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Adiabatic Transition Probability for a Small
Eigenvalue Gap at Two Points
By

Takuya WATANABE*

Abstract

Let us consider a 2-level adiabatic transition problem. We study by using an exact WKB
method the asymptotic behavior of the transition probability as the eigenvalue gap parameter,
as well as the adiabatic parameter, tends to 0.

§1. Introduction

In these notes we consider the 2 x 2 system of first order differential equations:

L d B (V) e
(1.1) zhaw(t)—H(t,s)w(t), H(t,s)—( . —V(t))’

where h and € are small positive parameters. h is called an adiabatic parameter. V (t)
satisfies the following assumptions:

(A) V(t) is real-valued on R and there exist two real numbers 0 < 6, < 7/2 and p > 0
such that V(t) is analytic in the complex domain:

S={teC; |Imt| < |Ret|tanby} U {|Imt| < p}.
(B) There exist two real non-zero constants F,., E, and ¢ > 1 such that

5E, + O(|t| ™) as Ret — +o00 in S,
V(t) =

E, +0O(t|™79) as Ret —» —oc0 in S.
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The 2 x 2 matrix H(t,¢e) is trace-free real-symmetric matrix. H(t,¢) has positive and
negative eigenvalues EL (t,e) = ++/V(t)? + &2.

Under the conditions (A) and (B), there exist four solutions 9", ¢", ¢! , and ¢
to (1.1) uniquely defined by the following asymptotic conditions:

o [ sind
Y (t) ~ exp +% E?2 + &2t C(S;ne T), as Ret— 400 in S,
- N - 9
Y (t) ~ exp —%\/E2+€2t C?%’") , as Ret— +oo in &,
I 1 \'siné,
(1.2)
I [ 2 o, [—sind )
Y. (t) ~ exp +ﬁ Ef +¢e°t cosd, |0 Ret - —o0 in S,
- - l
! 0 5 o.,] [cosb, .
YL (t) ~exp|——/E} + %t ) , as Ret— —oo in S,
L h 1 \'sing,

where tan26, = ¢/E, and tan20, = ¢/E, (0 < 6,,0, < 7/2). These solutions are
called the Jost solutions to (1.1). The pairs of Jost solutions (¢’ ,¢") and (¢!, ")
are orthonormal bases on C? for any fixed t.

Definition 1.1.  The scattering matriz S(e,h) = (s, (e, h))1<k |<o 18 defined as

the change of bases of Jost solutions:

(Wl b)) = (W 90)S (e, h).

Note that the scattering matrix S(e, h) is unitary. The transition probability P(e,h) is
defined by
P(e, h) = [s91 (e, h)|* = |s12(e, ).

In this paper we assume that
(C) V(t) vanishes at two points t =z, y (z > y) on R.

Then the difference of eigenvalues (eigenvalue gap) attains the minimum 2¢ at t = x, y.
It is expected that the transition probability is governed by the zeros of V (¢).

In the special case where V(¢) = at (a > 0) called Landau-Zener model, it was
shown by Landau and Zener in 1932 ([L], [Z]) that the transition probability is given
by the so-called Landau-Zener formula:

(1.3) P(e,h) = exp [—7%;]

for any € > 0, h > 0. Note that small parameters € and h play opposite roles for P(e, h)
from (1.3). Our problem is studying what makes a contribution to the asymptotic
behavior of P(e, h) as the adiabatic parameter h and the eigenvalue gap € tend to 0.
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§2. Results

We first introduce so-called turning points which play an important role in the
exact WKB method. They are by definition the zeros of V (¢)? +&2. Let n (resp. m) be
the order of the zero t = z (resp. y) and suppose V(z) = V/(z) =--- =V D(z) =0
and V™) () # 0 (resp. V(y) = V'(y) = --- = V™ D(y) =0 and V™ (y) # 0). We can
assume V(") (z) > 0 without loss of generality. Then there are 2n simple turning points
around ¢t = x, which are denoted by x,(¢) and T;(¢) (j = 1,...,n), and they behave
like

1/n . .
n! (2j — 1)mi
n@ ~ ot (o) el g w0
There are also 2m simple turning points around ¢ = y, which are denoted by y,(e) and
y;(e) ( =1,...,m), and they have similar asymptotic behaviors.

We define the action integrals A;(e) and B,(e) by

yj(e)

(2.1) Ai(e) = Q/Ij(E)\/V(tp +e2dt, Bj(e) = 2/ VV ()2 + 2 dt,

where the integration path of A;(e) (resp. Bj(¢)) is the complex segment from z to
z;(€) (resp. from y to y;(¢)) and the branch of the square root is ¢ at t = x. Moreover
we introduce the real-valued action integral:

R(e) =2 / WooEer)

We shall observe the asymptotic behaviors of the action integrals for sufficiently small
€in §3.2.

§2.1. Related Results

There exist many preceding studies on adiabatic transition problems (see [HJ],
[T]). We here refer to the results by Joye-Mileti-Pfister and Joye in the case where the
eigenvalue gap is fixed. They indicated in [JMP], [J1] that the asymptotic behavior of
the transition probability as A — 0 is determined by the geometrical structure generated
by the Stokes lines closest to the real axis among those passing through turning points
(see §4.1).

On the other hand when the eigenvalue gap, in particular the off-diagonal part ¢ in
our Hamiltonian H (¢, ¢), tends to 0, the number of real zeros of V(¢) and their vanishing
order are relevant. Here is a result in the case where V(¢) vanishes only at one point
t=u.

Theorem 2.1 ([W]).  Assume V (t) vanishes only at one point t = x.
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(i) If n =1, then there exists €y > 0 such that
2
(2.2) P(e,h) = exp[—ﬁ Im Al(e)] (1+0(h)  as h— 0,

uniformly for any € € (0,¢).
(ii) If n > 2, then there exists €, > 0 such that for any € € (0,¢,)

2
h
(1 + O(e(n—kl)/n))

Remark.  The asymptotic formula (2.2) is a natural extension of the Landau-
Zener formula (1.3) (see [H], [J2]). In the case where n > 2, the asymptotic behavior of
P(e,h) is not determined only by the geometrical structures of Stokes lines but by the
relations between ¢ and h in addition to the asymptotic condition: h/e™ /™ — 0 (see
[W, Proposition 2.1]).

(2.3)  Ple.h) = exp[% 4,0)] + () exp[% 4,(2)]

as h/e(+/m 0,

§2.2. Main Results

We state our results according to the vanishing order n, m.

Theorem 2.2. Ifn = m = 1, there exists ¢, > 0 such that we have for any
e € (0,¢eq)

(2.4) P(e,h) = 2

exp[%(Al(s) + R(g))] — eXp [%BI(E)] (1 + O(%))

as h/e? — 0.

Theorem 2.3. Ifn =1 and m > 2, there exists ¢, > 0 such that we have for
any € € (0,&q)

2 h h
(2.5) P(e,h) = exp [_E Im Al(e)} (1 + O<—5(m+l)/m>) as e m 0.

Theorem 2.4. If m > n > 2, there exists ¢, > 0 such that we have for any
e €(0,gp)

P(e,h) =
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as h/a(”+1)/” — 0. In particular, if m > n we have

(2.6) P(e,h) =

2
h
(1 +o ()

exp {%Al(e)] + (1) exp [%An(a)]

as h/e(+/n 0,

Remark.  The principal terms of the asymptotic formulae (2.4) and (2.3) are the
same in the sense that the action integrals which appear in each principal term are
defined by the two turning points closest to the real axis. In fact they have essentially
the same Stokes geometry. Similarly the principal term of (2.5) is the same as that
of (2.2) and the asymptotic formula (2.6) is exactly the same as (2.3). From above
considerations, it is expected that turning points around the lowest order zero make a
major contribution to the asymptotic behavior of P(e,h).

If V/(t) vanishes at more than two points, we can express the scattering matrix by
means of the product of the transfer matrices (see §4).

§3. Preliminary

§3.1. Exact WKB Method for 2 x 2 System

We review the exact WKB method for 2 x 2 systems introduced in [FLN], which is
a natural extension of the method in [GG] for Schrédinger equations.
Let us consider the following 2x2 system of first order differential equations:

G T (—ﬁo(t) a?) o

The functions «(t) and [((t) are assumed to be holomorphic in a simply connected
domain ©Q C C and they do not vanish in a domain ©; C Q. These zeros of a(t)3(t) are

called turning points and coincide with those mentioned in §2. Note that the equation
(1.1) can be reduced to this anti-diagonal system (3.1) by ¥(t) — % (1 i) o(t).

The exact WKB solutions to (3.1) are the following form:
(3.2) Ox(t bty ty) = =M My (2())w . (2(8), b 2(,))

for two base points ty € €0, t; € 2y, where

(3.3) 2(tity) = /t JamA() dr,
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_ (KG0) K@) _ . [80)
(34) Mi<z<t>>—(:FiK(Z(t))iiK(z(t))), K((0) = {22,

wi(z(txh;z(tl))) _ ( wy o (2(0), b 2(t1)) )

(85)  wa(=(t) hiz(ty)) = <wi(z(t),h;z(t1)> W g1 (#(0), s 2(1))

Here the sequences of functions {wy ,,(2;21)}nZg, Where z; = z(t;) are defined by the

integral recurrent relations:

(

w:l:,O(z;Zl) =1, wj:’_l(z;zl) =0
z 5 K/
(3.6) Wa o1 (25 21) = / 1 eiﬁ“‘”% wy 2(C,Cy) dC,

z K/
wi,zk(zézl) :/ %wi,%—l(ggl)dc'

\

The phase function (3.3) is a solution to an eikonal equation and has singularities of
turning points at branch points of the integrand. On the other hand, the symbol function
(3.5) are determined by the integral recurrent relations. Hence we see that the elements
of the function w4 (z; z1) converge absolutely and uniformly in a neighborhood of z = z;
(see [FLN], [W]). Such solutions (3.2) constructed by the way above are exact solutions
to (3.1).

The exact WKB solutions (3.2) are holomorphic in a neighborhood of ¢t = ¢;, and
extended analytically to €2 because (3.2) satisfy the equation (3.1) with holomorphic
coefficients in 2. We call ¢, the base point of the phase and ¢; the base point of the
symbol. We remark that the pair of exact WKB solutions ¢_ (¢, h;ty,t,), ¢_(t, hity,t;)
are linearly independent.

We state some properties of the exact WKB solutions. The Wronskian between
two exact WKB solutions [¢(t), ¢(t)] = det (o(t) 5(75)) is given by w¢:

Proposition 3.1.  Any exact WKB solutions ¢ (t;ty,t,) and ¢_(t;ty,ty) with
the same base point t, of the phase satisfy the Wronskian formula:

(D4 (E5tg, 1), _(Ei Lo, ta)] = 20w (2(Ls); 2())-

We note that the Wronskian is independent of the variable ¢ because the matrix of
right side of (3.1) is trace-free.

The convergent series (3.5) of the function w, (2(t), h; z(t;)) constructed by (3.6)
are also asymptotic expansions on h in the domains 2, C ; in which there exists a
curve from ¢, to ¢ along which £ Re z(¢) increases strictly.
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Proposition 3.2.  There exist a positive integer N and a positive constant hy
such that, for all h € (0, hy) we have

(3.7) wi (2(2), Z w ok (2(8), b 2(t)) = O(R™),

(3.8) wl (2(t), Z W o1 (2(t), by 2(ty)) = O(RY),

uniformly in Q.

We introduce the so-called Stokes line, which characterizes the asymptotic behavior
of the exact WKB solution as h tends to 0.

Definition 3.3.  The Stokes lines emanating from ¢ = ¢, in {2 are defined as the
set:

tEQ Re/\/a dT—O}

A Stokes line is a level set of the real part of the WKB phase function z(¢; ).

If Re z(t) strictly increases along an oriented curve, such a curve is called a canonical
curve. In fact a canonical curve is transversal to Stokes lines. We can characterize the
asymptotic behavior of the Wronskian between the linearly independent exact WKB

solutions in terms of canonical curve.
Proposition 3.4.  If there exists a canonical curve from t; to t,,

[P (t, Rty ty), (L, hity, L)) = 2i (1 + O(h)) as h —0.

§3.2. Action Integral

In this subsection we give the asymptotic behaviors of the action integrals (2.1).
These are important to study the decay rate of P(e,h) and the geometrical structures
of the Stokes lines.

We see that there exist the relations between the action integral defined in §2
and the phase function (3.3): A,(e) = iz(x;(e);2)/2, B,(e) = iz(y;(€);y)/2. Put

v (n)
V(t) = n'(x) (t —x)"v,(t — x), where v, (t) are holomorphic near ¢t = 0 and v, (0) = 1
vy .

(resp. V(t) = %(t —y)"v, (t —y)) respectively.

Lemma 3.5. A; (¢) is an analytic function of /™ att = = and has the following
exTpPansion:

= (29 — 1)(]7’(’2 n+q)/n .

(3.9) A (e) :Zquxp[T}s( a)/ (j=1,...,n),

q=1



82 TAKUYA WATANABE

V7T (g/(2n)) ( n!(xﬂ)q/"[ di—

where Xo = G g T@ T ((n + ¢)/@n)) \[70 e CORE)]

2=0

1/m

Remark.  B;(e) is also an analytic function of € at ¢ = y and has a similar

expansion.

To consider the scattering matrix, we define the action integrals R__(¢) and R_ (),
which have +o00 as the end points of the integration paths, by

R_(c) = 2/00(\/1/@)2 T2 dt
R___(¢) = 2/_00(\/1/@)2 T2\ dt

where \, = \/E?+¢2 and A\, = \/E? +£2. Note that R, (¢) and R__ () are real-

valued as well as R(e).

§4. Outline of Proofs

The proof of each theorem is reduced to studying the asymptotic expansions of the
elements of the scattering matrix as h — 0 by means of the exact WKB method in
§3.1. In short the scattering matrix can be expressed by the products of the change of
bases (transfer matriz) between the exact WKB solutions which has a valid asymptotic
expansion on h in a complex domain separated by Stokes lines near the real axis. We
first study the geometrical structures of Stokes lines in some cases and define such exact
WKB solutions. In §4.2 we give the expression of the scattering matrix with the transfer
matrix near each zero of V(t).

§4.1. Stokes Geometry

In this paper we call Stokes geometry the geometrical structures of the Stokes lines
emanating from turning points. We remark that the Stokes geometry near the real axis
differs according to the orders of zeros of V(t). See Figures 1, 2, and 3 for different
Stokes geometries.

Let r, 7, I, and [ be four base points of the symbol as in each figure. We make
the branch cuts dashed lines as in each figure. Recalling that we take the branch of

V(t)? + &2 which is € at t = z, we see that around the real axis Re z(t) is increases as
Imt decreases and Im z(t) increases as Ret increases.
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For any n, m € N we consider four exact WKB solutions:

6. 150,7) = exp [+ 2| 0t (o) (a0 200,
. 61707 = exp[2ETN 0027,
61 ) = exp [+ 2 EI A 0, (2(0):2(0),
617D = exp[- BT ar (0o (a(0):2(0).

Note that each exact WKB solution has a valid asymptotic expansion on h in the

direction toward its phase base point from its symbol base point.

Im¢

Figure 1. n=m =1, Im A, (¢) < Im B, (¢)
Let §, and &, as in Figures 1, 2 and 3 be the intermediate symbol base points in S
satisfying
(4.2)  max{[Rez(z,)|, [Rez(y)[} <[Rez(d,)] < min{[Rez(z,_,)|, [Re2(y2)[}

for sufficiently small €. In fact we note, from Lemma 3.5, that the inequality Re z(z,,) >
Re z(y; ) holds for sufficiently small € if n > m. Then we consider the intermediate exact
WKB solutions:

¢ (t;x,,0,) = exp -+

) nvc

6 (t:7,.5,) = exp[~ 25T 01 (i) (a(0):2,))

6. (0.0, = exp [+ 2B b 0y, (:10):206,).
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6-(t:7,.5,) = exp[ Bz (2(0):265,),

whose asymptotic expansions in h are valid in the direction toward four turning points
from the symbol base points J,, &..

Imt¢

Figure 2. n=1,m > 2, Im By(¢) > Im B, (¢)

§4.2. Scattering Matrix

We first give the relations between the Jost solutions and the exact WKB solutions
(4.1) (see [Ra], [FR], [W]).

Lemma 4.1.  The following relations hold:

vL(0) = Q0 (e exp [+ g, (t:0,.7)

v (1) = ~iQCy(e, b o[- ]g_(1:7,.7),
oL 1) = QCy(e.m exp [+ 28 g_(rzy,, .0

l _ _Zl(gm) .

vl (1) = —iQCi (e h) exp |52 6 _(6:7,.0)

t
:i/ (VV ()2 +e2 = A\,)dr +i\t, ()\r: VE? +_52)
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/ (VV(T)2+e2 = \)dr + i\t

(n=/Ep+e?).
The coefficients C. (g, h) are some constants depending only on € and h, and C, (e, h)
1+ O(h) as h tends to 0 uniformly with respect to small €

We will denote such constants simply by 1+ O(h)

Im¢

Figure 3. m >n > 2, Im Ai(e) > Im A, (¢), Im By () > Im By, (¢)
We next define the transfer matrices 7..(e, h) and Tj(e, h) b

(W} (@) ¥Z(1) = (¢4 (21, 7)

¢_ (t§ Ty, F))TT(E’ h)’
(WL (1) ¥ (1) = l

(D4 (& Yms 1) O (&Y, )T (€, h),

and the transfer matrices T, (g, h), T, (¢, h) around t = x, y and T, (¢, h)

(¢+(t xnﬂ(sc) ¢ (t

T,7))T, (e, h),
(4 (& Y, 1) ¢_(t;ym,l))=(¢+(t Y1, c)¢ ( 71,0.)) Ty (e, 1),
(¢+(t;y1’5c) ¢—(t;ylagc)) = (¢+(t xnﬂéc) (:b ( E

,0:))T.(e, h).

We see that the transfer matrices T,.(e, h), T;(¢, h), and T, (e, h) are diagonal matrices
given by

(43) T, — exp[zh(A — R+ 2\ x)} 0

0 exp[%(Roo — A, — 2)\raz)]
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(B, — R_oo +2)9)] 0

exXp [%

(4.4) T; = (1+0(h)),

7 —
0 exp[ﬁ(R_oo ~ B, —2\y)

where O(h) is uniform with respect to small ¢, and

P exp[%(ﬁln ~ B, + R)] 0

‘ 0 exp [—;—h(zn — B, +R)

Then the asymptotic formula of S(g,h) as h tends to 0 is given by

Proposition 4.2. The scattering matriz S(e, h) is the product of the 2 X 2 ma-
trices T,.(e, h), Ty(e, h), T, (e, h), T, (e, h), and T,.(, h):

(4.6) S(e,h) =T, (e, h) T,(e,h) T,(c,h) T, (e, h) Ty (e, h).

We finally state the asymptotic formulae of the transfer matrices 7, (e, h) and
T,(e,h). Put

§11(e,h) &1a(e,h) Mma(e;h) ma(e, h)
T, (e,h)= , Ty(e,h) = )
§a1(e,h) Eaa(e, h) No1(€,h) Maa(e, h)

Proposition 4.3.  T,(e, h) satisfies the following asymptotic formulae:
If n =1, then
h h
Eu(eh) =1+0(3) ;

2l h) =i exp[ -1 Im 4,()] 1+ O() a5 h—0,
Enle.h) =i exp[; Tm A (1L+O(M) 2 h—0,
fzz(gah)zl‘*'O(E%) as 8%—%).
If n > 2, then

E11(e.h) = (exp[ 5 (Ay = A)] + (1) exp[ (4, — 27, + 4,)] )
x<1+0<{5(%1?/n>> | as 6(”4'%_)0,

Eaalesh) = i((—1)" exp 5= (4 — A,)] +exp|3-(4) — 24, + 4, )
< (1+0( 7)) = ot =0
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Eare,h) =i (1) exp[;h(A )] + o524, - A, - 4,)])
Exalesh) = (exp| - (A, = Ap)| + (-1)" exp[—h(QA ~4,-4,)))

x (1+o(€(n+%)) as gw%ﬁo.
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This proposition can be proved by means of the idea in [W]. The elements of 7). (g, h)

are expressed by Wronskians between the exact WKB solutions defined in §4.1. We see

that there exist a canonical curve for each Wronskian in case n = 1. In the case where

n > 2, taking account of intermediate base points of the symbol 6, and &,

we also

make sure of the existence of canonical curves. Therefore we obtain this proposition by

Proposition 3.4. Similarly we get

Proposition 4.4. T, (¢, h) satisfies the following asymptotic formulae:
If m =1, then

nu(s,h)=1+0(€%> as 2 0,
ma(e.h) = (<1 exp[ - By ()] (1 +0()  as b0,
nay (6, 1) = (—1)" exp[—% By (e)|(1+0()  as  h—0,
Uzz(f,h)=1+0<€%> as — — 0.

If m > 2, then

ny1(e,h) = (exp[;h (B, — B, )] + (=)™ exp[%(B1 — 2B, + Bm)D

(1 + O(g(mﬂ)/m)) as g(m—ii-ll)/m 0,
Mo(e,h) = (—1)”i< 1)ym+t exp[% ] + exp[ (B, -2B,+B )])
(1 + O(g( +1)/m>> as g(mfl)/m — 0,
Ny (g, ) = (—1)”@'( 1)ym+t exp[% ] + exp[—h(QB1 B, Bm)])
(1 + O<g(m+1)/m>> as 5(mf1)/m 0,
maa(e ) = (exp[ 5 (B~ B)| + (-1 exp[ (2B, - By - B,,))
% (1 + O(g(m+1)/m> as 5(mf1)/m 0
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From (4.3), (4.4), (4.5), Propositions 4.2, 4.3, and 4.4, we obtain the asymptotic

expansions of the scattering matrix.
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