sigma$_{2} and  $\tau$:=$\sigma$_{2} ,
we have

G_{I_{2}(k)}=\langle $\sigma$,  $\tau$|$\sigma$^{l+1}= $\tau \sigma$^{l}$\tau$^{-1}\rangle.

By an argument similar to Case 1, it is seen that generators of P_{I_{2}(k)} are given as in
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(2.2) and relations of P_{I_{2}(k)} are written as

(S1): c_{l+1}^{-1}b_{l+2}^{-1}b_{l+3}^{-1}\cdots b_{2l-1}^{-1}b_{0}^{-1}=1, c_{l+2}^{-1}b_{l+3}^{-1}b_{l+4}^{-1}\cdots b_{0}^{-1}b_{1}^{-1}=1, \cdots\cdots

,

 c_{2l}^{-1}b_{0}^{-1}b_{1}^{-1}\cdots b_{l-2}^{-1}b_{l-1}^{-1}=1,
(S2): ac_{0}^{-1}b_{1}^{-1}b_{2}^{-1}\cdots b_{l}^{-1}=1, ac_{1}^{-1}b_{2}^{-1}b_{3}^{-1}\cdots b_{l+1}^{-1}=1, \cdots\cdots

,

 ac_{l}^{-1}b_{l+1}^{-1}b_{l+2}^{-1}\cdots b_{2l}^{-1}=1,
(S3) : b_{0}b_{2l}b_{2l-1}\cdots b_{l+1}c_{0}^{-1}=1, b_{1}b_{0}b_{2l}\cdots b_{l+2}c_{1}^{-1}=1, \cdots\cdots

,

 b_{l}b_{l-1}\cdots b_{1}b_{0}c_{l}^{-1}=1,
(S4): b_{l+1}b_{l}\cdots b_{1}a^{-1}c_{l+1}^{-1}=1, b_{l+2}b_{l+1}\cdots b_{2}a^{-1}c_{l+2}^{-1}=1, \cdots\cdots

,

 b_{2l}b_{2l-1}\cdots b_{l}a^{-1}c_{2l}^{-1}=1.

The relations in (S1) and (S3) are transformed into

(Sl) : c_{l+1}=b_{l+2}^{-1}b_{l+3}^{-1}\cdots b_{2l-1}^{-1}b_{0}^{-1}, c_{l+2}=b_{l+3}^{-1}b_{l+4}^{-1}\cdots b_{0}^{-1}b_{1}^{-1}, \cdots\cdots

,

 c_{2l}=b_{0}^{-1}b_{1}^{-1}\cdots b_{l-2}^{-1}b_{l-1}^{-1},
(S3) : c_{0}=b_{0}b_{2l}b_{2l-1}\cdots b_{l+1}, c_{1}=b_{1}b_{0}b_{2l}\cdots b_{l+2}, \cdots\cdots

,

 c_{l}=b_{l}b_{l-1}\cdots b_{1}b_{0},

respectively. Then, by removing the generators, c_{0}, c_{1} ,
. :.

; c_{2l} ,
with using the relations

(Sl) and (S3) ,
we have that P_{I_{2}(k)} has the generators,

a, b_{0} ,
. :.

, b_{2l},

with the relations,

a=b_{2l}b_{2l-1}\cdots b_{1}b_{0}=b_{2l-1}b_{2l-2}\cdots b_{0}b_{2l}=\cdots=b_{0}b_{2l}\cdots b_{2}b_{1}.

Finally, if we remove the generator a from the relations above, we obtain the required

presentation. This completes the proof of Proposition 2.1. \square 

Example 2.2. The pure braid group with three strands, P_{3} ,
is a geometric

realization of the pure Artin group,

P_{I_{2}(3)}= \langle a_{1}, a_{2}, a_{3}|a_{1}a_{2}a_{3}=a_{2}a_{3}a_{1}=a_{3}a_{1}a_{2}\rangle.

The generators a_{1}, a_{2} and a_{3} are themselves braids and are given in terms of the

standard Artin generators of the braid group with three strands, $\sigma$_{1} and $\sigma$_{2} ,
as follows:

a_{1}=$\sigma$_{1}^{2}$\sigma$_{2}^{2}, a_{2}=$\sigma$_{1}$\sigma$_{2}^{2}$\sigma$_{1} and a_{3}=$\sigma$_{1}^{-2} . Now, let A_{12}:=a_{3}^{-1}=$\sigma$_{1}^{2}, A_{13} :=a_{3}a_{2}=

$\sigma$_{1}^{-1}$\sigma$_{2}^{2}$\sigma$_{1}=$\sigma$_{2}$\sigma$_{1}^{2}$\sigma$_{2}^{-1} and A_{23}:=a_{3}a_{1}=$\sigma$_{2}^{2} . Then, we obtain the same presentation of

P_{I_{2}(k)} :

P_{I_{2}(3)}= \langle A_{12}, A_{13}, A_{23}|A_{12}A_{13}A_{23}=A_{13}A_{23}A_{12}=A_{23}A_{12}A_{13}\rangle.
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Here, note that \{A_{12}, A_{13}, A_{23}\} is the standard generating set of the pure braid group

with three strands (cf. [3]).

1 i-1 i i+1 i+2 n

Figure 1. A geometrical braid corresponding to $\sigma$_{i}

Now, dene

A^{+}:=\{a_{1}, . . . , a_{k}\},
A^{-}:=\{a_{1}^{-1}, . . . , a_{k}^{-1}\},
A :=A^{+}\cup A^{-}

For any subsets  $\Sigma$\subset A, $\Sigma$^{+}\subset A^{+} and $\Sigma$^{-}\subset A^{-1} ,
let $\Sigma$^{*}, ($\Sigma$^{+})^{*} and ($\Sigma$^{-})^{*} be the free

monoids generated by  $\Sigma$, $\Sigma$^{+} and $\Sigma$^{-}
, respectively. We call an element of  $\Sigma$ a letter, and

an element of  $\Sigma$^{*} a word. An element of $\Sigma$^{+} (resp. $\Sigma$^{-} ) is called a positive letter (resp.
negative letter), that of ($\Sigma$^{+})^{*} (resp. ($\Sigma$^{-})^{*} ) a positive word (resp. negative word). The

length of a word w is the number of letters in w
,

which is denoted by |w| . The length
of the null word,  $\epsilon$ ,

is zero. The null word is the identity of each monoid.

We write the canonical monoid homomorphism as  $\pi$ :  A^{*}\rightarrow P_{I_{2}(k)} . If u and v are

words in A^{*}
,

then u=v means that  $\pi$(u)= $\pi$(v) ,
and u\equiv v means that u and v are

identical letter by letter. A word w\in$\pi$^{-1}(g) is called a representative of g . The length
of a group element g is dened by

\displaystyle \Vert g\Vert:=\min\{l|g= $\pi$(s_{1}\cdots s_{l}), s_{i}\in A\}.

A word w\in A^{*} is geodesic if |w|=\Vert $\pi$(w)\Vert . A word  w_{1} . . . w_{m}\in A^{*} is called a reduced

word if w_{i}\neq w_{i+1}^{-1} for all i\in\{1, . ::; m-1\} . A geodesic representative is a reduced

word.

For each q\in \mathrm{Z}_{\geq 0} ,
we dene

$\alpha$_{q}(P_{I_{2}(k)}, A^{+}):=\#\{g\in P_{I_{2}(k)} \Vert g\Vert=q\}.
The spherical growth series of P_{I_{2}(k)} with respect to the generating set A^{+} is the fol‐

lowing formal power series

S_{P_{I_{2}(k)},A+}(t):=\displaystyle \sum_{q=0}^{\infty}$\alpha$_{q}(P_{I_{2}(k)}, A^{+})t^{q}.
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It is well‐known that the radius of convergence of the growth series of any finitely

generated group is strictly greater than 0 . Thus, the growth series S_{P_{I_{2}(k)},A+}(t) is a

holomorphic function near the origin 0 . In a subsequent paper [17], Fujii determined a

rational function expression of S_{P_{I_{2}(k)},A+}(t) for any k\geq 3.

Consider a positive word \nabla:=a_{1}a_{2}\cdots a_{k}\in(A^{+})^{*} . Then, we have

\nabla=a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1}=a_{3} . . .

a_{k}a_{1}a_{2}=.
. .

=a_{k}a_{1}\cdots a_{k-1}

in P_{I_{2}(k)} . Then, it is readily seen that the following lemma holds.

Lemma 2.3.

(1) The element \nabla generates the innite cyclic group  Z contained in the center of P_{I_{2}(k)}.
In particular, we have

a\nabla^{\pm 1}=\nabla^{\pm 1}a,

for any a\in A=A^{+}\cup A^{-}

(2) The quotient group P_{I_{2}(k)}/Z is the free group F_{k-1} generated by (the coset classes

of) a_{1} ,
. . .

, a_{k-1}.

From Lemma 2.3, we see that Z coincides with the center of P_{I_{2}(k)} . Hence, we

have that Z\cong \mathrm{Z}
,

and see that P_{I_{2}(k)} is isomorphic to \mathrm{Z}\times F_{k-1} as a group. From this

aspect, the group structure of P_{I_{2}(k)} is quite simple. In this paper, however, we consider

the generating set \{a_{1}, . . :; a_{k}\} of P_{I_{2}(k)} and investigate the growth series of P_{I_{2}(k)} with

respect to this generating set.

The pure Artin monoid of dihedral type is the monoid presented by

P_{I_{2}(k)}^{+}:=\langle a_{1} ,
. . .

, a_{k}|a_{1}\cdots a_{k}=a_{2}\cdots a_{k}a_{1}=. . . =a_{k}a_{1}\cdots a_{k-1}\rangle^{+},

where the right‐hand side is the quotient of the free monoid (A^{+})^{*} by an equivalence
relation on (A^{+})^{*} dened as follows:

(i) Two positive words  $\omega$, $\omega$'\in(A^{+})^{*} are elementarily equivalent if there are positive
words u, v\in(A^{+})^{*} and indices i, j\in\{1, . ::, k\} such that  $\omega$\equiv u(a_{i}. . . a_{k}a_{1}\cdots a)v
and $\omega$'\equiv u(a_{j}. . . a_{k}a_{1}\cdots a_{j-1})v.

(ii) Two positive words  $\omega$, $\omega$'\in(A^{+})^{*} are equivalent if there is a sequence $\omega$_{0}, $\omega$_{1},
\cdots

; $\omega$_{l}

for some l\in \mathrm{Z}_{\geq 0} such that $\omega$_{s} is elementarily equivalent to $\omega$_{s+1} for s=0, \cdots

;  l-1,
and $\omega$_{0}\equiv $\omega$, $\omega$_{l}\equiv$\omega$'

Let $\pi$^{+} be the canonical monoid homomorphism from (A^{+})^{*} to P_{I_{2}(k)}^{+} . If u and v are

words in (A^{+})^{*} ,
then u=v means that $\pi$^{+}(u)=$\pi$^{+}(v) . There is a natural monoid

homomorphism P_{I_{2}(k)}^{+}\rightarrow P_{I_{2}(k)} . Below, we show that this map is injective. To begin

with, we show the following:
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Proposition 2.4. Each element of P_{I_{2}(k)}^{+} has a unique representative of the fol‐

lowing type:

(2.4) v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1}(a_{1}. . .a_{k})^{m}\in(A^{+})^{*},

where

(i) m\in \mathrm{Z}_{\geq 0},
(ii) e_{1} ,

. . .

, e_{n}\in \mathrm{N},

(iii) v_{1} ,
. :.

; v_{n+1}\in\{a_{1}, . . :, a_{k-1}\}^{*} with v_{2} ,
. . .

, v_{n}\neq $\epsilon$,

(iv) v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1} does not contain a positive word u satisfy ing u=\nabla.

Let q be the natural projection from P_{I_{2}(k)} to P_{I_{2}(k)}/Z ( =F_{k-1}= \langle al, . . .

;  a_{k-1}\rangle ).
For an element  $\xi$\in\{a_{1}^{\pm 1}, a_{k-1}^{\pm 1}\}^{*} ,

we denote by red() the reduced word expression for

 $\xi$ within  F_{k-1} . Let  $\theta$ :  P^{+} \rightarrow F_{k-1} be the composition of the natural homomorphisms:I_{2}(k)

 $\theta$:P_{I_{2}(k)}^{+}\rightarrow P_{I_{2}(k)}\rightarrow^{q}P_{I_{2}(k)}/Z=F_{k-1}=\langle a_{1} ,
. . .

, a_{k-1}\rangle.

We prepare the following three lemmas.

Lemma 2.5. For each 1\leq j\leq n ,
consider the image of a subword v_{j}a_{k}^{e_{j}}v_{j+1} of

(2.4) by the map  $\theta$\circ$\pi$^{+} :

 $\theta$($\pi$^{+}(v_{j}a_{k}^{e_{j}}v_{j+1}))=\mathrm{r}\mathrm{e}\mathrm{d}(v_{j}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}v_{j+1})\in F_{k-1}.

Then, there exists a certain letter a_{r}^{-1} appearing in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}} that cannot

disappear when we take the reduced expression of the word v_{j}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}v_{j+1}
within F_{k-1}.

Proof of Lemma 2.5. If all letters in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}} are canceled for some j ,
then

by the uniqueness of the reduced word expression, we have the following three cases:

(i) v_{j}=v_{j}'a_{1}a_{2} . . .

a_{k-1} for some v_{j}'\in(A^{+}\backslash \{a_{k}\})^{*},

(ii) v_{j+1}=a_{1}a_{2}\cdots a_{k-1}v_{j+1}' for some v_{j+1}'\in(A^{+}\backslash \{a_{k}\})^{*},

(iii) e_{j}=1 and v_{j}=v_{j}'a_{i}a_{i+1}\cdots a_{k-1}, v_{j+1}=a_{1}a_{2}\cdots a_{i-1}v_{j+1}' for some v_{j}',  v_{j+1}'\in
(A^{+}\backslash \{a_{k}\})^{*}

In each case, the condition (iv) given in Proposition 2.4 is not satised. Thus, we obtain

a contradiction. \square 

Lemma 2.6. Consider the image of the word (2.4) by the map  $\theta$\circ$\pi$^{+} :

(2.5)
red (v_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}}v_{2}\cdots v_{j}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}v_{j+1}\cdots v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}) .
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Suppose that there exists a letter a_{i}^{-1} appearing in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}} that is canceled

when we take the reduced expression of the word (2.5). Then, the letter a_{i}^{-1} is canceled

with a letter a_{i} coming fr om the words v_{j} or v_{j+1}.

Proof of Lemma 2.6. Assume that for some j\in\{1, . ::, n\} ,
there exists a letter a_{i}^{-1}

appearing in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}} such that it is canceled with a letter a_{i} coming from

v_{l} ,
where l\neq j, j+1 . There are the following two cases: l\geq j+2 and l\leq j-1.

Now, consider the case l\geq j+2 . Among such indices l
,

we choose the smallest one, \overline{l}.

Then, it is readily seen that all letters in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j+1}} are canceled in the reduce

expression of the word (2.5). Since \overline{l} is smallest, all letters in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j+1}} are

canceled with letters coming from v_{j+1} or v_{j+2} . This, however, contradicts with Lemma

2.5. Similarly, we obtain a contradiction in the case where l\leq j-1. \square 

Lemma 2.7. Consider the image of the word (2.4) by the map  $\theta$\circ$\pi$^{+} as in lemma

2.6. Then, for any 1\leq j\leq n ,
there exists a letter a_{r}^{-1} appearing in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}

that does not disappear when we take the reduced expression of the word (2. 5) within

F_{k-1}.

Proof of Lemma 2. 7. Assume that for some 1\leq j\leq n ,
all letters in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}

are canceled. Then, by Lemma 2.6, all letters in (a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}} must be canceled

within v_{j}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{j}}v_{j+1} . This contradicts with Lemma 2.5. \square 

Now, it is ready to prove Proposition 2.4. It is easily seen that for any element

v\in P_{I_{2}(k)}^{+}, v has a representative as in (2.4), since \nabla belongs to the center of  P_{I_{2}(k)}^{+}.
Hence, it is sufficient to show the uniqueness of the expression. Take any two elements

of (A^{+})^{*},
v\equiv v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1}(a_{1}. . .a_{k})^{m}

and

w\equiv w_{1}a_{k}^{e_{1}'}w_{2}a_{k}^{e_{2}'}\cdots w_{n'}a_{k}^{e_{\acute{n}}}w_{n'+1}(a_{1}\cdots a_{k})^{m'}
of type (2.4), and assume that v=w . First, consider their images by  $\theta$\circ$\pi$^{+} . Then we

have

v_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}}v_{2} . . . v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}
=w_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}'}w_{2}\cdots w_{n'}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n'}'}w_{n'+1}

in F_{k-1} . Then, from Lemma 2.7, we see that n=n' by taking the reduced expressions
of both sides. Hence,

v_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}}v_{2}\cdots v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}
(2.6)

=w_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}'}w_{2}\cdots w_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}'}w_{n+1}.

Step 1. Consider the subwords v_{1} and w_{1} . Then, we will show that v_{1}\equiv w_{1} . Since v_{1}

does not contain a positive word u satisfying u=\nabla, v_{1} takes one of the following types:
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(i) The last letter of v_{1} is not a_{k-1},

(ii) v_{1}\equiv v_{1}'a_{j_{1}}a_{j_{1}+1}\cdots a_{k-1} for some 2\leq j_{1}\leq k-1 such that the last letter of ví is

not a_{j_{1}-1}.

Assume that v_{1} is of type (ii). Then, we have

v_{1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}}v_{2} . . . v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}
= ví a_{j_{1}-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}-1}v_{2} . . . v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}.

We claim that the letter a_{j_{1}-1}^{-1} standing on the right neighbor of ví is not canceled in

the reduced expression of the word. In fact, if this a_{j_{1}-1}^{-1} is canceled in the reduced

expression, then it is canceled with a_{j_{1}-1} coming from v_{2} by Lemma 2.6. This implies
that v_{2}\equiv(a_{1}a_{2}\cdots a_{k-1})^{e_{1}-1}a_{1}a_{2}\cdots a_{j_{1}-1}v_{2}' for some positive word v_{2}' . This, however,
contradicts with the condition (iv) given in Proposition 2.4. Therefore, the negative

letter, a_{j_{1}-1}^{-1} ,
is the leftmost negative letter in the left‐hand side of (2.6). Similarly, by

observing the right‐hand side of (2.6), we have that if w_{1} is also of the form (ii), that

is, w_{1}\equiv w_{1}'a_{j_{1}}a_{j_{1}+1}\cdots a_{k-1} for some wí such that the last word of wí is not a_{j_{1}-1},

then the leftmost negative letter in the right‐hand side of (2.6) is also a_{j_{1}-1}^{-1} . Hence, we

obtain ví \equiv wí. Therefore, we have  v_{1}\equiv w_{1}.

If v_{1} is of type (i), so is w_{1} . Then the leftmost negative letters of both sides of (2.6)
are a_{k-1}^{-1} . Hence, we also obtain v_{1}\equiv w_{1}.

Step 2. We will show that e_{1} = eí. By Step 1, we have

(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}}v_{2} . . . v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}
=(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}'}w_{2}\cdots w_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}'}w_{n+1}

in F_{k-1} . First, assume e_{1} > eí. Then, we have

(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{1}-e_{1}'}v_{2} . . . v_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}}v_{n+1}
(2.7)

=w_{2}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{2}'} . . . w_{n}(a_{k-1}^{-1}\cdots a_{2}^{-1}a_{1}^{-1})^{e_{n}'}w_{n+1}
in F_{k-1} . Then, from Lemma 2.7, by observing the negative letters in both sides of (2.7),
we have n=n-1 . This is a contradiction. Hence, we have  e_{1}\leq eí. Similarly, we

obtain  e_{1} \geq eí. Therefore, we have  e_{1} = eí.

By repeating Step 1 and Step 2, we can show that v_{i}\equiv w_{i} and e_{i}=e_{i}' for any

1\leq i\leq n . Since v=w
,

we have

(a_{1}\cdots a_{k})^{m}=(a_{1}\cdots a_{k})^{m'}\in P_{I_{2}(k)}.
Since \nabla generates the innite cyclic subgroup of  P_{I_{2}(k)} ,

we obtain m=m' . Hence, we

conclude that v\equiv w . This completes the proof of Proposition 2.4. \square 
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Lemma 2.8. The monoid homomorphism  $\theta$ :  P_{I_{2}(k)}^{+}\rightarrow P_{I_{2}(k)}/Z=F_{k-1} is

injective.

Proof of Lemma 2.8. For elements v, w\in P^{+} take representatives v' and w' as in
I_{2}(k)

(2.4), respectively. Assume that  $\theta$ 0$\pi$^{+}(v')= $\theta$\circ$\pi$^{+}(w') . Then, by the argument given
in the proof of Proposition 2.4, we obtain v\equiv w . This shows that  $\theta$ is injective. \square 

As a corollary, we have the following:

Theorem 2.9. The natural monoid homomorphism P_{I_{2}(k)}^{+}\rightarrow P_{I_{2}(k)} is injective.

In the following, we consider P_{I_{2}(k)}^{+} to be a submonoid of P_{I_{2}(k)} through this em‐

bedding, identifying the null word  $\epsilon$ with the identity of  P_{I_{2}(k)} . Then, we have the

following commutative diagram:

(A^{+})^{*}\subset A^{*}

$\pi$^{+}\downarrow  $\pi$\downarrow
 P_{I_{2}(k)}^{+}\subset P_{I_{2}(k)}.

Now, in order to give a standard representative for each element of P^{+} let us
I_{2}(k)

introduce the concept of fundamental blocks. A fundamental block is a positive word in

(A^{+})^{*} with length smaller than k that appears as a subword in representatives of  $\pi$(\nabla) .

There are k(k-1) fundamental blocks. We list all of them below:

length k-1 : a_{1} . . .

a_{k-1}, a_{2}\cdots a_{k},  a_{3}\cdots aa; :.

:;  a_{k}a_{1}\cdots a_{k-2}

length k-2:a_{1} . . .

a_{k-2}, a_{2}\cdots a_{k-1}, a_{3}\cdots a_{k},  a_{4}\cdots aa; .

::;  a_{k}a_{1}\cdots a_{k-3}

length 2 : a_{1}a_{2}, a_{2}a_{3} ,
. . .

, a_{k-1}a_{k}, a_{k}a_{1}

length 1 : a_{1}, a_{2} ,
. . .

, a_{k}

Next, we give several denitions concerning the fundamental blocks. Set

\mathrm{F}\mathrm{B}^{+}:= {  $\mu$\in(A^{+})^{*}| $\mu$ is a fundamental block}.

For any  I\in\{0, . . . , k-1\} ,
set

\mathrm{F}\mathrm{B}_{I}^{+}:=\{ $\mu$\in \mathrm{F}\mathrm{B}^{+}|| $\mu$|=I\},
FB +\leq I:=\{ $\mu$\in \mathrm{F}\mathrm{B}^{+}|| $\mu$|\leq I\}.

For any  $\mu$=a_{i}
. . . a_{k}a_{1}\cdots a_{j}\in \mathrm{F}\mathrm{B}^{+} ,

dene

\mathcal{L}( $\mu$):=a_{i}, \mathcal{R}( $\mu$):=a_{j}.
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For any  $\mu$=a_{i}
. . . a_{k}a_{1}\cdots a_{j}\in \mathrm{F}\mathrm{B}^{+} ,

we call a_{j+1} the letter subsequent to  $\mu$ . When

 $\mu$=a_{i}\cdots a_{k} ,
we call a_{1} the letter subsequent to  $\mu$ . The letter subsequent to  $\mu$ is

denoted by \mathcal{N}( $\mu$) .

Let g be an element of P_{I_{2}(k)}^{+} . We can choose the following representative  $\xi$\in(A^{+})^{*}
of g as in Proposition 2.4:

 $\xi$\equiv v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1}\cdot\nabla^{d}

Moreover, we can represent v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1} as a product of elements of \mathrm{F}\mathrm{B}^{+}

uniquely as follows.

v_{1}a_{k}^{e_{1}}v_{2}a_{k}^{e_{2}}\cdots v_{n}a_{k}^{e_{n}}v_{n+1}\equiv$\mu$_{1} . . . $\mu$_{m}\in(\mathrm{F}\mathrm{B}^{+})^{*},

where \mathcal{N}($\mu$_{j})\neq \mathcal{L}($\mu$_{j+1}) for 1\leq j\leq m-1 . Hence, combining this observation and

Proposition 2.4, we obtain

Proposition 2.10 (Normal form). For any g\in P^{+} there exist unique $\mu$_{1}\cdots$\mu$_{m}\in I_{2}(k)

(\mathrm{F}\mathrm{B}^{+})^{*} and d\in \mathrm{Z}_{\geq 0} such that  $\xi$:=$\mu$_{1}\cdots$\mu$_{m} \nabla^{d} is a representative of g ,
and

\mathcal{N}($\mu$_{j})\neq \mathcal{L}($\mu$_{j+1}) for 1\leq j\leq m-1.

We call  $\xi$\equiv$\mu$_{1} . . . $\mu$_{m}\cdot\nabla^{d} the normal form of g ,
and $\mu$_{1}\cdots$\mu$_{m} the  non-\nabla part of

the normal form. From Theorem 2.9 and Lemma 2.3, we can show that every positive
word is geodesic (see [17]). Hence for each element  g\in P^{+} the normal form of g is

I_{2}(k)
a geodesic representative of g.

§3. Automata for geodesic representatives of P_{I_{2}(k)}^{+}
In this section, we construct deterministic finite‐state automata over subsets of

\mathrm{F}\mathrm{B}^{+}\mathrm{U}\{\nabla\} that recognize the normal forms of elements of P_{I_{2}(k)}^{+} . (Refer to [20] for a

general reference on automata.)

Let \overline{ $\Sigma$} be a subset of \mathrm{F}\mathrm{B}^{+}\mathrm{U}\{\nabla\} ,
and \overline{ $\Sigma$}^{*} the free monoid generated by \overline{ $\Sigma$} . Here we

naturally consider \overline{ $\Sigma$}^{*} as a subset of A^{*} . For any g\in P^{+} take the normal form  $\xi$ of
 I_{2}(k)

g as in Proposition 2.10. Set

Pos() :=\left\{\begin{array}{l}
\max\{|$\mu$_{j}||1\leq j\leq m\} \mathrm{i}\mathrm{f} d=0,\\
k \mathrm{i}\mathrm{f} d>0.
\end{array}\right.
Then, we have 0\leq \mathrm{P}\mathrm{o}\mathrm{s}( $\xi$)\leq k.

Dene $\Gamma$_{k} to be the set of all the normal forms  $\xi$ of elements  g\in P_{I_{2}(k)}^{+} such that

Pos()=k . Namely,

$\Gamma$_{k}:=\{ $\xi$\in(\mathrm{F}\mathrm{B}^{+}\cup\{\nabla\})^{*}|_{d\geq 1,\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{N}($\mu$_{j})\neq \mathcal{L}($\mu$_{j+1})\mathrm{f}\mathrm{o}\mathrm{r}1\leq j\leq m-1}^{ $\xi$\equiv$\mu$_{1}\cdot\cdot$\mu$_{m}\cdot\nabla^{d},$\mu$_{1},\ldots,$\mu$_{m}\in \mathrm{F}\mathrm{B}^{+}\cup\{ $\epsilon$\}}\forall'\}
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Similarly, for any 0\leq P\leq k-1 ,
dene

$\Gamma$_{P}:=\{ $\xi$\in(\mathrm{F}\mathrm{B}_{\leq P}^{+})^{*}|\mathcal{N}($\mu$_{j}) $\xi$\equiv$\mu$_{1}\neq \mathcal{L}($\mu$_{j+1})\mathrm{f}\mathrm{o}\mathrm{r}1\leq j\leq m$\mu$_{m},$\mu$_{1},,$\mu$_{m_{\forall}}\displaystyle \in \mathrm{F}\mathrm{B}^{+}\bigcup_{-}\{ $\epsilon$\}1,\mathrm{a}nd Pos() =P\},
and

(3.1)  $\Gamma$ :=$\Gamma$_{k}\displaystyle \cup\bigcup_{0\leq P\leq k-1}$\Gamma$_{P} (disjoint union):

Since every element of P^{+} has a unique geodesic representative in  $\Gamma$
,

the restriction
 I_{2}(k)

of $\pi$^{+} to  $\Gamma$ is a bijective map to  P^{+}
I_{2}(k)

.

We now proceed to construct automata that recognize all words in  $\Gamma$.

[Case 1. (P=k It is clear that every word of the set $\Gamma$_{k} is recognized by the

deterministic finite‐state automaton \mathrm{A}_{k} over \mathrm{F}\mathrm{B}^{+}\mathrm{U}\{\nabla\} dened by

(i) States: \{ $\epsilon$\}\cup \mathrm{F}\mathrm{B}^{+}\cup\{\nabla\} ;

Initial state: \{ $\epsilon$\} ; Accept state: \{\nabla\} ;

(ii) Transitions:

(ii‐1) \forall_{v}\in \mathrm{F}\mathrm{B}^{+}\cup\{\nabla\},  $\epsilon$\rightarrow^{v}v,
(ii‐2) \forall_{u}, \forall_{v}\in \mathrm{F}\mathrm{B}^{+}, u\rightarrow^{v}v

if \mathcal{N}(u)\neq \mathcal{L}(v) ,

(ii‐3) \forall_{u}\in \mathrm{F}\mathrm{B}^{+}\cup\{\nabla\}, u\rightarrow^{\nabla}\nabla. \text{∪
[Case 2. (0\leq P\leq k-1.) ] It is also readily seen that every word of the set \displaystyle \bigcup_{0\leq p\underline{<}P}$\Gamma$_{p}
is recognized by the deterministic finite‐state automaton \mathrm{A}_{\leq P} over \mathrm{F}\mathrm{B}_{\leq P}^{+} dened by

(i) States: \{ $\epsilon$\}\cup \mathrm{F}\mathrm{B}_{\leq P}^{+} ;

Initial state: \{ $\epsilon$\} ; Accept states: \{ $\epsilon$\}\mathrm{U}\mathrm{F}\mathrm{B}_{\leq P}^{+} ;

(ii) Transitions:

(ii‐1) \forall_{v}\in \mathrm{F}\mathrm{B}_{\leq P}^{+},  $\epsilon$\rightarrow^{v}v,
(ii‐2) \forall_{u}, \forall_{v}\in \mathrm{F}\mathrm{B}_{\leq P}^{+}, u\rightarrow^{v}v

if \mathcal{N}(u)\neq \mathcal{L}(v) .

Example 3.1. (Case k=3 ) Set a:=a_{1}, b:=a_{2} and c:=a_{3} . Then, the

fundamental blocks are the followings:

a, b, c
, ab; bc; ca:

The automaton \mathrm{A}_{\leq 2} is depicted as in Figure 2.
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Figure 2. The automaton \mathrm{A}_{\leq 2} for the case k=3.

§4. The spherical growth series of P_{I_{2}(k)}^{+}

In this section, under the identication of P_{I_{2}(k)}^{+} with \displaystyle \bigcup_{0\leq P\underline{<}k}$\Gamma$_{P} , by considering

the structure of the automata constructed in Section 3, we give a rational function

expression of the spherical growth series S(t) of P_{I_{2}(k)}^{+} with respect to the standard

generators a_{1} ,
.

::, a_{k}.

For each 0\leq P\leq k ,
let

S_{P}(t):=\displaystyle \sum_{q=0}^{\infty}\#\{ $\xi$\in$\Gamma$_{P}|| $\xi$|=q\}t^{q}
be the spherical growth series for $\Gamma$_{P} . Then, from (3.1), we have

(4.1) S(t)=S_{k}(t)+\displaystyle \sum_{0\leq P\leq k-1}S_{P}(t) .

In order to simplify the presentation of the growth series, for each n\in \mathrm{Z}_{\geq 0} ,
we use

the following notations:

\left\{\begin{array}{l}
T_{n}:=t+t^{2}+\cdots+t^{n} \mathrm{f}\mathrm{o}\mathrm{r} n\geq 1,\\
T_{0}:=0.
\end{array}\right.
First, we consider the case where 0\leq P\leq k-1.
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Proposition 4.1. For each 0\leq P\leq k-1 ,
we have

\displaystyle \sum_{0\leq p\leq P}S_{p}(t)=\frac{1+T_{P}}{1-(k-1)T_{P}}.
Proof. Take P\in\{0, . . . ; k-1\} . For any q\in \mathrm{Z}_{\geq 0} ,

set

 B_{q}(P):=\{ $\xi$\equiv$\mu$_{1}\cdots$\mu$_{m}\in \displaystyle \bigcup_{0\leq p\underline{<}P}$\Gamma$_{p}
| $\xi$ :normal form,  $\mu$_{i}\in \mathrm{F}\mathrm{B}^{+}, | $\xi$|=q\},

and set

$\beta$_{q}(P):=\displaystyle \sum B_{q}(P) .

Then,

\displaystyle \sum_{0\leq p\leq P}S_{p}(t)=\sum_{q=0}^{\infty}$\beta$_{q}(P)t^{q}.
Next, we calculate $\beta$_{q}(P) . Clearly,

(4.2) $\beta$_{0}(P)=1.

Lemma 4.2. We have the following recursive formula:

(4.3) $\beta$_{q}(P)=(k-1)\{$\beta$_{q-1}(P)+\cdots+$\beta$_{q-P}(P)\},

for q\geq P+1.

Proof of Lemma 4.2. By following the automaton \mathrm{A}_{\leq P} ,
we see that for each  I\in

\{1, . ::, P\} and each v_{1} . . . v_{m-1}\in B_{q-I}(P) ,
there are k-1 choices of v_{m} from \mathrm{F}\mathrm{B}_{I}^{+}

such that v_{1} . . .

v_{m-1} v_{m}\in B_{q}(P) by (ii‐2) in \mathrm{A}_{\leq P} . Thus, we obtain the recursive

formula (4.3). This completes the proof of Lemma 4.2. \square 

On the other hand, for 1\leq q\leq P ,
we have

(4.4) $\beta$_{q}(P)=k^{q}.

Thus, by the recursive formula (4.3) with (4.2) and (4.4), we can see

(\displaystyle \sum_{0\leq p\leq P}S_{p}(t))\times\{1-(k-1)(t+t^{2}+\cdots+t^{P})\}=1+t+t^{2}+\cdots+t^{P}
Hence,

\displaystyle \sum_{0\leq p\leq P}S_{p}(t)=\frac{1+t+t^{2}+\cdots+.t^{P}}{1-(k-1)(t+t^{2}+\cdot\cdot+t^{P})}=\frac{1+T_{P}}{1-(k-1)T_{P}},
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for each t in a sufficiently small neighborhood of the origin 0 . This completes the proof
of Proposition 4.1. \square 

Finally, we consider the case where P=k and the spherical growth series S(t) of

P^{+}
I_{2}(k)

.

Theorem 4.3. Let D(t) be the polynomial dened by

D_{k}(t) :=1-kt+(k-1)t^{k}=(1-t)\{1-(k-1)T_{k-1}\}.

Then, we have

S_{k}(t)=\underline{t^{k}}
D_{k}(t)

�

and

S(t)=\displaystyle \sum_{0\leq P\underline{<}k}S_{P}(t)=\frac{1}{D_{k}(t)}.
Proof. Every words in the set P_{I_{2}(k)}^{+}=\displaystyle \bigcup_{0\leq P\underline{<}k}$\Gamma$_{P} is recognized by the automata \mathrm{A}_{\leq k-1}

and \mathrm{A}_{k} . Thus, its spherical growth series S(t) has a rational function expression. Then,

put

S(t):=\displaystyle \frac{G(t)}{F(t)},
where F(t) , G(t) are polynomials in t.

By the case P=k-1 in Proposition 4.1, we have

(4.5) \displaystyle \sum_{0\leq p\leq k-1}S_{p}(t)=\frac{1+T_{k-1}}{1-(k-1)T_{k-1}}.
This is the growth series for the maximal subset of P_{I_{2}(k)}^{+} whose elements contain no

word u satisfying u=\nabla.

On the other hand, by observing the normal form of an element of P_{I_{2}(k)}^{+} ,
it is seen

that the series

\displaystyle \sum_{q=0}^{\infty}\#\{ $\xi$\in P_{I_{2}(k)}^{+}|| $\xi$|=q\}t^{q+k}
is the spherical growth series for $\Gamma$_{k} . Thus,

S_{k}(t)=S(t)\displaystyle \times t^{k}=\frac{G(t)}{F(t)}t^{k}
Hence, with (4.5), we have

\displaystyle \frac{G(t)}{F(t)}-\frac{G(t)}{F(t)}t^{k}=\sum_{0\leq p\leq k-1}S_{p}(t)=\frac{1+T_{k-1}}{1-(k-1)T_{k-1}}
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By solving this equality for G(t)/F(t) ,
we obtain

S(t)=\displaystyle \frac{G(t)}{F(t)}=\frac{1}{(1-t)\{1-(k-1)(t+t^{2}+\cdots+t^{k-1})\},1}
1-kt+(k-1)t^{k}

Also, we have

S_{k}(t)=\displaystyle \frac{G(t)}{F(t)}t^{k}=\frac{t^{k}}{1-kt+(k-1)t^{k}}.
This completes the proof of Theorem 4.3. \square 
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