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Divergence and Resummation in the Normal Form

Theory of Vector Fields

By

Masafumi Yoshino *

Abstract

We present a new approach to the so‐called small divisor problem of a singular nonlinear

system of partial differential equations from the viewpoint of the WKB analysis. The equations
which we study appear in the normal form theory of singular vector fields.

§1. Introduction

In the normal form theory of vector fields one often encounters with the divergence
caused by the resonance or the small denominators. It is known that a Diophantine con‐

dition or the existence of a certain number of first integrals can control the divergence.

(cf. [1], [4], [7]). The object of this note is to propose an alternative approach to the

problem. Namely, instead of a Diophantine condition or first integrals, we use a WKB

solution, a resummation with respect to a certain singular perturbative parameter and

an analytic continuation.

Heuristically, we construct a WKB solution in a singular perturbative way, and we

make the resummation of divergent WKB solutions even if the Poincaré condition is

not verified. By the analytic continuation of a resummed WKB solution with respect

to a parameter introduced in the above, we will study the solvability of the original

problem in case the divergence of the so‐called Poincaré series occurs. This method

agrees with the standard argument in the point that the resummed WKB solution is

Borel summable if the Poincaré condition of the type (4.11) is verified. In this way, we

can rediscover the classical Poincaré series.
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§2. Homology Equation with a Parameter

Let x={}^{t}(x_{1}, \ldots, x_{n})\in \mathbb{C}^{n}, n\geq 2 be the variable in \mathbb{C}^{n} ,
and \mathbb{R} the set of real

numbers. Let \mathbb{Z}_{+} be the set of nonnegative integers. Let \mathbb{Z}_{+}^{n}(k)(k\geq 0) be defined by

\mathbb{Z}_{+}^{n}(k):=\{ $\gamma$={}^{t}($\gamma$_{1}, \ldots, $\gamma$_{n})\in \mathbb{Z}_{+}^{n};| $\gamma$|=$\gamma$_{1}+\cdots+$\gamma$_{n}\geq k\}.

For  $\gamma$\in \mathbb{Z}_{+}^{n} we set x^{ $\gamma$}=x_{1}^{$\gamma$_{1}}\cdots x_{n}^{$\gamma$_{n}} . For k\geq 0 and n\geq 1 we denote the set of

formal power series \displaystyle \sum_{| $\eta$|\underline{>}k}u_{ $\eta$}x^{ $\eta$}(u_{ $\eta$}\in \mathbb{C}^{n}) by \mathbb{C}_{k}^{n}[[x]] . We denote the set of vector‐valued

convergent power series which vanish up to (k-1) ‐th derivatives by \mathbb{C}_{k}^{n}[] . Let  $\Lambda$ be

an  n‐square constant matrix. Let L_{ $\Lambda$} be the Lie derivative of the linear vector field

{}^{t}( $\Lambda$ x)\partial_{x} ,
where \displaystyle \partial_{x}=\partial/\partial x=t(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}) . Namely

(2.1) L_{ $\Lambda$}v=[ $\Lambda$ x, v]=\langle $\Lambda$ x, \partial_{x}\rangle v- $\Lambda$ v, v={}^{t}(v_{1}, v_{2}, \ldots, v_{n}) ,

where

(2.2) \displaystyle \langle $\Lambda$ x, \partial_{x}\rangle v=({}^{t}( $\Lambda$ x)\partial_{x})v=\sum_{j=1}^{n}( $\Lambda$ x)_{j}\frac{\partial v}{\partial x_{j}},
with ( $\Lambda$ x)_{j} being the j‐th component of  $\Lambda$ x . We consider the following system of

equations

(2.3) L_{ $\Lambda$}v=R(v) ,

where v={}^{t}(v_{1}, \ldots, v_{n}) is an unknown vector function and R(x)={}^{t}(R_{1}(x), \ldots, R_{n}
is a given holomorphic function in some neighborhood of the origin of \mathbb{C}^{n} such that

R(x)=O(|x|^{2}) when |x|\rightarrow 0 . If we set v(x)=x+u(x) , u(x)=O(|x|^{2}) ,
then we obtain

the so‐called homology equation

(2.4) L_{ $\Lambda$}u=R(x+u) .

Remark 1. The equation (2.4) appears as the linearizing equation of the vector

field \mathcal{X} :={}^{t}( $\Lambda$ y+R(y) ) \partial_{y} ,
where R(y)=O(|y|^{2}) . Indeed, if the change of the variables

y=v(x) linearizes \mathcal{X}
, then, by setting X(y)= $\Lambda$ y+R(y) ,

we have

(2.5) \displaystyle \mathcal{X}={}^{t}X(y)\frac{\partial}{\partial y}={}^{t}X(v(x))^{t}(\frac{\partial x}{\partial y})\frac{\partial}{\partial x}={}^{t}X(v)^{t}(\frac{\partial v}{\partial x})^{-1}\frac{\partial}{\partial x}={}^{t}( $\Lambda$ x)\frac{\partial}{\partial x}.
It follows that (\displaystyle \frac{\partial v}{\partial x})^{-1}X(v)= $\Lambda$ x . Hence we have (2.4).

We introduce the parameter  $\eta$ in (2.3) and (2.4) in a singular perturbative way

(2.6)  $\eta$^{-1}\displaystyle \frac{\partial v}{\partial x} $\Lambda$ x- $\Lambda$ v=R(v) ,
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(2.7) $\eta$^{-1}\displaystyle \frac{\partial u}{\partial x} $\Lambda$ x- $\Lambda$ u=R(x+u) , u=O(|x|^{2}) .

For the sake of simplicity we consider (2.7) in the following. Moreover, we assume that

 $\Lambda$ is put in a Jordan normal form. We note that we do not assume that  $\Lambda$ is semi‐simple.

§3. WKB Solution

The WKB solution  u_{W}(x,  $\eta$) of (2.7) is the formal power series in $\eta$^{-1} of the form

(3.1) u_{W}(x,  $\eta$)=v_{0}(x)+$\eta$^{-1}v_{1}(x)+$\eta$^{-2}v_{2}(x)+\cdots , v_{j}(x)=O(|x|^{2}) ,

where v_{j}() is holomorphic in some neighborhood of the origin independent of j.
We set

(3.2) \displaystyle \mathcal{L}u:=\frac{\partial u}{\partial x} $\Lambda$ x.
We substitute (3.1) into (2.7) and compare the coefficients of the powers of $\eta$^{-1} . We

see that the left‐hand side of (2.7) is equal to

(3.3) \displaystyle \sum_{l $\nu$=0}^{\infty}($\eta$^{-1}\mathcal{L}- $\Lambda$)v_{l $\nu$}(x)$\eta$^{-l $\nu$}
On the other hand we have

(3.4) R(x+u_{W})=R(x+v_{0}+v_{1}$\eta$^{-1}+v_{2}$\eta$^{-2}+\cdots)

=R(x+v_{0})+$\eta$^{-1}\nabla R(x+v_{0})v_{1}+O($\eta$^{-2}) .

Comparing the coefficients of $\eta$^{0}=1 and $\eta$^{-1} we obtain

(3.5)  $\Lambda$ v_{0}(x)+R(x+v_{0}(x))=0.

(3.6) \mathcal{L}v_{0}= $\Lambda$ v_{1}+\nabla R(x+v_{0})v_{1}.

In order to determine v_{0} and v_{1} from the above recurrence relations we need a definition.

Definition 3.1. The point x such that

(3.7) \det( $\Lambda$+\nabla R(x+v_{0}))=0

is called the turning point of the equation (2.7).

Let us assume

(3.8) \det $\Lambda$\neq 0.
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Because v_{0}(x)=O(|x|^{2}) , R(x)=O(|x|^{2}) ,
it follows from (3.5) and the implicit func‐

tion theorem that v_{0} is holomorphic in some neighborhood of the origin. In order to

determine v_{1} from (3.6) we note that the origin x=0 is not a turning point of (2.7).
We can determine v_{j} inductively. Indeed, we have

(3.9) \mathcal{L}v_{j-1}= $\Lambda$ v_{j}+\nabla R(x+v_{0})v_{j}+ (terms consisting of v_{i}, i\leq j-1 ).

Therefore we have proved the following

Theorem 3.2. The WKB solution (3.1) can be uniquely determined as the for‐
mal power series of $\eta$^{-1} with coefficients v_{j} () holomorphic in some neighborhood of the

origin independent of j.

§4. Borel Resummation of the WKB Solution

With Respect to a Parameter

We set V(x,  $\eta$) :=\displaystyle \sum_{l $\nu$=1}^{\infty}v_{l $\nu$}(x)$\eta$^{-l $\nu$} . Then the WKB solution is given by u_{W}(x,  $\eta$)=

v_{0}(x)+V(x,  $\eta$) . Hence we may consider the resummation of V(x,  $\eta$) .

We define the Borel transform \hat{V}() of V(x,  $\eta$) with respect to  $\eta$ by

(4.1) \displaystyle \hat{V}( $\zeta$):=\mathcal{B}(V(x, ( $\zeta$)=\sum_{l $\nu$=1}^{\infty}v_{l $\nu$}(x)\frac{$\zeta$^{l $\nu$-1}}{(v-1)!}.
Because v_{l $\nu$}() is holomorphic in some neighborhood of x=0 independent of v

,
we have

the expansion v_{l $\nu$}(x)=\displaystyle \sum_{ $\alpha$}v_{l $\nu,\ \alpha$}x^{ $\alpha$} . Then the right‐hand side of (4.1) is equal to

(4.2) \displaystyle \sum_{l $\nu$=1}^{\infty}(\sum_{ $\alpha$}v_{l $\nu,\ \alpha$}x^{ $\alpha$})\frac{$\zeta$^{l $\nu$-1}}{(v-1)!}.
If the right‐hand side absolutely converges, then we can change the order of the sum‐

mation

(4.3) \displaystyle \mathcal{B}(V(x, ( $\zeta$)=\sum_{ $\alpha$}\sum_{l $\nu$}v_{l $\nu,\ \alpha$}\frac{$\zeta$^{l $\nu$-1}}{(v-1)!}x^{ $\alpha$}
We define the Borel‐Laplace resum V_{W}(x,  $\eta$) by

(4.4) V_{W}(x,  $\eta$):=\displaystyle \sum_{ $\alpha$}L(\sum_{l $\nu$=1}^{\infty}v_{l $\nu,\ \alpha$}\frac{$\zeta$^{l $\nu$-1}}{(v-1)!})x^{ $\alpha$},
where L is the Laplace transform given by

(4.5) Lf( $\eta$):=\displaystyle \int_{0}^{\infty}e^{- $\zeta \eta$}f( $\zeta$)d $\zeta$,
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where we assume the suitable growth condition on f . Finally we define the Borel‐Laplace
resummation U_{W}(x,  $\eta$) of the WKB solution u_{W}(x,  $\eta$) by

(4.6) U_{W}(x,  $\eta$) :=v_{0}(x)+V_{W}(x,  $\eta$) .

Let $\lambda$_{j}(j=1,2, \ldots, n) be the eigenvalues of  $\Lambda$ counted with multiplicity. We say

that the Poincaré condition is satisfied if the convex hull of  $\lambda$_{j}(j=1,2, \ldots, n) in the

complex plane does not contain the origin. We say that  $\eta$\in \mathbb{C} is a resonance if there

exist k, 1\leq k\leq n and  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n})\in \mathbb{Z}_{+}^{n}(2) such that

(4.7) \displaystyle \sum_{j=1}^{n}$\lambda$_{j}$\alpha$_{j}- $\eta \lambda$_{k}=0.
Let  $\xi$,  0\leq $\xi$\leq 2 $\pi$ and  $\theta$>0 . We define the sector S_{ $\xi,\ \theta$} by

(4.8) S_{ $\xi,\ \theta$}:=\{ $\eta$\in \mathbb{C};|\arg $\eta$- $\xi$|< $\theta$/2\}.

Then we have

Theorem 4.1. Suppose that either the Poincaré condition or the one

(4.9) \exists$\tau$_{0}, 0\leq$\tau$_{0}\leq $\pi$, e^{-\sqrt{-1}$\tau$_{0}}$\lambda$_{j}\in \mathbb{R}\backslash \{0\}, j=1 , 2, . . .

,
n

is satisfied. Then there exist  $\xi$,  $\theta$>0 and a neighborhood  $\Omega$ of  x=0 such that U_{W}(x,  $\eta$)
is holomorphic in (x,  $\eta$)\in $\Omega$\times S_{ $\xi,\ \theta$} and solves (2.7).

The WKB solution u_{W}(x,  $\eta$) is a G^{2} ‐asymptotic expansion of U_{W}(x,  $\eta$) in  $\Omega$\times S_{ $\xi,\ \theta$}
when  $\eta$\rightarrow\infty,  $\eta$\in S_{ $\xi,\ \theta$} . Namely, for every N\geq 0 and R>0 ,

there exist C>0 and

K>0 such that

(4.10) |U_{W}(x,  $\eta$)-\displaystyle \sum_{l $\nu$=0}^{N}$\eta$^{-l $\nu$}v_{l $\nu$}(x)|\leq\frac{CK^{N}N!}{| $\eta$|^{N+1}}, \forall(x,  $\eta$)\in $\Omega$\times S_{ $\xi,\ \theta$}, | $\eta$|\geq R.
Remark 2. This theorem is valid for those equations with small denominators as

well as with infinite resonances.

Theorem 4.2. Suppose that

(4.11) |\displaystyle \arg$\lambda$_{j}|<\frac{ $\pi$}{4}, j=1 , 2, . . .

,
n.

Then there exist  $\xi$,  $\theta$> $\pi$ and a neighborhood  $\Omega$ of  x=0 such that U_{W}(x,  $\eta$) is holo‐

morphic in  $\Omega$\times S_{ $\xi,\ \theta$} , and it is a unique solution of (2.7). The function U_{W}(x,  $\eta$) is the

Borel sum of u_{W}(x,  $\eta$) .

The proof of the former half of Theorem 4.1 is given in [6]. The complete proofs of

the theorems will be published elsewhere.
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§5. Analytic Continuation of the Resummed WKB Solution

In this section we study the solvability of the equation (2.7) with  $\eta$=1 by the

analytic continuation of the resummed WKB solution with respect to  $\eta$ . We assume

that  $\eta$=1 is not a resonance. First we study the analytic continuation of U_{W}(x,  $\eta$) in

case the Poincaré condition is verified.

Theorem 5.1. Suppose that the Poincaré condition is satisfied and that  $\eta$=1 is

not a resonance. Then the WKB solution U_{W}(x,  $\eta$) can be analytically continued along

any path on \mathbb{C} which avoids resonances as a single‐valued holomorphic function of  $\eta$ up

to  $\eta$=1 . The analytic continuation of U_{W}(x,  $\eta$) to  $\eta$=1 coincides with the classical

Poincaré series solution.

Sketch of Proof. First we note that the resummed WKB solution coincides with

the Poincaré series if  $\eta$ is in some sector and  x is in some neighborhood of the origin. On

the other hand, the Poincaré series is an infinite sum of negative powers of \langle $\lambda$,  $\alpha$\rangle- $\eta \lambda$_{k}
(1\leq k\leq n,  $\alpha$\in \mathbb{Z}_{+}^{n}(2)) whose coefficients are polynomials of x . Because the series

converges when x is in some neighborhood of the origin and  $\eta$ is in a bounded open set

containing 1 whose closure is contained in the complement of the resonances, we can

make the analytic continuation. Hence the theorem follows. \square 

Next we study the analytic continuation in case the Poincaré condition is not ver‐

ified. We assume that there exists n_{s}\in \mathbb{Z}, 1\leq n_{s}\leq n such that

(5.1) $\lambda$_{1}\leq$\lambda$_{2}\leq. . . \leq$\lambda$_{n_{\mathrm{s}}}<0<$\lambda$_{n_{\mathrm{s}}+1}\leq. . . \leq$\lambda$_{n}.

In the following we assume that  $\Lambda$ is put in a Jordan normal form for the sake of

simplicity. Let  e_{j}={}^{t}(0, \ldots, 1, \cdots, 0) be the j‐th unit vector. Let J_{0} be defined by

(5.2) J_{0}:= { j;1\leq j\leq n, e_{j} is an eigenvector of  $\Lambda$ }.

We note that if \mathcal{X} is semi‐simple, then we can take J_{0}=\{1, 2, . . . , n\} . For a small

number r_{0}>0 we define

(5.3) S:=\displaystyle \prod_{\mathrm{a}j\in J_{0}\mathrm{n}\mathrm{d}j\leq n_{\mathrm{s}}}\{z\in \mathbb{C};z\in S_{0, $\theta$}, |z|<r_{0}\}\times\prod_{\mathring{\mathrm{r}}j>n_{\mathrm{s}}j\not\in J_{0}}\{z\in \mathbb{C};z\in S_{0, $\theta$}\}.
Let $\alpha$_{s}= ($\alpha$_{1}^{s}, $\alpha$_{2}^{s}, . . . , $\alpha$_{n}^{s})\in \mathbb{Z}_{+}^{n} be such that $\alpha$_{j}^{s}=0 if j\not\in J_{0} or j>n_{s} and \langle $\Lambda$, $\alpha$_{s}\rangle-$\lambda$_{j}<
0, j=1 , 2, . . .

,
n.

Let \overline{O}(X) be the set of holomorphic functions in an open set X . We define \mathcal{O}(X)
the n‐product of \overline{O}(X) , namely \mathcal{O}(X) :=\overline{O}(X)\times\cdots\times\overline{O}(X) . Let $\Sigma$_{0} be a neighborhood
of \overline{S} , where \overline{S} is the closure of S ,

and R\in \mathcal{O}($\Sigma$_{0}) . We assume

(5.4) R(x)=x^{$\alpha$_{\mathrm{s}}}\tilde{R}(x) , \overline{R}(x)\in \mathcal{O}($\Sigma$_{0}) ,
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(5.5) \displaystyle \sup_{x\in$\Sigma$_{0}}(|\overline{R}(x)|+|\nabla\overline{R}(x)|)< $\epsilon$,
with  $\epsilon$>0 chosen later.

Example 5.2. Let K>0 be a small constant, and let C_{j}>0(j=1,2, \ldots, n)
and 0< $\theta$< $\pi$/2 . We define S :=S_{0, $\theta$}\times\cdots\times S_{0, $\theta$} . Let R(x) be given by R(x)=

Kx^{$\alpha$_{\mathrm{s}}}\displaystyle \exp(-\sum_{1}^{n}C_{j}x_{j}) . Then (5.4) and (5.5) are satisfied if we take K>0 sufficiently

small depending on  $\epsilon$.

We have

Theorem 5.3. There exist  $\epsilon$>0 and a neighborhood  $\Omega$ of  $\eta$=1 such that, for

every R\in \mathcal{O}($\Sigma$_{0}) satisfy ing the above conditions, there exists a solution u_{S}(x,  $\eta$) of (2.7)
which is holomorphic in (x,  $\eta$)\in S\times $\Omega$.

Remark 3. We shall remark about the relation of the resummed WKB solu‐

tion U_{W}(x,  $\eta$) and the solution u_{S}(x,  $\eta$) . If \overline{R}(x) depends only on the stable variable

x_{1} ,
. . .

, x_{n_{\mathrm{s}}} ,
then we have u_{S}(x,  $\eta$)=U_{W}(x,  $\eta$) if (x,  $\eta$)\in S\times $\Omega$ . Namely,  U_{W}(x,  $\eta$) can

be analytically continued up to  $\eta$=1 if x\in S . It is an open problem whether the

assertion holds without assuming that \overline{R}(x) depends only on the stable variables. We

will discuss the problem in a future paper.
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