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By
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§0. Introduction

The purpose of this paper is to announce

Half of Part 5 of the Toulouse Project ([KT2]) is now completed,

that is,

near a simple P‐turning point of the first kind, each instanton‐type solution

of (P_{J})_{m} ( J=\mathrm{I} ,
II or IV; m=1,2,3, \ldots ) can be reduced to an appropriate

solution of () ,
the classical Painlevé‐I equation with a large parameter  $\eta$,

namely,

(0.1) \displaystyle \frac{d^{2}$\lambda$_{\mathrm{I}}}{d\tilde{t}^{2}}=$\eta$^{2}(6$\lambda$_{\mathrm{I}}^{2}+\tilde{t}) .

Here the expression �Half of Part 5� is used to emphasize that only P‐turning points
of the first kind are studied in this paper: probably we should have divided Part 5 into

two parts, like Part 2 and Part 3, which are concerned with 0‐parameter solutions.

Let us first recall briefly the current ( =\mathrm{a}\mathrm{s} of January, 2007) status of the Toulouse

Project. Here and in what follows, we use the same notions and notations as in [KT3],
with the exception that the suffix II‐2 is now denoted simply by II. In particular, a P‐

turning point is, by the definition, a turning point of a Painlevé equation. This notation

was introduced in [KT3] to avoid the possible confusion of a turning point of a Painlevé

equation (i.e. in t‐space) and that of the underlying linear equation (i.e. in (x, t) ‐space).
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[1] Part 1: Stokes Geometry of Higher Order Painlevé Equations.

See [KKoNTl], [\mathrm{K}\mathrm{K}\mathrm{o}\mathrm{N}\mathrm{T}2] and [N] for (P_{J})_{m} (J= I or II). See also [Sa1], [Sa2],
[AKSaST] and [H] for the Noumi‐Yamada system.

[2] Part 2: Reduction of a 0‐Parameter Solution of (P_{J})_{m} ( J=\mathrm{I} ,
II or IV) Near

Its Turning Point of the First Kind.

See [KT3] for J=\mathrm{I} or II and [KT4] for J=\mathrm{I}\mathrm{V}.

[3] Part 3: Study of the Structure of a 0‐Parameter Solution of (P_{J})_{m}(J=
I, II or IV) Near Its Turning Point of the Second Kind.

No Stokes phenomena are observed for 0‐parameter solutions there (unpublished).

[4] Part 4: Construction of (2)‐Parameter Solutions of (P_{J})_{m} ( J=\mathrm{I} ,
II or IV).

See [T2] for J= I. As the reasoning there relies only on the existence of the

Hamiltonian structure for (P_{\mathrm{I}})_{m} ,
the recent result of Koike ([Ko]) has enabled us to

claim that the construction of such solutions can be done also for J= II or IV. The

(2)‐parameter solution constructed in [T2] contains, in parallel with the case of the

traditional Painlevé equations ([AKT], [KT1]), terms of the form

(0.2) $\alpha$_{k}\exp (  $\eta$\displaystyle \int^{t} vkdt)

and hence it is called an instanton‐type solution ([T2], [T3]).

Now we shall announce the result that generalizes the reduction theorem for a 0‐

parameter solution (Part 2) to that for an instanton‐type solution near a P‐turning point
of the first kind (Main Theorem below). As (P_{\mathrm{I}\mathrm{I}})_{1} (resp. (P_{\mathrm{I}\mathrm{V}})_{1} ) is the traditional (i.e.
second order) Painlevé‐II (resp. Painlevé‐IV) equation, and as every P‐turning point of

traditional Painlevé equations is of the first kind, our result may also be regarded as

a partial generalization of [KT1] (a partial generalization� just because it covers only
the cases J=\mathrm{I}\mathrm{I} or IV).

To clarify and simplify the presentation we consider the case J= I. Let (P_{\mathrm{I}})_{m}
(m=1,2,3, \ldots) denote the following system of non‐linear differential equations with a

large parameter  $\eta$ :

(0.3) \left\{\begin{array}{ll}
\frac{du_{j}}{dt}=2 $\eta$ v_{j} & \\
\frac{dv_{j}}{dt}=2 $\eta$(u_{j+1}+u_{1}u_{j}+w_{j}) & (j=1,2, \ldots, m) ,\\
v_{m+1}=0, & 
\end{array}\right.
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where w_{j} is a polynomial of u_{l} and v_{l}(1\leq l\leq j) that is determined by the following
recursive relation:

(0.4) w_{j}=\displaystyle \frac{1}{2}\sum u_{k}u_{j+1-k}j+\sum^{j-1}u_{k}w_{j-k}-\frac{1}{2}\sum^{j-1}v_{k}v_{j-k}+c_{j}+$\delta$_{jm}t
k=1 k=1 k=1

(j=1,2, \ldots, m) .

Here c_{j} is a constant and $\delta$_{jm} stands for Kronecker�s delta. Then we know ([T2]) the

existence of the following instanton‐type formal solution of (P_{\mathrm{I}})_{m} :

(0.5) \left\{\begin{array}{l}
u_{j}(t,  $\eta$; $\alpha$)=u_{j,0}(t)+$\eta$^{-1/2} \sum $\alpha$_{k}\exp( $\eta$\int^{t}v_{k}dt)u_{jk}, 1/2(t)+\cdots,\\
1\leq k\leq 2m\\
v_{j}(t,  $\eta$; $\alpha$)=v_{j,0}(t)+$\eta$^{-1/2} \sum $\alpha$_{k}\exp( $\eta$\int^{t}v_{k}dt)v_{jk}, 1/2(t)+\cdots .\\
1\leq k\leq 2m
\end{array}\right.
Here  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{2m}) is a set of free parameters, and v_{k} stands for a solution of the

characteristic equation of the Fréchet derivative of (P_{\mathrm{I}})_{m} at a 0‐parameter solution. We

know ([KKoNTl]) that we can choose v_{j} so that

(0.6) v_{l}+v_{l+m}=0

holds for l=1
,

. . .

,
m . In parallel with the reasoning of [KT3] we define another

set \{b_{j}(t,  $\eta$; $\alpha$)\} of instanton‐type solutions by considering the solutions \{b_{j}\}_{j=1}^{m} of the

following equation:

(0.7) x^{m}-u_{1}(t,  $\eta$; $\alpha$)x^{m-1}-\cdots-u_{m}(t,  $\eta$,  $\alpha$)=0.

The function b_{j} is actually the restriction of a solution of some Garnier system, a multi‐

dimensional generalization of the Painlevé equation, to an appropriate complex line.

This fact is essentially well‐known for J=\mathrm{I} ,
and the recent result ([Ko]) of Koike

asserts that a similar fact is observed also for J=\mathrm{I}\mathrm{I} , IV. We will make full use of this

fact in our proof to be expounded in our full paper ([KT5]).

Main Theorem. Let  $\tau$ be a simple  P ‐turning point of the first kind of (P_{\mathrm{I}})_{m}
that does not coincide with any other P ‐turning point of (P_{\mathrm{I}})_{m} , and let t_{*} be a point

sufficiently close to  $\tau$ that lies in a  P ‐Stokes curve emanating from  $\tau$ . Then there exist

an index  j_{0} , formal series

(0.8) \displaystyle \mathrm{X}(t,  $\eta$)=\sum_{l\geq 0}$\eta$^{-l/2}\mathrm{X}_{l/2}(t,  $\eta$)
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and

(0.9) \displaystyle \overline{t}(x, t,  $\eta$)=\sum_{l\geq 0}$\eta$^{-l/2}\overline{t_{l/2}}(x, t,  $\eta$) ,

and a 2‐parameter solution $\lambda$_{\mathrm{I}}(\tilde{t},  $\eta$; $\beta$)( $\beta$=($\beta$_{1}, $\beta$_{2})) of (0.1) for which the following
relations are satisfied on a neighborhood of t_{*} for an instanton‐type solution b_{j_{0}}(t,  $\eta$; $\alpha$)
with $\alpha$_{j_{0},0}$\alpha$_{j_{0}+m,0} different from 0 where $\alpha$_{j_{0}} and $\alpha$_{j_{0}+m} are coefficients of the instanton

terms directly related to the P ‐turning point  $\tau$ in the sense specified in the course of our

discussion:

(0.10) \mathrm{X}(b_{j_{0}}(t,  $\eta$; $\alpha$), t,  $\eta$)=$\lambda$_{\mathrm{I}}(\overline{t}(t,  $\eta$),  $\eta$; $\beta$) ,

(0.11) $\alpha$_{j_{0},0}=2c$\beta$_{1,0} and $\alpha$_{j_{0}+m,0}=2c^{-1}$\beta$_{2,0} hold for a constant c that depends

only on the product $\alpha$_{j_{0},0}$\alpha$_{j_{0}+m,0},

(0.12) \mathrm{X}_{1/2} and \overline{t}_{1/2} vanish identically,

(0.13) the  $\eta$ ‐dependence of \overline{x}_{\underline{l}/2} and \overline{t_{l/2}} is only through instanton terms that they

contain, and \overline{x}_{0}, \mathrm{X}_{1}, t_{0} and \overline{t}_{1} are free from instanton terms.

In §1 we describe in outline how the proof of Main Theorem goes. In §2 we give
a proof of its core part, namely Theorem 1.3 which shows that the principal part (i.e.
the top order part) of the Fréchet derivative of (P_{J})_{m} splits into a direct sum of 2\times 2

systems at the point in question. The final section gives a heuristic description of the

relevance of our Main Theorem to the connection formula for solutions of (P_{J})_{m} ; our

argument is only heuristic, as we have not yet found an appropriate method to endow

instanton‐type formal solutions with their analytic meaning.
The details of this article shall be given in our forthcoming paper ([KT5]).

§1. Basic Ingredients of the Proof of Main Theorem

The flow diagram of our reasoning is basically the same as the reasoning of [KT1] for

proving the reduction theorem for 2‐parameter solutions of the traditional (i.e. second

order) Painlevé equations. As the underlying Lax pair for (P_{J})_{m} ( J=\mathrm{I} ,
II or IV)

is given in a matrix form, we first rewrite it as a system of scalar equations. This

part is done by [KT3] for J=\mathrm{I} ,
II and by [KT4] for J= IV. The system consists

of a Schrödinger equation (SL_{J})_{m} and its deformation equation (D_{J})_{m} . For example,

(SL_{\mathrm{I}})_{m} is the following second order equation with a large parameter  $\eta$ :

(1.1) \displaystyle \frac{\partial^{2} $\psi$}{\partial x^{2}}=$\eta$^{2}Q_{(\mathrm{I},m)} $\psi$,
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where the potential Q_{(\mathrm{I},m)} is expressed as in (1.2) below in terms of polynomials U(x) ,

V(x) and W(x) given below:

Q_{(\mathrm{I},m)}=\displaystyle \frac{1}{4}(2x^{m+1}-xU+2W)U+\frac{1}{4}V^{2}
(1.2)

-\displaystyle \frac{$\eta$^{-1}U_{x}V}{2U}+\frac{$\eta$^{-1}V_{x}}{2}+\frac{3$\eta$^{-2}U_{x}^{2}}{4U^{2}}-\frac{$\eta$^{-2}U_{xx}}{2U},
with

(1.3) U(x)=x^{m}-\displaystyle \sum_{j=1}^{m}u_{j}x^{m-j},
(1.4) V(x)=\displaystyle \sum_{j=1}^{m}v_{j}x^{m-j},
(1.5) W(x)=\displaystyle \sum_{j=0}^{m}w_{j}x^{m-j},
where (u_{j}, v_{j})(1\leq j\leq m) is a solution of (P_{\mathrm{I}})_{m} and w_{j}(1\leq j\leq m) is a polynomial
of (u_{l}, v_{l})(1\leq l\leq j) that is given by (0.4). Note that

(1.6) U(b_{j})=0 (1\leq j\leq m)

holds by the definition of {bj}. The deformation equation (D_{\mathrm{I}})_{m} of (SL_{\mathrm{I}})_{m} is also

described in terms of U as follows:

(1.7) \displaystyle \frac{\partial $\psi$}{\partial t}=$\alpha$_{(\mathrm{I},m)}\frac{\partial $\psi$}{\partial x}-\frac{1}{2}\frac{\partial$\alpha$_{(\mathrm{I},m)}}{\partial x} $\psi$,
where

(1.8) $\alpha$_{(\mathrm{I},m)}=\displaystyle \frac{2}{U(x)}.
Now, a result of [KKoNTl] asserts that a simple turning point and a double turning

point coalesce at  t= $\tau$ in the Stokes geometry of (SL_{J})_{m} . The latter one is given by

x=b_{j_{0},0}() for some j_{0} . This index j_{0} is the one used in the statement of Main Theorem.

Then we can prove the following results in the setting of Main Theorem:

Theorem 1.1. Let V be a sufficiently small neighborhood of t_{*} . Then there exist

a neighborhood U of x=b_{j_{0},0}(t) ,
a formal series

(1.9) zx
, t,  $\eta$)=zx, t,  $\eta$)+$\eta$^{-1/2}z_{1/2}(x, t,  $\eta$)+$\eta$^{-1}z_{1}(x, t,  $\eta$)+\cdots

whose coefficients  z_{j/2}(x, t,  $\eta$) are holomorphic on U\times V ,
and formal series

(1.10)  E^{(j_{0})}(t,  $\eta$)=E_{0}^{(j_{0})}(t,  $\eta$)+E_{1/2}^{(j_{0})}(t,  $\eta$)$\eta$^{-1/2}+E_{1}^{(j_{0})}(t,  $\eta$)$\eta$^{-1}+\cdots
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and

(1.11) $\rho$^{(j_{0})}(t,  $\eta$)=$\rho$_{0}^{(j_{0})}(t,  $\eta$)+$\rho$_{1/2}^{(j0)}(t,  $\eta$)$\eta$^{-1/2}+$\rho$_{1}^{(j_{0})}(t,  $\eta$)$\eta$^{-1}+\cdots
whose coefficients are holomorphic on  V ,

so that the following five conditions are satis‐

fied:

(1.12) z_{0} is free from  $\eta$,

(1.13) \displaystyle \frac{\partial z_{0}}{\partial x} never vanishes on U\times V,

(1.14) z_{0}(b_{j_{0},0}(t), t)=0,
(1.15) z_{1/2} identically vanishes,

(1.16) Q_{(J,m)}(x, t,  $\eta$)=(\displaystyle \frac{\partial z}{\partial x})^{2}[4z(x, t,  $\eta$)^{2}+$\eta$^{-1}E^{(j_{0})}(t,  $\eta$)
+\displaystyle \frac{$\eta$^{-3/2}$\rho$^{(j_{0})}(t, $\eta$)}{z(x,t, $\eta$)-z(b_{j_{0}}(t, $\eta$),t, $\eta$)}
+\displaystyle \frac{3$\eta$^{-2}}{4(z(x,t, $\eta$)-z(b_{j_{0}}(t, $\eta$),t, $\eta$))^{2}}]-\frac{1}{2}$\eta$^{-2}\{z(x, t,  $\eta$);x\}

holds on  U\times V. Here \{z;x\} denotes the Schwarzian derivative

\displaystyle \frac{\partial^{3}z/\partial x^{3}}{\partial z/\partial x}-\frac{3}{2}(\frac{\partial^{2}z/\partial x^{2}}{\partial z/\partial x})^{2}
Furthermore the  $\eta$ ‐dependence of  z_{j/2}(x, t,  $\eta$) , E_{j/2}^{(j_{0})}(t,  $\eta$) and $\rho$_{j/2}^{(j_{0})}(t,  $\eta$) is through the

instanton terms that b_{j_{0}}(t,  $\eta$) contains.

The series E^{(j_{0})}(t,  $\eta$) and $\rho$^{(j_{0})}(t,  $\eta$) are explicitly given in terms of \{b_{j}\}_{j=1}^{m} and

z(x, t,  $\eta$) in (1.9):

$\rho$^{(j_{0})}(t,  $\eta$)=$\eta$^{-1/2}(\displaystyle \frac{\partial z}{\partial x}(b_{j_{0}}(t,  $\eta$), t,  $\eta$))^{-1}

\displaystyle \times[\frac{1}{2}\frac{\partial}{\partial t}(b_{j_{0}}(t,  $\eta$))(\frac{1}{(x-b_{j_{0}}(t, $\eta$))$\alpha$_{(J,m)}})x=b_{j_{0}}(t, $\eta$)
+(\displaystyle \frac{1}{2}(\frac{\partial$\alpha$_{(J,m)}/\partial x}{$\alpha$_{(J,m)}}+\frac{1}{(x-b_{j_{0}}(t, $\eta$))})+\frac{3}{4}\frac{\partial^{2}z/\partial x^{2}}{\partial z/\partial x})

$\rho$^{(j_{0})}(t,  $\eta$)=$\eta$^{-1/2}(\displaystyle \frac{\partial z}{\partial x}(b_{j_{0}}(t,  $\eta$), t,  $\eta$))^{-1}

\displaystyle \times[\frac{1}{2}\frac{\partial}{\partial t}(b_{j_{0}}(t,  $\eta$))(\frac{1}{(x-b_{j_{0}}(t, $\eta$))$\alpha$_{(J,m)}})x=b_{j_{0}}(t, $\eta$)
+(\displaystyle \frac{1}{2}(\frac{\partial$\alpha$_{(J,m)}/\partial x}{$\alpha$_{(J,m)}}+\frac{1}{(x-b_{j_{0}}(t, $\eta$))})+\frac{3}{4}\frac{\partial^{2}z/\partial x^{2}}{\partial z/\partial x})

Theorem 1.2.

(i)

x=b_{j_{0}}(t, $\eta$)].
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(ii) E^{(j_{0})}(t,  $\eta$)=($\rho$^{(j_{0})})^{2}-4($\sigma$^{(j_{0})})^{2} holds for

(1.17) $\sigma$^{(j_{0})}=$\eta$^{1/2}z(b_{j_{0}}(t,  $\eta$), t,  $\eta$) .

The proof of Theorems 1.1 and 1.2 can be given in a similar way to the proof
of [AKT, Theorem 3.1]. As is well‐known, Theorem 1.1 entails that a WKB solution

 $\psi$(x, t,  $\eta$) of (SL_{J})_{m} is expressed as

(1.18)  $\psi$(x, t,  $\eta$)=(\displaystyle \frac{\partial z}{\partial x})^{-1/2} $\varphi$(z(x, t,  $\eta$), t,  $\eta$) ,

where  $\varphi$ is a WKB solution of the following Schrödinger equation:

(1.19) (- \displaystyle \frac{\partial^{2}}{\partial z^{2}}+$\eta$^{2}Q_{\mathrm{c}\mathrm{a}\mathrm{n}}(z, t,  $\eta$)) $\varphi$=0,
where

(1.20) Q_{\mathrm{c}\mathrm{a}\mathrm{n}}=4z^{2}+$\eta$^{-1}E( $\tau$,  $\eta$)+\displaystyle \frac{$\eta$^{-3/2} $\rho$(t, $\eta$)}{z-$\eta$^{-1/2 $\sigma$}(t, $\eta$)}+\frac{3$\eta$^{-2}}{4(x-$\eta$^{-1/2} $\sigma$(t, $\eta$))^{2}} .

Once we obtain Theorems 1.1 and 1.2, the next thing to do would be to try to

extend the domain of definition of the series z(x, t,  $\eta$) so that it may be related to the

simple turning point of (SL_{J})_{m} that merges with b_{j_{0},0}(t) at t= $\tau$.

However, in order to proceed in that way, we have to confirm that the top order

parts $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})} of $\rho$^{(j_{0})} and $\sigma$^{(j_{0})} contain instanton terms whose phase functions

are related to the P‐turning point in question. To be more concrete, we have to confirm

Theorem 1.3 below. Before stating it, we make a notational preparation: it follows from

the definition of a P‐turning point of the first kind (cf. [KKoNTl, Section 2]) that there

exist characteristic roots v_{j_{0}} and v_{j_{0}+m} of the Fréchet derivative of (P_{J})_{m} such that

v_{j_{0}+m}=-v_{j_{0}} and v_{j_{0}} () =v_{j_{0}+m}( $\tau$)=0 hold (Note that in [KKoNTl], v_{j_{0}} and v_{j_{0}+m}

are denoted by v_{j_{0},+} and v_{j_{0},-} , respectively). The functions \displaystyle \int_{ $\tau$}^{t}v_{j_{0}}dt and \displaystyle \int_{ $\tau$}^{t}v_{j_{0}+m}dt
are phase functions which appear in the instanton‐type solutions. As one might readily

surmise, these phase functions are tied up with the P‐turning point  $\tau$ and they are what

we really need.

Theorem 1.3. The top order parts  $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})} of $\rho$^{(j_{0})} and $\sigma$^{(j_{0})} contain only

instanton terms \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}}dt) and \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}+m}dt) .

The proof of Theorem 1.3 will be given in §2, where we will use the explicit form

of (P_{J})_{m} . Another proof which makes use of its Hamiltonian form will be given in

our forthcoming paper ([KT5]). We also note that, although $\rho$_{j/2}^{(j_{0})} and $\sigma$_{j/2}^{(j_{0})}(j\geq 1)
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may contain instanton terms with phase functions other than \displaystyle \int_{ $\tau$}^{t}v_{j_{0}}dt and \displaystyle \int_{ $\tau$}^{t}v_{j_{0}+m}dt,
they always contain \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}}dt) and \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}+m}dt) as their factor. This fact

is important in proving our Main Theorem. Theorem 1.1 fortified with Theorem 1.3

enables us to follow the line of the reasoning in the proof of [KT1, Theorem 4.1]. \mathrm{A}

crucially important step in our reasoning is to establish Theorem 1.4 below. Here, and

in what follows, (Can) designates the following Schrödinger equation

(1.21) (-\displaystyle \frac{\partial^{2}}{\partial z^{2}}+$\eta$^{2}(4z^{2}+$\eta$^{-1}E_{\mathrm{c}\mathrm{a}\mathrm{n}}+\frac{$\eta$^{-3/2}$\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}(s, $\eta$)}{x-$\eta$^{-1/2}$\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}(s, $\eta$)}
+\displaystyle \frac{3$\eta$^{-2}}{4(x-$\eta$^{-1/2}$\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}(s, $\eta$))^{2}})) $\varphi$=0

with

(1.22) E_{\mathrm{c}\mathrm{a}\mathrm{n}}=$\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}^{2}-4$\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}^{2},

and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) designates the following equation

(1.23) \displaystyle \frac{\partial $\psi$}{\partial s}=A_{\mathrm{c}\mathrm{a}\mathrm{n}}\frac{\partial $\psi$}{\partial z}-\frac{1}{2}\frac{\partial A_{\mathrm{c}\mathrm{a}\mathrm{n}}}{\partial z} $\psi$
with

(1.24)  A_{\mathrm{c}\mathrm{a}\mathrm{n}}=\displaystyle \frac{1}{2(z-$\eta$^{-1/2}$\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}})}.
We note that (Can) and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) are in involution if $\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}} and $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}} satisfy the following

(simplest!) Hamiltonian system (H_{\mathrm{c}\mathrm{a}\mathrm{n}}) :

(1.25) \left\{\begin{array}{l}
\frac{d$\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}}{ds}=-4 $\eta \sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}},\\
\frac{d$\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}}{ds}=- $\eta \rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}.
\end{array}\right.
The function  $\psi$ given by (1.18) satisfies (SL) if  $\varphi$(z, s,  $\eta$) satisfies (Can) (with

($\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}, $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}})=($\rho$^{(j_{0})}, $\sigma$^{(j_{0})})) ,
but we cannot expect that  $\psi$ also solves (D_{J})_{m} even if  $\varphi$

solves both (Can) and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) ; in order to attain such a harmonious situation we need

to relate t and s appropriately. The required relation can be obtained by solving

(1.26) $\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}(s(t; $\alpha$, A, B; $\eta$),  $\eta$)=$\rho$^{(j_{0})}(t,  $\eta$)

and

(1.27) $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}(s(t; $\alpha$, A, B; $\eta$),  $\eta$)=$\sigma$^{(j_{0})}(t,  $\eta$)
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under the condition

(1.28) E_{\mathrm{c}\mathrm{a}\mathrm{n}}=E^{(j_{0})},

where

(1.29) $\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}=-2A( $\eta$)\exp(2 $\eta$ s)+2B( $\eta$)\exp(-2 $\eta$ s) ,

(1.30) $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}}=A( $\eta$)\exp(2 $\eta$ s)+B() \exp(-2 $\eta$ s) ,

with A( $\eta$)=\displaystyle \sum_{j\geq 0}A_{j/2}$\eta$^{-j/2} and B( $\eta$)=\displaystyle \sum_{j\geq 0}B_{j/2}$\eta$^{-j/2} . The relation (1.28) entails

(1.31) $\alpha$_{j_{0},0}$\alpha$_{j_{0}+m,0}=8A_{0}B_{0},
but there remains some freedom in the choice of A_{0} and B_{0} ; this arbitrariness is got rid

of in Main Theorem by considering the problem semi‐globally (versus locally near the

double turning point x=b_{j_{0},0}(t) as in Theorem 1.4 below).

Theorem 1.4. Let us consider the situation described in Theorem 1.1. In addi‐

tion to the transfO rmation (1.9), we can construct a transfO rmation

(1.32)  s(t,  $\eta$)=s_{0}(t)+$\eta$^{-1}s_{1}(t,  $\eta$)+$\eta$^{-3/2}s_{3/2}(t,  $\eta$)+\cdots
so that for a WKB solution  $\varphi$(z, s,  $\eta$) of (Can) that satisfies (D_{\mathrm{c}\mathrm{a}\mathrm{n}})

(1.33)  $\psi$(x, t,  $\eta$)=(\displaystyle \frac{\partial z}{\partial x})^{-1/2} $\varphi$(z(x, t,  $\eta$), s(t,  $\eta$),  $\eta$)
satisfies both (SL_{J})_{m} and (D_{J})_{m}.

§2. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3 for (P_{\mathrm{I}})_{m} . The cases where J=\mathrm{I}\mathrm{I}

and J=\mathrm{I}\mathrm{V} can be proved in a similar manner.

We first write down the top order parts $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})} of $\rho$^{(j_{0})} and $\sigma$_{0}^{(j_{0})} in terms of

v_{j,1/2}, u_{j,1/2}, u_{j,0} and b_{j_{0},0} . Here and in what follows, v_{j,k/2}(k=0,1, \ldots) etc. designate
the coefficient of $\eta$^{-k/2} in the expansion (0.5) of an instanton‐type solution v_{j}(t,  $\eta$; $\alpha$)
etc. (with instanton terms being considered to be order 0 with respect to  $\eta$ ). Since

 $\alpha$_{(\mathrm{I},m)} is given by (1.8) in the case of (P_{\mathrm{I}})_{m} ,
it follows from Theorem 1.2 (i) that

(2.1) $\rho$_{0}^{(j_{0})}=\displaystyle \frac{1}{4}(\frac{\partial z_{0}}{\partial x}(b_{j_{0},0}(t), t))^{-1}\triangle_{j_{0}}[$\eta$^{-1}\frac{d}{dt}b_{j_{0},1/2}]_{0},
where \triangle_{j_{0}} denotes

(2.2) \displaystyle \triangle_{j_{0}}=j'\neq j_{0}\prod_{1\leq j\leq 7m}(b_{j_{0},0}(t)-b_{j,0} 
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and [$\eta$^{-1}(db_{j_{0},1/2}/dt)]_{0} designates the top order part of $\eta$^{-1}(db_{j_{0},1/2}/dt) . Note that

[$\eta$^{-1}(db_{j_{0},1/2}/dt)]_{0} does not vanish as b_{j_{0},1/2}(t) contains some instanton terms. In view

of (1.14) and (1.17) we have also

(2.3) $\sigma$_{0}^{(j_{0})}=\displaystyle \frac{\partial z_{0}}{\partial x}(b_{j_{0},0}(t), t)b_{j_{0},1/2}.
To seek for more explicit description of $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})} we use the following lemmas.

Lemma 2.1.

(2.4) b_{j,1/2}=(\triangle_{j})^{-1}(b_{j,0}^{m-1}u_{1,1/2}+\cdots+u_{m,1/2}) .

Proof. By the definition of b_{k}

(2.5) x^{m}-u_{1}(t,  $\eta$; $\alpha$)x^{m-1}-\displaystyle \cdots-u_{m}(t,  $\eta$; $\alpha$)=\prod_{1\leq k\underline{<}m}(x-b_{k}(t,  $\eta$; $\alpha$))
holds. Taking the order -1/2 part of both sides of (2.5), we obtain

(2.6) u_{1,1/2}x^{m-1}+\displaystyle \cdots+u_{m,1/2}=\prod_{1\leq k\underline{<}m}b_{k,1/2}\prod_{1\leq k\leq m ,k\neq k}(x-b_{k,0})
.

Evaluation of (2.6) at x=b_{j_{0},0} immediately implies (2.4). \square 

Lemma 2.2.

(2.7) \displaystyle \frac{\partial z_{0}}{\partial x}(b_{j_{0},0}, t)=\frac{1}{2}(b_{j_{0},0}+2u_{1,0})^{1/4}(\triangle_{j_{0}})^{1/2}
Proof. It follows from (1.16) that z_{0}(x, t) satisfies

(2.8) Q_{(\mathrm{I},m),0}=4(\displaystyle \frac{\partial z_{0}}{\partial x})^{2}z_{0}^{2}.
As is observed in [KT3, (1.1.34)], Q_{(\mathrm{I},m),0} is factorized as

(2.9) Q_{(\mathrm{I},m),0}=\displaystyle \frac{1}{4}(x+2u_{1,0})U_{0}^{2}=\frac{1}{4}(x+2u_{1,0})\prod_{1\leq k\underline{<}m}(x-b_{k,0})^{2}
Hence, considering the Taylor expansion of both sides of (2.8) at x=b_{j_{0},0} and taking

(1.14) into account, we obtain

(2.10) \displaystyle \frac{1}{4}(b_{j_{0},0}+2u_{1,0})(\triangle_{j_{0}})^{2}=4(\frac{\partial z_{0}}{\partial x}(b_{j_{0},0}, t))^{4}
Relation (2.7) is an immediate consequence of (2.10). \square 
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Lemma 2.3.

(2.11) [$\eta$^{-1}\displaystyle \frac{d}{dt}u_{j,1/2}]_{0}=2v_{j,1/2}.
This lemma readily follows from the first equation of (P_{\mathrm{I}})_{m} (see (0.3)). In particular,

combining Lemmas 2.1 and 2.3, we obtain

(2.12) [$\eta$^{-1}\displaystyle \frac{d}{dt}b_{j_{0},1/2}]_{0}=2(\triangle_{j_{0}})^{-1}(b_{j_{0},0}^{m-1}v_{1,1/2}+\cdots+v_{m,1/2}) .

Using these lemmas together with (2.12), we can deduce the following explicit

descriptions of $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})} from (2.1) and (2.3):

(2.13) $\rho$_{0}^{(j_{0})}=(b_{j_{0},0}+2u_{1,0})^{-1/4}(\triangle_{j_{0}})^{-1/2}(b_{j_{0},0}^{m-1}v_{1,1/2}+\cdots+v_{m,1/2}) ,

(2.14) $\sigma$_{0}^{(j_{0})}=\displaystyle \frac{1}{2}(b_{j_{0},0}+2u_{1,0})^{1/4}(\triangle_{j_{0}})^{-1/2}(b_{j_{0},0}^{m-1}u_{1,1/2}+\cdots+u_{m,1/2}) .

Making use of the expressions (2.13) and (2.14), we now compute [$\eta$^{-1}(d/dt)$\rho$_{0}^{(j_{0})}]_{0}
and [$\eta$^{-1}(d/dt)$\sigma$_{0}^{(j_{0})}]_{0} ,

that is, the differentiation with respect to t of $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})}
applied only to their instanton terms.

It follows from the second equation of (P_{\mathrm{I}})_{m} that

(2.15) [$\eta$^{-1}\displaystyle \frac{d}{dt}v_{j,1/2}]_{0}=2(u_{j+1,1/2}+u_{1,0}u_{j,1/2}+u_{j,0}u_{1,1/2}+w_{j,1/2}) .

Here, as is verified in [KKoNTl, Lemma 2.1.1], w_{j,1/2}=u_{1,0}u_{j,1/2} holds. Hence we

have

(2.16) [$\eta$^{-1}\displaystyle \frac{d}{dt}v_{j,1/2}]_{0}=2(u_{j+1,1/2}+2u_{1,0}u_{j,1/2}+u_{j,0}u_{1,1/2}) .

Using (2.13) and (2.16), we can compute [$\eta$^{-1}(d/dt)$\rho$_{0}^{(j_{0})}]_{0} as follows:

(2.17) [$\eta$^{-1}\displaystyle \frac{d}{dt}$\rho$_{0}^{(j_{0})}]_{0}=(b_{j_{0},0}+2u_{1,0})^{-1/4}(\triangle_{j_{0}})^{-1/2}\sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}[$\eta$^{-1}\frac{d}{dt}v_{k,1/2}]_{0}
=2(b_{j_{0},0}+2u_{1,0})^{-1/4}(\triangle_{j_{0}})^{-1/2}

\displaystyle \times\sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}(u_{k+1,1/2}+2u_{1,0}u_{k,1/2}+u_{k,0}u_{1,1/2})
=2(b_{j_{0},0}+2u_{1,0})^{-1/4}(\triangle_{j_{0}})^{-1/2}

\times\{ 2u_{1,0}\displaystyle \sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}u_{k,1/2}+b_{j_{0},0}\sum_{2\leq k\leq m}b_{j_{0},0}^{m-k}u_{k,1/2}
+u_{1,1/2}\displaystyle \sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}u_{k,0}\}
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=2(b_{j_{0},0}+2u_{1,0})^{3/4}(\displaystyle \triangle_{j_{0}})^{-1/2}\sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}u_{k,1/2}.
Here we have used the relation

(2.18) b_{j_{0},0}^{m}=\displaystyle \sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}u_{k,0}
to obtain the last equality of (2.17). On the other hand, Lemma 2.3 immediately entails

(2.19) [$\eta$^{-1}\displaystyle \frac{d}{dt}$\sigma$_{0}^{(j_{0})}]_{0}=\frac{1}{2}(b_{j_{0},0}+2u_{1,0})^{1/4}(\triangle_{j_{0}})^{-1/2}\sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}[$\eta$^{-1}\frac{d}{dt}u_{k,1/2}]_{0}
=(b_{j_{0},0}+2u_{1,0})^{1/4}(\displaystyle \triangle_{j_{0}})^{-1/2}\sum_{1\leq k\leq m}b_{j_{0},0}^{m-k}v_{k,1/2}.

We thus obtain

(2.20) [$\eta$^{-1}\displaystyle \frac{d}{dt}$\rho$_{0}^{(j_{0})}]_{0}=4(b_{j_{0},0}+2u_{1,0})^{1/2}$\sigma$_{0}^{(j_{0})},
(2.21) [$\eta$^{-1}\displaystyle \frac{d}{dt}$\sigma$_{0}^{(j_{0})}]_{0}=(b_{j_{0},0}+2u_{1,0})^{1/2}$\rho$_{0}^{(j_{0})}.

Recalling the relations v_{j_{0}}=2(b_{j_{0},0}+2u_{1,0})^{1/2} and v_{j_{0}+m}=-2(b_{j_{0},0}+2u_{1,0})^{1/2},
which were verified in [KKoNTl, Proposition 2.1.3], we conclude that $\rho$_{0}^{(j_{0})} and $\sigma$_{0}^{(j_{0})}
contain only instanton terms \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}}dt) and \displaystyle \exp( $\eta$\int_{ $\tau$}^{t}v_{j_{0}+m}dt) thanks to (2.20)

and (2.21). This completes the proof of Theorem 1.3.

§3. The Relation between Structure Theorem

for Instanton‐Type Solutions and the Connection Problem

for Higher Order Painlevé Transcendents

Our Main Theorem asserts that the instanton‐type solution b_{j_{0}}(t,  $\eta$; $\alpha$) of (P_{J})_{m} is

related to $\lambda$_{\mathrm{I}}(\overline{t,} $\eta$; $\beta$) by (0.10) near a point t_{*} on a P‐Stokes curve of (P_{J})_{m} . In this

section we discuss its implication for the analytic structure of solutions of (P_{J})_{m} ,
which

we call �higher order Painlevé transcendents�. The vital clue to such a study is the fact

that several transformations of underlying Schrödinger equations simultaneously exist

in addition to the relation (0.10).
To begin with, let us summarize the geometric situation of our study. In t‐plane we

find Figure 3.1, where t(\mathrm{i}) (resp. t(\mathrm{i}\mathrm{i}) ) is a point close to t_{*} satisfying {\rm Im}$\phi$_{j_{0}}(t(\mathrm{i}))>0
(resp. {\rm Im}$\phi$_{j_{0}} ((ii)) <0 ) with

(3.1) $\phi$_{j_{0}}(t)=\displaystyle \int_{ $\tau$}^{t}v_{j_{0}}dt.
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\lrcorner l
t.\cdot(\mathrm{i})

\bullet

$\iota$_{\mathrm{l}}J

\bullet i

Figure 3.1: P‐Stokes curve in question emanating from  $\tau$.

As is now well‐known ([KKoNTl]), the Stokes geometry of (SL_{J})_{m} is degenerate for

t=t_{*} ; see Figure 3.2. This degeneration, i.e. the appearance of two turning points

\lrcorner x

Figure 3.2: Stokes geometry of (SL_{J})_{m} for t=t_{*} ,
where b_{j_{0},0}(t_{*})

(resp. a(t_{*}) ) is a double (resp. simple) turning point.

connected by a Stokes segment, is resolved if the parameter t is away from the P‐

Stokes curve; the configurations of Stokes curves of (SL_{J})_{m} for t=t(\mathrm{i}) and t=t(\mathrm{i}\mathrm{i})
are respectively shown in Figure 3.3 (i) and (ii). We observe that a topological change

(i) (\mathrm{i}\mathrm{i}\dot{)}

Figure 3.3: Stokes geometry of (SL_{J})_{m} for (i) t=t(\mathrm{i}) ,
and (ii) t=t(\mathrm{i}\mathrm{i}) .

of the configuration of Stokes curves is observed only in a neighborhood of the Stokes

segment connecting a(t_{*}) and b_{j_{0},0}(t_{*}) : the double turning point b_{l,0}(t)(l\neq j_{0}) is not

accompanied by such a topological change at t=t(\mathrm{i}) or t(\mathrm{i}\mathrm{i}) . Note that Theorem 1.1

is applicable to each b_{l,0}() , regardless of such topological changes. This fact will play
an important role in our later discussions. Now let us explain the following important
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Figure 3.4: Stokes geometry of (SL) at (i) \overline{t}=\overline{t}(\mathrm{i}) ,
and (ii) \overline{t}=\overline{t}(\mathrm{i}\mathrm{i}) .

implication of our Main Theorem: ($\alpha$_{j_{0},0}, $\alpha$_{j_{0}+m,0}) inherits the relation that ($\beta$_{1}, $\beta$_{2})
satisfies. In fact, the series \mathrm{X}(x, t,  $\eta$) used in (0.10) transforms (SL_{J})_{m} into (SL) where

the Stokes geometry of (SL) at \overline{t}=\overline{t}(t(\mathrm{i})) and \tilde{t}=\tilde{t}((\mathrm{i}\mathrm{i})) are respectively given
in Figure 3.4 (i) and (ii). The Stokes multipliers M_{\mathrm{I},\mathrm{I}\mathrm{I}}(j) and M_{\mathrm{I}\mathrm{I},\mathrm{I}\mathrm{I}\mathrm{I}}(j) ( j=\mathrm{i} , ii)
corresponding respectively to the transfer from Region I to Region II and to that from

Region II to Region III for appropriately normalized WKB solutions of (SL) can be

computed in terms of $\rho$_{\mathrm{I}} and $\sigma$_{\mathrm{I}} (cf. [T3, §4 and §5]). Furthermore they are preserved

by the deformation, that is, we have

(3.2) M_{\mathrm{I},\mathrm{I}\mathrm{I}}(\mathrm{i})=M_{\mathrm{I},\mathrm{I}\mathrm{I}}(\mathrm{i}\mathrm{i}) , M_{\mathrm{I}\mathrm{I},\mathrm{I}\mathrm{I}\mathrm{I}}(\mathrm{i})=M_{\mathrm{I}\mathrm{I},\mathrm{I}\mathrm{I}\mathrm{I}}(\mathrm{i}\mathrm{i}) ,

though they have different expressions. Then (3.2) gives relations between $\lambda$_{\mathrm{I}}(\overline{t,} $\eta$; $\beta$)
near \overline{t}=\overline{t}(t(\mathrm{i})) and its analytic continuation to \overline{t}=\overline{t}(t(\mathrm{i}\mathrm{i})) . The latter one may have a

different instanton‐type expansion, i.e., $\lambda$_{\mathrm{I}}(\overline{t,} $\eta$;\overline{ $\beta$}) . The relation (3.2) thus describes the

relation between  $\beta$ and \overline{ $\beta$} . Since \mathrm{X}(x, t,  $\eta$) defines an invertible transformation between

(SL_{J})_{m} and (SL_{\mathrm{I}}) ,
the relation between  $\beta$ and \overline{ $\beta$} is transferred through (0.11) to the top

order parts ($\alpha$_{j_{0},0}, $\alpha$_{j_{0}+m,0}) and (\overline{ $\alpha$}_{j_{0},0},\overline{ $\alpha$}_{j_{0}+m,0}) ,
i.e. the top order parts of the coeffi‐

cients of \exp( $\eta \phi$_{j_{0}}) and \exp( $\eta \phi$_{j_{0}+m}) in the instanton‐type expansion of the higher order

Painlevé transcendents (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$)) near t=t(\mathrm{i}) and its analytic continuation

(u_{j}(t,  $\eta$; $\alpha$  v_{j}(t,  $\eta$; $\alpha$ to  t=t(\mathrm{i}\mathrm{i}) . Note that we have restricted our consideration to

the top order parts in view of Theorem 1.3. It is also true that the explicit calculation

of the connection formula for (Can) is available only for the top order parts.

On the other hand, as was already mentioned, (SL_{J})_{m} can be transformed into

(Can) near each b_{l,0}() (l\neq j_{0}) . To discuss the Stokes phenomena for solutions of (Can)
we prepare Figure 3.5. It is readily found from Figure 3.5 that the Stokes geometry of

(Can) is the same for s=s((\mathrm{i})) and s=s(t(\mathrm{i}\mathrm{i})) . Since (Can) can be isomonodromically
deformed by (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) ,

the Stokes multipliers for appropriately normalized WKB solutions

of (Can) corresponding to the transfer, say from Region I to Region II remain invariant
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(i) (ii)

]\{ I I Ii [[

Figure 3.5: Stokes geometry of (Can) at (i) s=s(t(\mathrm{i})) ,
and (ii) s=s(t(\mathrm{i}\mathrm{i})) .

as we move from t(\mathrm{i}) to t(\mathrm{i}\mathrm{i}) . As the Stokes multipliers are computed in terms of $\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}}

and $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}} (cf. [T1]), the invariance of the Stokes multipliers entails the invariance of the

coefficients A( $\eta$) and B( $\eta$) of $\rho$_{\mathrm{c}\mathrm{a}\mathrm{n}} and $\sigma$_{\mathrm{c}\mathrm{a}\mathrm{n}} (cf. (1.29) and (1.30)) and, in particular, the

invariance of their top terms A_{0} and B_{0} . Now Theorem 1.3 together with the reasoning
in [KT1, §3] again implies, with appropriate labelling of $\alpha$_{j}' \mathrm{s} , that

(3.3) $\alpha$_{l,0}=2\sqrt{2}c_{l}A_{0} and $\alpha$_{l+m,0}=2\sqrt{2}c_{l}^{-1}B_{0}
hold with some constant c_{l} in a neighborhood of t=t_{*} . Hence the top order part

($\alpha$_{l,0}, $\alpha$_{l+m,0}) of ($\alpha$_{l}, $\alpha$_{l+m}) for l\neq j_{0} in the instanton‐type expansion of solutions of

(P_{J})_{m} remains invariant as t moves from t(\mathrm{i}) to t(\mathrm{i}\mathrm{i}) .

Summing up, we can conclude that the relation of ($\alpha$_{j_{0},0}, $\alpha$_{j_{0}+m,0}) inherited from

that of ($\beta$_{1}, $\beta$_{2}) together with the invariance of ($\alpha$_{l,0}, $\alpha$_{l+m,0})(l\neq j_{0}) provides the

connection formula for instanton‐type solutions of (P_{J})_{m} near t=t_{*} . Although the

discussion in this section is only heuristic, we hope it will give the reader some insight
into the problem how our Main Theorem is related to the connection problem for the

higher order Painlevé transcendents.

Remark 3.1. It is better in the context of this article to replace \overline{ $\psi$}_{\pm} in [T1, (2.31)]
by \exp(\pm $\eta$\overline{t})\overline{ $\psi$}\pm \mathrm{s}\mathrm{o} that they satisfy (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) (cf. [T1, p.285, l.2]).

Remark 3.2. We take this opportunity to correct one typographical error in

[KT0]: In the second formula of (4.110) (p.102) the exponent of e is i $\pi$(E_{\mathrm{I}}+1)/2,
not -i $\pi$(E_{\mathrm{I}}+1)/2.
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