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Finite‐Gap Potential, Heun�s Differential Equation
and WKB Analysis

By

Kouichi Takemura *

Abstract

We review several results on the finite‐gap potential and Heun�s differential equation,
and we discuss relationships among the finite‐gap potential, the WKB analysis and Heun�s

differential equation.

§1. Introduction

Heun�s equation (Heun�s differential equation) is a linear differential equation of

second order given by

(1.1) \displaystyle \frac{d^{2}y}{d_{Z^{2}}}+(\frac{ $\gamma$}{z}+\frac{ $\delta$}{z-1}+\frac{ $\epsilon$}{z-t})\frac{dy}{d_{Z}}+\frac{ $\alpha \beta$ z-q}{z(z-1)(z-t)}y=0,
with the condition  $\gamma$+ $\delta$+ $\epsilon$= $\alpha$+ $\beta$+1 ([12]). It has four singularities \{0, 1, t, \infty\} and

they are all regular. Heun�s equation is known to be a standard form of the second‐

order Fuchsian differential equation with four singularities. The parameter q is not

determined by the local monodromy, and is called an accessory parameter. Heun�s dif‐

ferential equation frequently appears in physics, i.e. black hole (general relativity, Kerr�s

solution), crystalline materials [13], fluid dynamics [3], quantum mechanics (Inozemtsev
model [11]) and so on.

A standard form of the second‐order Fuchsian differential equation with three sin‐

gularities is given by the hypergeometric differential equation

(1.2) z(1-z)\displaystyle \frac{d^{2}y}{dz^{2}}+( $\gamma$-( $\alpha$+ $\beta$+1)z)\frac{dy}{dz}- $\alpha \beta$ y=0.
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It has three regular singularities at \{0, 1, \infty\} . Global properties of solutions and the

monodromy are known for the hypergeometric differential equation. In particular an

integral representation of a solution is given by

(1.3) F( $\alpha$,  $\beta$; $\gamma$;z)=\displaystyle \frac{ $\Gamma$( $\gamma$)}{ $\Gamma$( $\alpha$) $\Gamma$( $\gamma$- $\alpha$)}\int_{0}^{1}s^{ $\alpha$-1}(1-s)^{ $\gamma$- $\alpha$-1}(1-sz)^{- $\beta$}ds.
The connection matrix among local solutions at z=0 and ones at z=1 is written

in terms of the gamma function. The condition for existence of non‐zero function

holomorphic at z=0 and z=1 is known and the holomorphic function is given by the

Jacobi polynomial.
For investigating global properties for Heun�s differential equation, we can apply the

method of finite‐gap integration. For this purpose, we recall an elliptic representation
of Heun�s differential equation. Let \wp(x) be the Weierstrass doubly‐periodic function

with periods (2$\omega$_{1},2$\omega$_{3}) . Set $\omega$_{0}=0, $\omega$_{2}=-$\omega$_{1}-$\omega$_{3}, e_{i}=\wp($\omega$_{i})(i=1,2,3) ,

(1.4) z=\displaystyle \frac{\wp(x)-e_{1}}{e_{2}-e_{1}}, t=\frac{e_{3}-e_{1}}{e_{2}-e_{1}}, fx)=yz^{-l_{1}/2}(z-1)^{-l_{2}/2}(z-t)^{-l_{3}/2},
then Heun�s differential equation (Eq. (1.1)) is transformed to

(1.5) (-\displaystyle \frac{d^{2}}{dx^{2}}+\sum_{i=0}^{3}l_{i}(l_{i}+1)\wp(x+$\omega$_{i})-E)f(x)=0,
where

l_{0}= $\beta$- $\alpha$-1/2, l_{1}=- $\gamma$+1/2, l_{2}=- $\delta$+1/2, l_{3}=- $\epsilon$+1/2,

E=(e_{2}-e_{1})(-4q+(-( $\alpha$- $\beta$)^{2}+2$\gamma$^{2}+6 $\gamma \epsilon$+2$\epsilon$^{2}-4 $\gamma$-4 $\epsilon-\delta$^{2}+2 $\delta$+1)3

+(-( $\alpha$- $\beta$)^{2}+2$\gamma$^{2}+6 $\gamma \delta$+2$\delta$^{2}-4 $\gamma$-4 $\delta-\epsilon$^{2}+2 $\epsilon$+1)t/3) .

If l_{1}=l_{2}=l_{3}=0( $\gamma$= $\delta$= $\epsilon$=1/2) ,
then the differential equation is called Lamé�s

equation.

It is known that, if l_{0}, l_{1}, l_{2}, l_{3}\in \mathbb{Z} ,
then the function \displaystyle \sum_{i=0}^{3}l_{i}(l_{i}+1)\wp(x+$\omega$_{i}) is an

algebro‐geometric finite‐gap potential, and is called the Treibich‐Verdier potential. In

Section 2, we recall the definitions on the finite‐gap potential and review the properties
and the examples including the Treibich‐Verdier potential. The monodromy of Heun�s

differential equation is investigated in connection with the finite‐gap property, and we

will obtain formulae related with the finite‐gap property in Section 3. In Section 4,
we discuss relationships among the finite‐gap potential, the WKB analysis and Heun�s

differential equation. In particular, we provide another approach for results by Borcea

and Shapiro [2] on root asymptotics of spectral polynomials for the Lamé operator.



Heun�s Differential Equation and WKB Analysis 63

§2. Finite‐Gap Potential

We recall definitions of the finite‐gap potential and the algebro‐geometric finite‐gap

potential.

Definition 2.1. Let q(x) be a periodic, smooth, real function, H the operator

-d^{2}/dx^{2}+q(x) ,
and the set $\sigma$_{b}(H) defined as follows:

(2.1)  E\in$\sigma$_{b}(H)\Leftrightarrow Every solution to (H-E)f(x)=0 is bounded on x\in \mathbb{R}.

If the closure of the set $\sigma$_{b}() can be written as

(2.2) \overline{$\sigma$_{b}(H)}=[E_{0}, E_{1}]\cup[E_{2}, E_{3}]\cup\cdots\cup[E_{2g}, \infty) ,

where E_{0}<E_{1}<\cdots<E_{2g} ,
i.e. the number of bounded bands is finite, then q(x) is

called the finite‐gap (‐gap) potential.

Example 2.2. We consider the case where q(x)=0 ,
i.e. H=-d^{2}/dx^{2} . Fix the

eigenvalue E . Then Hf() =Ef() is equivalent to f''(x)+Ef() =0 . We solve the

differential equation for dividing into three cases. If E<0 ,
then we write E=-$\lambda$^{2}

and the solutions are f(x)=Ae^{ $\lambda$ x}+Be^{- $\lambda$ x} for constants A, B
,

which are unbounded

on \mathbb{R} for (A, B)\neq(0,0) . If E=0 ,
then the solutions are f() =A+Bx ,

which

are unbounded on \mathbb{R} for B\neq 0 . If E>0 ,
then write E=$\lambda$^{2} and the solutions are

f() =A \cos $\lambda$ x+B\sin $\lambda$ x ,
which are bounded on \mathbb{R} . Hence we have $\sigma$_{b}(H)=(0)

and \overline{$\sigma$_{b}(H)}=[0, \infty) . Therefore the potential q(x)=0 is finite‐gap (0‐gap).

Assume that the potential q(x) is real, smooth, periodic with a period T . Let

f_{1}(x, E) , f_{2}(x, E) be a basis of solutions to (-d^{2}/dx^{2}+q(x)-E)f(x)=0 . Then

f_{1}(x+T, E) and f_{2}(x+T, E) are also solutions and written as

(2.3) (f_{1}(x+T, E)f_{2}(x+T, E))=(fx, E) fx , E))M,

where M is a 2\times 2 matrix with constant elements. It is known that \det M=1.

Let t^{2}-(\mathrm{t}\mathrm{r}M)t+1=0 be the characteristic polynomial of the monodromy matrix

M . If |\mathrm{t}\mathrm{r}M|<2 (resp. |\mathrm{t}\mathrm{r}M|>2 ), then E\in$\sigma$_{b}() (bounded) (resp. E\not\in$\sigma$_{b}()
(unbounded)). If tr M=2 (resp. tr M=-2 ), then there exists a non‐zero periodic
solution f(x+T)=f(x) (resp. an antiperiodic solution f(x+T)=-f(x) ). Hence the

monodromy caused by the shift of the period (x\mapsto x+T) implies the boundedness or

the unboundedness of the solutions to the differential equation.
The definition of algebro‐geometric finite‐gap potential is described as follows:

Definition 2.3. If there exists an odd‐order differential operator

(2.4) A=(\displaystyle \frac{d}{dx})^{2g+1}+\sum_{j=0}^{2g-1}b_{j}(x)(\frac{d}{dx})^{2g-1-j}
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such that

(2.5) [A, -\displaystyle \frac{d^{2}}{dx^{2}}+q(x)]=0,
then q(x) is called the algebro‐geometric finite‐gap potential.

Note that the equation [A, -d^{2}/dx^{2}+q(x)]=0 is equivalent to that the function

q(x) is a solution to a stationary higher‐order \mathrm{K}\mathrm{d}\mathrm{V} equation (see [4]). It was established

in the 1970\mathrm{s} that, under the assumption that q(x) is a periodic, smooth, real function,
the potential q(x) is finite‐gap if and only if q(x) is algebro‐geometric finite‐gap.

We now present examples of the (algebro‐geometric) finite‐gap potentials. Ince [10]
established in 1940 that if n\in \mathbb{Z}_{\geq 1}, $\omega$_{1}\in \mathbb{R}\backslash \{0\} and $\omega$_{3}\in\sqrt{-1}\mathbb{R}\backslash \{0\} ,

then the

potential of Lamé�s operator

(2.6) − \displaystyle \frac{d^{2}}{dx^{2}}+n(n+1)\wp(x+$\omega$_{3}) ,

is finite‐gap. In the late 1980\mathrm{s} ,
Treibich and Verdier [22] found that the method of

finite‐gap integration is applicable the elliptic representation of Heun�s equation for

the case where l_{0}, l_{1}, l_{2}, l_{3}\in \mathbb{Z} . Namely, they showed that the potential in Eq. (1.5)
is an algebro‐geometric finite‐gap potential if l_{0}, l_{1}, l_{2}, l_{3}\in \mathbb{Z} . Therefore the potential

\displaystyle \sum_{i=0}^{3}l_{i}(l_{i}+1)\wp(x+$\omega$_{i}) is called the Treibich‐Verdier potential. Treibich and Verdier

developed the theory of elliptic soliton, Jacobi variety and tangential covering, and

obtained the results. Subsequently several others [7], [14], [15], [16], [17], [18], [19] have

produced more precise statements and concerned results on this subject.
We obtained further examples of algebro‐geometric finite‐gap potentials in [20].

Theorem 2.4 ([20]). If M, l_{0}, l_{1}, l_{2}, l_{3}\in \mathbb{Z}_{\geq 0}, $\delta$_{j}\not\equiv$\omega$_{i}\mathrm{m}\mathrm{o}\mathrm{d} 2$\omega$_{1}\mathbb{Z}\oplus 2$\omega$_{3}\mathbb{Z}(0\leq
 i\leq 3, 1\leq j\leq M) , $\delta$_{j}\pm$\delta$_{j}, \not\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 2$\omega$_{1}\mathbb{Z}\oplus 2$\omega$_{3}\mathbb{Z}(1\leq j<j'\leq M) and $\delta$_{1} ,

. . .

, $\delta$_{M}
satisfy the equations

(2.7) 2 \displaystyle \sum_{j\neq j}(\wp'($\delta$_{j}-$\delta$_{j},)+\wp'($\delta$_{j}+$\delta$_{j},))+\sum_{i=0}^{3}(l_{i}+1/2)^{2}\wp'($\delta$_{j}+$\omega$_{i})=0,
(j=1, \ldots, M) ,

then the potential

(2.8) v(x)=\displaystyle \sum_{i=0}^{3}l_{i}(l_{i}+1)\wp(x+$\omega$_{i})+2\sum_{i=1}^{M}(\wp(x-$\delta$_{i},)+\wp(x+$\delta$_{i},)) ,

is algebro‐geometric finite‐gap.

Note that Eq. (2.7) has appropriate solutions for each M, l_{0}, l_{1}, l_{2}, l_{3}\in \mathbb{Z}_{\geq 0} (see
[20]). If M=0 ,

then we recover the result on Heun�s equation, and if M=1
,

then
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we recover the Treibich�s result [21]. Gesztesy and Weikard [8] developed a theory of

Picard�s potential, and it would be related to our one.

We introduce a proposition which plays a crucial role of proving Theorem 2.4.

Observe that a product of two solutions to

(2.9) (-\displaystyle \frac{d^{2}}{dx^{2}}+v(x)) fx)=Ef(x) ,

satisfies

(2.10) \displaystyle \{\frac{d^{3}}{dx^{3}}-4(v(x)-E)\frac{d}{dx}-2\frac{dv(x)}{dx}\}_{-}^{-}-(x, E)=0.
Proposition 2.5 ([20]). Under the condition (2.7), Eq. (2.10) has a unique non‐

zero doubly‐periodic solution  $\Xi$(x, E) ,
which has the expansion

(2.11) ---(x, E)=c_{0}(E)+\displaystyle \sum_{i=0}^{3}\sum_{j=0}^{l_{i}-1}b_{j}^{(i)}(E)\wp(x+$\omega$_{i})^{l_{i}-j}
+\displaystyle \sum_{i=1}^{M}d^{(i')}(E)(\wp(x+$\delta$_{i'})+\wp(x-$\delta$_{i'}

where the coefficients c_{0} b_{j}^{(i)} () and d^{(i')} () are polynomials in E
,

these polynomials
do not share any common divisors, and the polynomial c_{0}() is monic.

We set g=\deg_{E}c_{0}() . Then the coefficients satisfy \deg_{E}b_{j}^{(i)} () <g for all i and

j . Note that the function  $\Xi$(x, E) is frequently used for describing solutions to Eq. (2.9)
and the monodromy, as we will see in Section 3. Write

(2.12) ---(x, E)=\displaystyle \sum_{i=0}^{g}a_{g-i}(x)E^{i}
Then a_{0}(x)=1 and it follows from Eq. (2.10) that

(2.13) a_{j}'''(x)-4v(x)a_{j}'(x)-2v'(x)a_{j}(x)+4a_{j+1}'(x)=0.

Define the (2g+1)-\mathrm{s}\mathrm{t} order differential operator A by

(2.14) A=\displaystyle \sum_{j=0}^{g}\{a_{j}(x)\frac{d}{dx}-\frac{1}{2}(\frac{d}{dx}a_{j}(x))\}H^{g-j}, H=-\frac{d^{2}}{dx^{2}}+v(x) .

It follows from Eq. (2.13) that [A, H]=0 . Hence the function v(x) is an algebro‐

geometric finite‐gap potential, and we obtain Theorem 2.4. Set

(2.15) Q(E)=---(x, E)^{2}(E-v(x))+\displaystyle \frac{1}{2} $\Xi$(x, E)\frac{d^{2-}--(x,E)}{dx^{2}}-\frac{1}{4}(\frac{d_{-}^{-}-(x,E)}{dx})^{2}
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It is shown by differentiating the right‐hand side of Eq. (2.15) and applying Eq. (2.10)
that Q(E) is independent of x

,
and Q(E) is a monic polynomial in E of degree 2g+1.

On the operators H and A
,

we have the relation A^{2}+Q(H)=0 (see [17, Proposition

3.2]).

Example 2.6. For the case where M=0, l_{0}=2, l_{1}=l_{2}=l_{3}=0 ,
we have

(2.16) ---(x, E)=a_{0}(x)E^{2}+a_{1}(x)E+a_{2}() =E^{2}+3\wp(x)E+9(\wp(x)^{2}-g_{2}/4) ,

(2.17) A=\displaystyle \frac{d}{dx}(-\frac{d^{2}}{dx^{2}}+6\wp(x))^{2}+3(\wp(x)\frac{d}{dx}-\frac{1}{2}\wp'(x))(-\frac{d^{2}}{dx^{2}}+6\wp(x))
+9\displaystyle \{(\wp(x)^{2}-\frac{g_{2}}{4})\frac{d}{dx}-\wp(x)\wp'(x)\}

=(\displaystyle \frac{d}{dx})^{5}-15\wp(x)(\frac{d}{dx})^{3}-\frac{45}{2}\wp'(x)(\frac{d}{dx})^{2}-9(5\wp(x)^{2}-\frac{3}{4}g_{2})\frac{d}{dx},
(2.18) Q(E)=(E^{2}-3g_{2})(E^{3}-9g_{2}E/4-27g_{3}/4) ,

where g_{2}=-4(e_{1}e_{2}+e_{2}e_{3}+e_{3}e_{1}) and g_{3}=4e_{1}e_{2}e_{3}.

§3. Monodromy Related with Finite‐Gap Potential

In this section, we review results on solutions to the Schrödinger equation (see
Eq. (2.9)) with the algebro‐geometric finite‐gap potential and its monodromy. Namely,
we have an integral representation for a solution to Eq. (2.9), a monodromy formula

in terms of hyperelliptic integral, an expression of the Hermite‐Krichever Ansatz and

hyperelliptic‐to‐elliptic reduction integral formula. The following propositions are cor‐

rect for the potentials in Theorem 2.4, which include the case of Heun�s differential

equation.

Proposition 3.1 (Integral Representation for Eigenfunctions ([15])).
Let  $\Xi$(x, E) be the function defined in Proposition 2.5 and Q(E) the polynomial

defined in Eq. (2.15). Then

(3.1)  $\Lambda$(x, E)=\displaystyle \sqrt{---(x,E)}\exp\int\frac{\sqrt{-Q(E)}dx}{---(x,E)}
is a solution to Eq. (2.9).

Proposition 3.2 (Monodromy Formula in Terms of Hyperelliptic Integral ([17])).
Let k\in\{1 , 3 \}, q_{k}\in\{0 ,

1 \} and E_{0} be the eigenvalue such that  $\Lambda$(x+2$\omega$_{k}, E_{0})=
(-1)^{q_{k}} $\Lambda$(x, E_{0}) . Then

(3.2)  $\Lambda$(x+2$\omega$_{k}, E)=(-1)^{q_{k}} $\Lambda$(x, E)\displaystyle \exp(-\frac{1}{2}\int_{E_{0}}^{E}\frac{\int_{0+ $\epsilon$}^{2$\omega$_{k}+ $\epsilon$}---(x,\overline{E})dx}{\sqrt{-Q(\overline{E})}}d\overline{E}) .
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Write

(3.3) ---(x, E)=c(E)+\displaystyle \sum_{i=0}^{3}\sum_{j=0}^{l_{i}-1}a_{j}^{(i)}(E)(\frac{d}{dx})^{2j}\wp(x+$\omega$_{i})
+\displaystyle \sum_{i=1}^{M}d^{(i')}(E)(\wp(x+$\delta$_{i'})+\wp(x-$\delta$_{i'})) ,

(3.4) a(E)=\displaystyle \sum_{i=0}^{3}a_{0}^{(i)}(E)+2\sum_{i=1}^{M}d^{(i')}(E) .

From Proposition 3.2 we have the following formula, which is expressed as a hyperelliptic

integral of second kind:

(3.5)  $\Lambda$(x+2$\omega$_{k}, E)=(-1)^{q_{k}} $\Lambda$(x, E)\displaystyle \cdot\exp(-\frac{1}{2}\int_{E_{0}}^{E}\frac{-2$\eta$_{k}a(\tilde{E})+2$\omega$_{k}c(\overline{E})}{\sqrt{-Q(\overline{E})}}d\overline{E}) ,

for k=1
, 3, where $\eta$_{k}= $\zeta$($\omega$_{k}) and  $\zeta$(x) is the Weierstrass zeta function.

Proposition 3.3 (Hermite‐Krichever Ansatz ([18])). Set

(3.6)  $\Psi$(x)=\displaystyle \prod_{i=1}^{M}(\wp(x)-\wp($\delta$_{i},)) , $\Phi$_{i}(x,  $\alpha$)=\frac{ $\sigma$(x+$\omega$_{i}- $\alpha$)}{ $\sigma$(x+$\omega$_{i})}\exp( $\zeta$( $\alpha$)x) ,

fori=0 , 1, 2, 3, where  $\sigma$(x) is the Weierstrass sigma function. There exist polynomials

P_{1} () ,
. . .

, P_{6}() such that, if P_{2}(E')\neq 0 ,
then the function  $\Lambda$(x, E') is written as

(3.7)  $\Lambda$(x, E')=\displaystyle \frac{\exp( $\kappa$ x)}{ $\Psi$(x)}(\sum_{i=0}^{3}\sum_{j=0}^{\overline{l}_{i}-1}\overline{b}_{j}^{(i)}(\frac{d}{dx})^{j}$\Phi$_{i}(x,  $\alpha$)) ,

where the values  $\alpha$ and  $\kappa$ are expressed as

(3.8) \displaystyle \wp( $\alpha$)=\frac{P_{1}(E')}{P_{2}(E)}, \wp'( $\alpha$)=\frac{P_{3}(E')}{P_{4}(E)}\sqrt{-Q(E')},  $\kappa$=\frac{P_{5}(E')}{P_{6}(E')}\sqrt{-Q(E')}.
Note that we have the periodicities

(3.9)  $\Lambda$(x+2$\omega$_{k}, E)=\exp(-2$\eta$_{k} $\alpha$+2$\omega$_{k} $\zeta$( $\alpha$)+2 $\kappa \omega$_{k}) $\Lambda$(x, E) ,

for k=1
, 3.

We can obtain hyperelliptic‐elliptic reduction formulae by comparing two expres‐

sions (Eqs. (3.5) and (3.9)) of the monodromy.
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Proposition 3.4 (Hyperelliptic‐to‐Elliptic Reduction Integral Formula ([18])).
Set  $\xi$=P_{1}(E)/P_{2}(E) .

(i) We have

(3.10) \displaystyle \int_{\infty}^{ $\xi$}\frac{d\overline{ $\xi$}}{\sqrt{4\overline{ $\xi$}^{3}-g_{2}\overline{ $\xi$}-g_{3}}}=-\frac{1}{2}\int_{\infty}^{E}\frac{a(\overline{E})}{\sqrt{-Q(\overline{E})}}d\overline{E}.
(ii) Let $\alpha$_{0} denote the value of  $\alpha$ at  E=E_{0} ,

where E_{0} is the value satisfy ing Q(E_{0})=0.
If $\alpha$_{0}\not\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} 2$\omega$_{1}\mathbb{Z}\oplus 2$\omega$_{3}\mathbb{Z} , then  $\kappa$=P_{5}(E)\sqrt{-Q(E)}/P_{6}(E) is also expressed as

(3.11)  $\kappa$=-\displaystyle \frac{1}{2}\int_{E_{0}}^{E}\frac{c(\overline{E})}{\sqrt{-Q(\overline{E})}}d\overline{E}+\int_{\wp($\alpha$_{0})}^{ $\xi$}\frac{\overline{ $\xi$}d\overline{ $\xi$}}{\sqrt{4\overline{ $\xi$}^{3}-g_{2}\overline{ $\xi$}-g_{3}}}.
Example 3.5. We consider the case where M=0, l_{0}=2, l_{1}=l_{2}=l_{3}=0.

Recall that the functions  $\Xi$(x, E) and Q(E) are calculated as

(3.12) ---(x, E)=E^{2}+3\wp(x)E+9(\wp(x)^{2}-g_{2}/4) ,

(3.13) Q(E)=(E^{2}-3g_{2})(E^{3}-9g_{2}E/4-27g_{3}/4) .

The integral representation for solutions are expressed by substituting them into

Eq. (3.1). The monodromy formula in terms of hyperelliptic integral are written as

(3.14)  $\Lambda$(x+2$\omega$_{k}, E)= $\Lambda$(x, E)\displaystyle \exp(-\frac{1}{2}\int_{\sqrt{3g_{2}}}^{E}\frac{-6$\eta$_{k}\overline{E}+$\omega$_{k}(2\overline{E}^{2}-3g_{2})}{\sqrt{-Q(\overline{E})}}d\overline{E}) ,

for k=1
, 3. The function  $\Lambda$(x, E) admits an expression of the Hermite‐Krichever Ansatz

(3.15)  $\Lambda$(x, E)=\displaystyle \exp( $\kappa$ x)(\overline{b}_{0}$\Phi$_{0}(x,  $\alpha$)+\overline{b}_{1}\frac{d}{dx}$\Phi$_{0}(x,  $\alpha$
and the values  $\alpha$ and  $\kappa$ satisfy

(3.16) \displaystyle \wp( $\alpha$)=-\frac{E^{3}-27g_{3}}{9(E^{2}-3g_{2})},  $\kappa$=\frac{2}{3}\sqrt{\frac{-(E^{3}-9g_{2}E/4-27g_{3}/4)}{(E^{2}-3g_{2})}}.
The hyperelliptic‐to‐elliptic reduction integral formula for this case is written as

(3.17) −

\displaystyle \frac{1}{2}\int_{\infty}^{E}\frac{3\overline{E}d\overline{E}}{\sqrt{-(\overline{E}^{2}-3g_{2})(\overline{E}^{3}-\frac{9}{4}g_{2}\tilde{E}-\frac{27}{4}g_{3})}}=\int_{\infty}^{ $\xi$}\frac{d\overline{ $\xi$}}{\sqrt{4\overline{ $\xi$}^{3}-g_{2}\overline{ $\xi$}-g_{3}}},
(3.18) \displaystyle \frac{1}{2}\int_{3e_{1}}^{E}\frac{(\overline{E}^{2}-\frac{3}{2}g_{2})d\overline{E}}{\sqrt{-(\overline{E}^{2}-3g_{2})(\overline{E}^{3}-\frac{9}{4}g_{2}\overline{E}-\frac{27}{4}g_{3})}}=- $\kappa$+\int_{e_{1}}^{ $\xi$}\frac{\overline{ $\xi$}d\overline{ $\xi$}}{\sqrt{4\overline{ $\xi$}^{3}-g_{2}\overline{ $\xi$}-g_{3}}},
where  $\xi$=-(E^{3}-27g_{3})/(9(E^{2}-3)) and  $\kappa$ is defined as Eq. (3.16). These formulae

reduce hyperelliptic integrals of genus two to elliptic integrals.



Heun�s Differential Equation and WKB Analysis 69

§4. Finite‐Gap potential and WKB Analysis

The WKB analysis (the WKB approximation) appears in a semiclassical calculation

in quantum mechanics, and the WKB analysis is applied for the asymptotic analysis. On

the WKB analysis of the Schrödinger equation, a solution to the Schrödinger equation
is obtained as a formal power series in  $\eta$^{-1} by introducing a large parameter  $\eta$ ,

and it

may have convergent expression by considering the Borel transformation for some cases

(see [1]). We now consider a solution to the equation

(4.1) (-\displaystyle \frac{d^{2}}{dx^{2}}+$\eta$^{2}(v(x)-E)) $\psi$(x)=0,
with a large parameter  $\eta$ . We will find solutions in the form  $\psi$(x)=\displaystyle \exp(\int S(x,  $\eta$)dx) ,

(4.2)  S(x,  $\eta$)=S_{-1}(x) $\eta$+S_{0}(x)+S_{1}(x)$\eta$^{-1}+S_{2}(x)$\eta$^{-2}+\cdots .

We set  Q=v(x)-E . Then the function S(x,  $\eta$) would satisfy

(4.3) S(x,  $\eta$)^{2}+\displaystyle \frac{\partial S(x, $\eta$)}{\partial x}=$\eta$^{2}Q,
and we have the recursion formula

(4.4) S_{-1}(x)^{2}=Q, 2S_{-1}(x)S_{j}(x)=-(\displaystyle \sum_{k+l=j-1k,l\geq 0},S_{k}(x)S_{l}(x)+\frac{dS_{j-1}(x)}{dx}) .

We set S_{\mathrm{o}\mathrm{d}\mathrm{d}}=\displaystyle \sum_{j\geq 0}S_{2j-1}(x)$\eta$^{1-2j} and S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=\displaystyle \sum_{j\geq 0}S_{2j}(x)$\eta$^{-2j} . Then we have

(4.5) S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=-\displaystyle \frac{1}{2S_{\mathrm{o}\mathrm{d}\mathrm{d}}}\frac{\partial S_{\mathrm{o}\mathrm{d}\mathrm{d}}}{\partial x}, $\psi$_{\pm}=(S_{\mathrm{o}\mathrm{d}\mathrm{d}})^{-1/2}\exp(\pm\int S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) .

Note that $\psi$_{\pm} are formal solutions as power series in $\eta$^{-1} . Here we point out that

Eq. (4.5) resembles to an integral representation of solutions (Eq. (3.1)) in the theory of

finite‐gap potential. In fact Eq. (3.1) is written as Eq. (4.5) up to a scalar multiplication

by setting \overline{S}_{\mathrm{o}\mathrm{d}\mathrm{d}}=\sqrt{-Q(E)}/^{-}--(x, E) . Set

\displaystyle \overline{S}=\overline{S}_{\mathrm{o}\mathrm{d}\mathrm{d}}-\frac{1}{2\overline{S}_{\mathrm{o}\mathrm{d}\mathrm{d}}}\frac{\partial\overline{S}_{\mathrm{o}\mathrm{d}\mathrm{d}}}{\partial x}.
Then an equality as Eq. (4.3) follows from Eq. (2.15).

We consider the case where v(x)=\wp(x) ,
which is the case of Lamé�s equation,

(4.6) (-\displaystyle \frac{d^{2}}{dx^{2}}+$\eta$^{2}(\wp(x)-E)) $\psi$(x)=0.
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We have two methods for investigating Lamé�s equation, the finite‐gap integration and

the WKB analysis. If $\eta$^{2}=l(l+1) for l\in \mathbb{Z} ,
then the potential of Eq. (4.6) is algebro‐

geometric finite‐gap and we can apply the finite‐gap integration for Lamé�s equation. On

the limit  $\eta$\rightarrow\infty ,
we may apply the WKB analysis. Fedoryuk [5], [6] investigated Lamé�s

equation, Lamé wave equation and Heun�s equation by the WKB analysis and obtained

error estimates for WKB approximation. On the WKB expansion of the solutions to

Lamé�s equation, we have

(4.7)  S_{-1}(x)=(\wp(x)-E)^{1/2}, S_{0}(x)=\underline{-\wp'(x)}
4(\wp(x)-E)

�

S_{1}(x)=-\displaystyle \frac{5\wp'(x)^{2}}{32(\wp(x)-E)^{5/2}}+\frac{\wp''(x)}{8(\wp(x)-E)^{3/2}} ,
. . . .

We consider the leading term of $\eta$^{-1} ,
i.e. S_{-1}(x) . Then the monodromy with respect to

the shift x\rightarrow x+2$\omega$_{j} is written as

(4.8) S(x+2$\omega$_{j})=\displaystyle \exp(\pm $\eta$\int_{x}^{x+2$\omega$_{j}}(\wp(x)-E)^{1/2}dx+$\eta$^{-1}( . . . ) +\cdots)S(x) .

We will sketch the distribution of the eigenvalues of Lamé polynomial for  $\eta$\rightarrow\infty and

 l\in \mathbb{Z}_{>0}($\eta$^{2}=l(l+1)) . Lamé polynomial is characterized as a non‐zero doubly‐periodic
solution (i.e. f(x+2$\omega$_{i})/f()\in\{\pm 1\} for i=1,3 ) to Lamé�s equation (see [23], [15]),
and it is essentially a polynomial in z by setting z=\wp(x) . If l is a positive integer, then

the number of the eigenvalues of the Lamé polynomial is 2l+1 (see [23], [2]), and the

eigenvalue of the Lamé polynomial satisfies $\eta$^{2}e_{1}\leq$\eta$^{2}E\leq$\eta$^{2}e_{3} , (i.e. e_{1}\leq E\leq e_{3} ) for

the case where $\omega$_{1}\in \mathbb{R}_{>0} and $\omega$_{3}\in\sqrt{-1}\mathbb{R}_{>0} . If $\eta$^{2}=l(l+1) ,
then the eigenvalue E of

the Lamé polynomial satisfies

(4.9)  $\eta$\displaystyle \int_{$\omega$_{3}}^{$\omega$_{3}+2$\omega$_{1}}(\wp(x)-E)^{1/2}dx\in $\pi$\sqrt{-1}\mathbb{Z}, (e_{2}<E<e_{1}) ,

(4.10)  $\eta$\displaystyle \int_{$\omega$_{1}}^{$\omega$_{1}+2$\omega$_{3}}(\wp(x)-E)^{1/2}dx\in $\pi$\sqrt{-1}\mathbb{Z}, (e_{3}<E<e_{2}) ,

by the asymptotics as $\eta$^{-1}\rightarrow 0 ,
which follows from the periodicity of the monodromy.

It is shown under the conditions that $\eta$^{2}e_{1}\leq$\eta$^{2}E\leq$\eta$^{2}e_{3}, $\omega$_{1}\in \mathbb{R}_{>0} and $\omega$_{3}\in\sqrt{-1}\mathbb{R}_{>0}
that a simply‐periodic solution is also doubly‐periodic. It seems that l pairs of eigen‐
values merge by the WKB approximation.

We change a variable in the integral by setting z=\wp(x) . The m‐th eigenvalue

E\in(e_{2}, e_{1}) of the Lamé polynomial from the top should satisfy

(4.11) \displaystyle \int_{e_{3}}^{e_{2}}\sqrt{\frac{E-z}{(e_{1}-z)(e_{2}-z)(z-e_{3})}}dz= $\pi$-\frac{m $\pi$}{ $\eta$},
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and the m‐th eigenvalue E\in(e_{3}, e_{2}) of the Lamé polynomial from the bottom should

satisfy

(4.12) \displaystyle \int_{e_{2}}^{e_{1}}\sqrt{\frac{z-E}{(e_{1}-z)(z-e_{2})(z-e_{3})}}dz= $\pi$-\frac{m $\pi$}{ $\eta$}.
as $\eta$^{-1}\rightarrow 0 . Hence the number of eigenvalues of the Lamé polynomial which is less

than E is given by

(4.13) n(E)=\left\{\begin{array}{ll}
\frac{ $\eta$}{ $\pi$}( $\pi$-\int_{e_{2}}^{e_{1}}\sqrt{\frac{z-E}{(e_{1}-z)(z-e_{2})(z-e_{3})}}dz) , & (e_{3}<E<e_{2}) ,\\
\frac{ $\eta$}{ $\pi$}\int_{e_{3}}^{e_{2}}\sqrt{\frac{E-z}{(e_{1}-z)(e_{2}-z)(z-e_{3})}}dz, & (e_{2}<E<e_{1}) ,
\end{array}\right.
as $\eta$^{-1}\rightarrow 0 . Note that we used the formulae

(4.14) \displaystyle \int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{2}-z)(z-e_{3})}}=\int_{e_{2}}^{e_{1}}\frac{dz}{\sqrt{(e_{1}-z)(z-e_{2})}}= $\pi$,
( $\pi$-\displaystyle \int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{1}-z)(z-e_{3})}})-(\int_{e_{2}}^{e_{1}}\frac{dz}{\sqrt{(e_{1}-z)(z-e_{3})}}- $\pi$)= $\pi$.

The density of the eigenvalues is written as

(4.15) \displaystyle \frac{1}{ $\eta$}\frac{\partial}{\partial E}n(E)=\left\{\begin{array}{ll}
\frac{1}{2 $\pi$}\int_{e_{2}}^{e_{1}}\frac{dz}{\sqrt{(e_{1}-z)(z-e_{2})(z-e_{3})(z-E)}}, & (e_{3}<E<e_{2}) ,\\
\frac{1}{2 $\pi$}\int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{1}-z)(e_{2}-z)(z-e_{3})(E-z)}}, & (e_{2}<E<e_{1}) .
\end{array}\right.
Hence we recover the formula given by Borcea and Shapiro [2] by the completely different

method. We decompose the integral as

(4.16) \displaystyle \frac{1}{2 $\pi$}\int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{1}-z)(e_{2}-z)(z-e_{3})(E-z)}}
=\displaystyle \frac{1}{2 $\pi$\sqrt{(e_{1}-E)(E-e_{3})}}\int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{2}-z)(E-z)}}

+\displaystyle \frac{1}{2 $\pi$}\int_{e_{3}}^{e_{2}}\frac{dz}{\sqrt{(e_{2}-z)(E-z)}}(\frac{1}{\sqrt{(e_{1}-z)(z-e_{3})}}-\frac{1}{\sqrt{(e_{1}-E)(E-e_{3})}}) .

Then the asymptotic of the density of the eigenvalues as E\rightarrow e_{2}+0 is written as

(4.17) \displaystyle \frac{1}{2 $\pi$}(\frac{\log\frac{4(e_{2}-e_{3})}{E-e_{2}}}{\sqrt{(e_{\mathrm{l}}-e_{2})(e_{2}-e_{3})}}+\frac{\log\frac{4(e_{1}-e_{2})}{e_{1}-e_{3}}}{\sqrt{(e_{\mathrm{l}}-e_{2})(e_{2}-e_{3})}})
=\underline{1}\underline{\log\frac{16(e_{1}-e_{2})(e_{2}-e_{3})}{(e_{1}-e_{3})(E-e_{2})}}

2 $\pi$ \sqrt{(e_{1}-e_{2})(e_{2}-e_{3})}
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It is also shown that the asymptotic as E\rightarrow e_{2}-0 is written as

1 \displaystyle \log\frac{16(e_{1}-e_{2})(e_{2}-e_{3})}{(e_{1}-e_{3})(e_{2}-E)}(4.18)
2 $\pi$ \sqrt{(e_{1}-e_{2})(e_{2}-e_{3})}

Hence the density of the eigenvalues as E\rightarrow e_{2} has logarithmic singularity. If e_{2}=e_{3},

then the density is written as 1/(2\sqrt{(e_{2}-e_{1})(E-e_{2})}) and the type of the singularity
at E=e_{2} changes.

We have another way to insert a large parameter. We regard the eigenvalue E

as a large parameter while fixing the potential. Namely, we consider the Schrödinger

equation

(4.19) (-\displaystyle \frac{d^{2}}{dx^{2}}+(v(x)-E)) $\psi$(x)=0,
by setting E=-$\eta$^{2},

(4.20)  $\psi$(x)=\exp( $\eta$ x+$\psi$_{1}(x)$\eta$^{-1}+$\psi$_{2}(x)$\eta$^{-2}+$\psi$_{3}(x)$\eta$^{-3}+$\psi$_{4}(x)$\eta$^{-4}+\cdots) .

and we regard  $\eta$ as a large parameter while fixing the potential. We now restrict to the

case of Lamé�s equation  v(x)=l(l+1)\wp(x) . Then the coefficients $\psi$_{1} () , $\psi$_{2}() ,
. . . are

expressed as

(4.21) $\psi$_{1}(x)=-\displaystyle \frac{l(l+1)}{2} $\zeta$(x) , $\psi$_{2}(x)=-\frac{l(l+1)}{4}\wp(x) ,

$\psi$_{3}(x)=-\displaystyle \frac{l^{2}(l+1)^{2}}{96}g_{2}x+(-\frac{l^{2}(l+1)^{2}}{48}+\frac{l(l+1)}{8})\wp'(x) ,

$\psi$_{4}(x)=\displaystyle \frac{l^{2}(l+1)^{2}}{96}g_{2}+(\frac{l^{2}(l+1)^{2}}{48}-\frac{l(l+1)}{16})\wp''(x) ,
. . . .

Hence we have the asymptotics of the monodromy

(4.22)  $\psi$(x+2$\omega$_{i})= $\psi$(x)\displaystyle \exp(2$\omega$_{i} $\eta$-l(l+1)$\eta$_{i}$\eta$^{-1}-\frac{l^{2}(l+1)^{2}g_{2}$\omega$_{i}}{48}$\eta$^{-3}+\cdots) ,

where $\eta$_{i}= $\zeta$($\omega$_{i})(i=1,3) . Grosset and Veselov [9] studied the asymptotics of the

monodromy by applying the elliptic Faulhaber polynomials, which is related to the

soliton theory of the \mathrm{K}\mathrm{d}\mathrm{V} equation. They considered the asymptotics of the densi‐

ties of states for Lamé�s equation, and applied it for computation of the polynomials

-2$\eta$_{k}a(E)+2() in Eq. (3.5). Equation (4.22) is also obtained as a consequence of

the paper [9].
We expect further results among the finite‐gap potential, WKB analysis and Heun�s

(Lamé�s) equation.
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