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On Invariants of Reiffen�s Isolated Singularity

By

Yayoi Nakamura *

Abstract

A relation between two invariants attached to a family of hypersurface isolated singular‐
ities, called Reiffen�s singularity, is considered. For the simplest case of Reiffen�s singularity,
the relation is determined in an explicit manner.

Introduction

The author has studied isolated singularities from the viewpoint of \mathscr{D}‐modules

([1], [2], [5], [6]). In these studies, we introduce an invariant $\mu$_{f}^{(k)}(k=0,1,2, \ldots) of the

singularity defined as the dimension of the solution space of a holonomic system attached

to the dual space of the Milnor algebra. To be more precise, let X be a neighborhood
of the origin O of \mathbb{C}^{n} and f a holomorphic function defining an isolated singularity
at O . Let W_{f} be the dual vector space of the Milnor algebra of the singularity via

the Grothendieck local duality. We take an algebraic local cohomology class $\omega$_{f} which

generates W_{f} over the stalk \mathscr{O}_{X,O} at the origin of the sheaf \mathscr{O}_{X} of holomorphic functions.

Let \mathcal{A}nn_{\mathscr{D}_{X,O}}^{(k)}($\omega$_{f}) be the ideal in the stalk \mathscr{D}_{X,O} at O of the sheaf \mathscr{D}_{X} of linear partial
differential operators generated by annihilating differential operators of $\omega$_{f} with order

smaller than or equal to k . Since the \mathscr{D}‐module structure of the holonomic system

\mathscr{D}_{X,O}/\mathcal{A}nn_{\mathscr{D}_{X,O}}^{(k)}($\omega$_{f}) does not depend on the choice of the generator $\omega$_{f} of W_{f} ,
the

dimension of the algebraic local cohomology solution space of the holonomic system can

be said to be an invariant of the singularity. So, we denote it by $\mu$_{f}^{(k)} . When k=1,

this invariant $\mu$_{f}^{(1)} is directly connected with the theory of the vector field attached to

the function f . In addition, $\mu$_{f}^{(1)}=1 is a necessary and sufficient condition for the

function f to be quasihomogeneous ([4]). In [5], we studied Reiffen�s singularity, which
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was provided in [3] as an example of a hypersurface isolated singularity on which the

holomorphic de Rham complex is not exact. We gave $\mu$_{f}^{(1)} of Reiffen�s singularity f
in an explicit manner by using classical invariants the Milnor number and the Tjurina
number of f at the origin.

The algebraic local cohomology vector space W_{f} is also utilized for a computation
of b‐function. In [7], T. Yano gave an overview of the general theory of b‐function. He

also computed a vast number of examples of b‐function. He defined an invariant L(f)
for the function f as the total order of an annihilator P(s) of f^{s} and illustrated the

method for computing b‐function for the case where L(f)=2 and 3. However, it seems

that there were no investigations into an invariant L(f) in [7].
In this paper, we give a relation between two invariants $\mu$_{f}^{(1)} and L(f) of Reiffen�s

singularity. In Section 1, we give the definition of the invariant $\mu$_{f}^{(1)} . We give results on

$\mu$_{f}^{(1)} for Reiffen�s singularity. In Section 2, we introduce the definition of L(f) ,
the total

order of annihilators of f^{s} . As an example, we give an explicit form of annihilators P(s)
of f^{s} when q=4 in Section 3.

§1. Reiffen�s Singularity

Let X be a small neighborhood of the origin O of \mathbb{C}^{2} . Let f be a holomorphic
function defining an isolated singularity at the origin O of \mathbb{C}^{2} and \mathcal{J} the Jacobi ideal

in \mathscr{O}_{X,O} ,
where \mathscr{O}_{X,O} is the stalk of the sheaf of holomorphic functions on X . Let W_{f}

denote the set in \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2}) of algebraic local cohomology classes annihilated by any

germ of functions in \mathcal{J} , where $\Omega$_{X}^{2} is the sheaf of holomorphic 2‐forms on X of the

origin O,

W_{f}=\{ $\eta$\in \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2})|g $\eta$=0, g\in \mathcal{J}\}.
By Grothendieck local duality, W_{f} can be regarded as the dual vector space of \mathscr{O}_{X,O}/\mathcal{J}.
W_{f} is generated as an \mathscr{O}_{X,O} ‐module by one algebraic local cohomology class. Let $\omega$_{f}
denote a generator over \mathscr{O}_{X,O} of W_{f},

W_{f}=\mathscr{O}_{X,O}$\omega$_{f}.

Let \mathcal{L}_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}) be the set of linear partial differential operators with order at most

one that annihilate the cohomology class $\omega$_{f} ,
where \mathscr{D}_{X,O} is the stalk at the origin of the

sheaf \mathscr{D}_{X} of the rings of partial differential operators. Let \mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}) denote the right

ideal in the ring \mathscr{D}_{X,O} generated by \mathcal{L}_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}) , \mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f})=\mathcal{L}_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f})\mathscr{D}_{X,O} . In

[4], we proved that if the singularity in question is not quasihomogeneous, \mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f})
is a proper subset of the annihilating ideal \mathcal{A}nn_{\mathscr{D}_{X,O}}($\omega$_{f}) in \mathscr{D}_{X,O} of the generator $\omega$_{f}.

Let f=z_{1}^{q}+z_{2}^{p}+z_{1}z_{2}^{p-1} with p, q\in \mathbb{N}, q\geq 4 and p\geq q+1 . The hypersurface

z_{1}^{q}+z_{2}^{p}+z_{1}z_{2}^{p-1}=0 in \mathbb{C}^{2} defines a semi‐quasihomogeneous singularity of weight (p, q)
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with the Milnor number (p-1)(q-1) and the Tjurina number (p-1)(q-1)-q+3.
This hypersurface is examined in [3] by H.‐J. Reiffen as a singularity on which the

holomorphic de Rham complex is not exact.

In [5], we study Reiffen�s singularity from the viewpoint of \mathscr{D}‐modules and give the

following theorem.

Theorem 1.1 ([5]). Let f=z_{1}^{q}+z_{2}^{p}+z_{1}z_{2}^{p-1} with q\geq 4 and p\geq q+1.

(1) W_{f} is generated by

$\omega$_{f}=[\displaystyle \frac{d\mathrm{z}}{z_{1}^{q-1}z_{2}^{p-1}}]+\sum^{q-2}(-\frac{p-1}{p})^{k}[\frac{d\mathrm{z}}{z_{1}^{q-1-k}z_{2}^{p-1+k}}]-\sum\frac{1}{q}q-2(-\frac{p-1}{p})^{k}[\frac{d\mathrm{z}}{z_{1}^{2q-2-k}z_{2}^{k}}]k=1 k=1

\text{∧ \mathrm{d}\mathrm{z}over \mathscr{O}_{X,O} where d\mathrm{z}=d\mathrm{z}_{1}\wedge d\mathrm{z}_{2}.
(2) The algebraic local cohomology solution space

\mathcal{H}om_{\mathscr{D}_{X,O}}(\mathscr{D}_{X,O}/\mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}), \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2}))
is spanned by $\omega$_{f} and

\displaystyle \sum_{k=0}^{s}(-\frac{p-1}{p})^{k}[\frac{d\mathrm{z}}{z_{1}^{1+k}z_{2}^{1+s-k}}], s=0 , 1, . . .

, q-4.

The dimension of the algebraic local cohomology solution space

\mathcal{H}om_{\mathscr{D}_{X,O}}(\mathscr{D}_{X,O}/\mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}), \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2}))
does not depend on the choice of the generator $\omega$_{f} . Let $\mu$_{f}^{(1)} denote the dimension of

the solution space for \mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}) ,

$\mu$_{f}^{(1)}=\dim \mathcal{H}om_{\mathscr{D}_{X,O}}(\mathscr{D}_{X,O}/\mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}), \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2} 
The result (2) in the theorem above implies that $\mu$_{f}^{(1)}=q-2 . In other words, we have

the following result.

Corollary 1.2 ([5]). Let f=z_{1}^{q}+z_{2}^{p}+z_{1}z_{2}^{p-1} with q\geq 4 and p\geq q+1 . Then

(1)
$\mu$_{f} = $\mu$- $\tau$+1,

where  $\mu$=\dim \mathscr{O}_{X,O}/\mathcal{J} is the Milnor number and  $\tau$=\dim \mathscr{O}_{X,O}/(f, \mathcal{J}) is the Tjurina
number.

For a method to compute cohomology classes and annihilators in the case of general
isolated hypersurface singularities, we refer to [2] and [6].
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§2. Yano�s Invariant L(f)

A b‐function associated with a function f is defined as polynomials b\in \mathbb{C}[s] in s

satisfying

(2.1) Pf^{s+1}=bf^{s}

for some linear partial differential operator P(s)=\displaystyle \sum s^{j}P_{j}(z, \partial)\in \mathscr{D}_{X,O}[s] . For a given

operator P(s)=\displaystyle \sum s^{j}P_{j}(z, \partial)\in \mathscr{D}_{X,O}[s], \displaystyle \max ( jj+ ord P_{j}(z, \partial) ) is called the total order

of P(s) and denoted by \mathrm{o}\mathrm{r}\mathrm{d}^{T}P(s) . Set

\mathcal{J}(s)=\{P(s)\in \mathscr{D}_{X}[s]|P(s)f^{s}=0\}.

There exists an operator of the form

(2.2) P(s)=\displaystyle \sum_{j=0}^{\ell}s^{\ell-j}P_{j}(z, \partial)
in \mathcal{J}(s) such that \mathrm{o}\mathrm{r}\mathrm{d}^{T}P=\ell and  P_{0}(z, \partial)=1 . We denote by L(f) the minimum

of \mathrm{o}\mathrm{r}\mathrm{d}^{T}P(s) for P(s)\in \mathcal{J}(s) of the form specified as (2.1) and (2.2), which measures

non‐quasihomogeneity of f . Especially, L(f)=1 is a necessary and sufficient condition

for the function to be quasihomogeneous. In [7], T. Yano developed a general theory
of b‐function and gave various examples of b‐function. He introduced the number L(f)
and investigated a method to determine b‐functions for f being isolated singularities
with L(f)=2 and L(f)=3.

For Reiffen�s singularity, we investigate the number L(f) as follows.

Theorem 2.1. Let f=z_{1}^{4}+z_{2}^{p}+z_{1}z_{2}^{p-1} with p\in \mathbb{N} and p\geq 5 . Then

L(f)=2.

Proof. In the next section, we give annihilators \mathcal{J}(s) of f^{s} for f=z_{1}^{4}+z_{2}^{p}+z_{1}z_{2}^{p-1}
in an explicit manner. One finds P(s)\in \mathcal{J}(s) with L(f)=2. \square 

For general cases of Reiffen�s singularity, we find the following:
For f=z_{1}^{q}+z_{2}^{p}+z_{1}z_{2}^{p-1} with p, q\in \mathbb{N}, q\geq 4 and p\geq q+1,

L(f)=$\mu$_{f}
(1)

holds.
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§3. Annihilators of f^{s} for f=z_{1}^{4}+z_{2}^{p}+z_{1}z_{2}^{p-1}

Let us illustrate the case where q=4, f=z_{1}^{4}+z_{2}^{p}+z_{1}z_{2}^{p-1} with p\geq 5 . A basis

of W_{f} is given by 3(p-1) algebraic local cohomology classes, [\displaystyle \frac{d\mathrm{z}}{z_{1}^{\ell_{1}}z_{2}^{p_{2}}}] with 1\leq\ell_{1}\leq 3

and 1\leq\ell_{2}\leq p-2, [\displaystyle \frac{d\mathrm{z}}{z_{1}z_{2}^{p-1}}] and the algebraic local cohomology classes of the form

[\displaystyle \frac{d\mathrm{z}}{z_{1}^{2}z_{2}^{p-1}}]+(-\frac{p-1}{p})^{k}[\frac{d\mathrm{z}}{z_{1}z_{2}^{p}}]-\frac{1}{4}(-\frac{p-1}{p})[\frac{d\mathrm{z}}{z_{1}^{4}z_{2}}]
and

[\displaystyle \frac{d\mathrm{z}}{z_{1}^{3}z_{2}^{p-1}}]+(-\frac{p-1}{p})[\frac{d\mathrm{z}}{z_{1}^{2}z_{2}^{p}}]+(-\frac{p-1}{p})^{2}[\frac{d\mathrm{z}}{z_{1}z_{2}^{p+1}}]
-\displaystyle \frac{1}{4}(-\frac{p-1}{p})[\frac{d\mathrm{z}}{z_{1}^{5}z_{2}}]-\frac{1}{4}(-\frac{p-1}{p})^{2}[\frac{d\mathrm{z}}{z_{1}^{4}z_{2}^{2}}]

where d\mathrm{z}=d\mathrm{z}_{1}\wedge d\mathrm{z}_{2} . The last one is a generator of W_{f} over \mathscr{O}_{X,O} and thus denote it

by $\omega$_{f} :

$\omega$_{f}=[\displaystyle \frac{d\mathrm{z}}{z_{1}^{3}z_{2}^{p-1}}]+(-\frac{p-1}{p})[\frac{d\mathrm{z}}{z_{1}^{2}z_{2}^{p}}]+(-\frac{p-1}{p})^{2}[\frac{d\mathrm{z}}{z_{1}z_{2}^{p+1}}]
-\displaystyle \frac{1}{4}(-\frac{p-1}{p})[\frac{d\mathrm{z}}{z_{1}^{5}z_{2}}]-\frac{1}{4}(-\frac{p-1}{p})^{2}[\frac{d\mathrm{z}}{z_{1}^{4}z_{2}^{2}}].

Ann_{\mathscr{D}_{X,O}}^{(1)}( $\omega$) is generated by partial derivatives 4z_{1}^{3}+z_{2}^{p-1} and pz_{2}^{p-1}+(p-1)z_{1}z_{2}^{p-2}
of f and first order differential operators with the first order part

(z_{1}+\displaystyle \frac{p}{p-1}z_{2})z_{2}\frac{\partial}{\partial z_{2}}, z_{1}^{3}\frac{\partial}{\partial z_{2}}, z_{2}^{3}\frac{\partial}{\partial z_{2}}, z_{1}(z_{1}+\frac{p}{p-1}z_{2})\frac{\partial}{\partial z_{1}},

z_{1}z_{2}\displaystyle \frac{\partial}{\partial z_{1}}+(-\frac{1}{p}\frac{p-4}{p-2}(-\frac{p-1}{p})z_{1}^{2}+\frac{2}{p-2}z_{2}^{2})\frac{\partial}{\partial z_{2}},

z_{2}^{p-2}\displaystyle \frac{\partial}{\partial z_{1}}+(\frac{12}{(p-1)(p-2)}z_{1}^{2}-\frac{12}{p-2}(-\frac{p}{p-1})^{2}z_{2}^{2})\frac{\partial}{\partial z_{2}}.
The algebraic local cohomology solution space

\mathcal{H}om_{\mathscr{D}_{X,O}}(\mathscr{D}_{X,O}/\mathcal{A}nn_{\mathscr{D}_{X,O}}^{(1)}($\omega$_{f}), \mathcal{H}_{[O]}^{2}($\Omega$_{X}^{2}))

is spanned by $\omega$_{f} and the delta function [\displaystyle \frac{d\mathrm{z}}{z_{1}z_{2}}].
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\mathcal{J}(s) is generated by the following four operators.

\displaystyle \bullet((p-1)z_{1}z_{2}^{p-2}+p\mathrm{z}_{2}^{p-1})\frac{\partial}{\partial z_{1}}-(4z_{1}^{3}+z_{2}^{p-1})\frac{\partial}{\partial z_{2}},

\displaystyle \bullet 4((p-1)^{3}z_{2}^{p-3}-4p^{3}z_{2})z_{1}+(p-4)(p-1)^{2}z_{2}^{p-2})\frac{\partial}{\partial z_{1}}
+(-4(p-1)(p-4)z_{1}^{2}+4p(p-4)z_{1}z_{2}+3(p-1)^{2}z_{2}^{p-2}-4^{2}p^{2}z_{2}^{2})\displaystyle \frac{\partial}{\partial z_{2}}
-4(p-1)^{3}z_{2}^{p-3}s+4^{2}p^{3}z_{2^{\mathcal{S}}},

\displaystyle \bullet((p-1)z_{1}^{2}+p\mathrm{z}_{1}z_{2})\frac{\partial}{\partial z_{1}}+(4z_{1}z_{2}+4z_{2}^{2})\frac{\partial}{\partial z_{2}}-4(p-1)z_{1}s-4pz_{2}s,

\displaystyle \bullet((p-1)^{3}z_{2}^{p-4}-4p^{3})s^{2}+(-\frac{(p-4)p^{3}}{p-1}z_{2}\frac{\partial}{\partial z_{1}}+\frac{3(p-4)p^{2}}{p-1}z_{2}\frac{\partial}{\partial z_{2}}
+\displaystyle \frac{(p-1)^{2}(7p-16)}{4}z_{2}^{p-4}-\frac{p^{2}(4p^{2}-7p+12)}{p-1})s

+((-\displaystyle \frac{(p-1)^{3}}{4^{2}}z_{2}^{p-4}+\frac{p^{3}}{4})z_{1}^{2}+\frac{(p-4)p^{3}}{4(p-1)}z_{1}z_{2}+\frac{(p-4)(p-1)(p+4)}{4^{2}}z_{2}^{p-2})\frac{\partial^{2}}{\partial z_{1}^{2}}
+(-\displaystyle \frac{(p-4)(p+4)}{4}z_{1}^{2}+(-\frac{3(p-1)^{2}}{8}z_{2}^{p-3}+(p+4)pz_{2})z_{1}

-\displaystyle \frac{(p-4)(p-1)}{2}z_{2}^{p-2}+\frac{(p-4)p^{2}}{p-1}z_{2}^{2})\frac{\partial^{2}}{\partial z_{1}\partial z_{2}}
+(\displaystyle \frac{3(p-4)}{2}z_{1}^{2}-\frac{(p-4)(5p+4)}{4(p-1)}z_{1}z_{2}-\frac{9(p-1)}{4^{2}}z_{2}^{p-2}+\frac{(p+8)p}{p-1}z_{2}^{2})\frac{\partial^{2}}{\partial z_{2}^{2}}
+((-\displaystyle \frac{(p-1)^{2}(8p-17)}{16}z_{2}^{p-4}+\frac{p^{2}(5p^{2}-8p+12)}{4(p-1)})z_{1}

-\displaystyle \frac{3(p-1)(p-2)(p-4)}{8}z_{2}^{p-3}+\frac{p^{3}(p-4)}{4(p-1)}z_{1})\frac{\partial}{\partial z_{1}}
+(-\displaystyle \frac{3p(p-4)(p+2)}{4(p-1)}z_{1}-\frac{3(p-1)(7p-13)}{16}z_{2}^{p-3}+\frac{p(15p^{2}-16p+64)}{4(p-1)}z_{2})\frac{\partial}{\partial z_{2}}.

The total order of the last one is q-2=2.
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