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Coupled Painlevé VI Systems in Dimension Four
with Affine Weyl Group Symmetry of Type Dél), 11

By

Yusuke SASANO*

Abstract

We give a reformulation of a six-parameter family of coupled Painlevé VI systems with
affine Weyl group symmetry of type Dél) from the viewpoint of its symmetry and holomorphy
properties.

§1. Introduction

In [11], [12], we proposed a 6-parameter family of four-dimensional coupled Painlevé
VI systems with affine Weyl group symmetry of type Dél). This system can be consid-
ered as a generalization of the Painlevé VI system. In this paper, from the viewpoint
of its symmetry and holomorphy properties we give a reformulation of this system [13]
explicitly given by
dg, OH dp, OH dq, OH dp, OH
dt  op,’ dt  9q," dt  Op,’ dt  Og,

H = Hyy(q,,01,1, 1 0, 0y, i, g + 204 + v, 3 + )

(1.1)
+ Hy1(q2, P25t g + 2005 + a3,y + g, ay, 05, )
2(q, — —1i)p +« —1)py +
+ (2 = n)a{(ar —t)py 2 H (g P2 4} (n € C—{0,1}).
tt—1)(t—n)
Here q;, p;, g3, Py denote unknown complex variables, and o, oy, ..., o are complex

parameters satisfying the relation oy + oy + 2(ay + a5 + ay) + a5 + o = 1, where the
symbol Hy;(q,p,n,t; By, 1, Ba, B3, Ba) is given in Section 2.
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If we take the limit n — oo, we obtain the Hamiltonian system with well-known
Hamiltonian H (see [11])

dy _0H dp, _ 0H dgy _0H dp, __0H

dt  Op,’ dt  9dq, dt  dp,” dt g,

ﬁ[ :ﬁVI(Qlaplat;amalaaQ,a?)+2a4+a5,a3+a6)
+ Hy1(qg, pas B g + g,y + 20y + ag, ay, as, o)

n 2(q1 — t)p1goi(ga — )po + 4}
tHt—1) ’

where the symbol FIVI is also given in Section 2.

Here we review the holomorphy conditions of the system (1.2) (see [11]). Let us
consider a polynomial Hamiltonian system with Hamiltonian H € C(t)[qy,p;, ¢a, Po)-
We assume that

(A1) deg(H) = 5 with respect to q;,p;, s, Po-
(A2) This system becomes again a polynomial Hamiltonian system in each coordinate
system (x;,v;, 2, w;) (1 =0,2,3,4,5,6):

ro 1o =—((¢1 — O)p1 — )Py, Yo = 1/P1, 29 = Qs W = Do,

Ty 1 Ty = 1/q1, Yo = —q1(@1p1 + Qa), 22 = o, Wy = P,

r3 173 = —((¢1 — 42)p1 — @3)P1s Y3 = 1/P1, 23 = o, w3 =Py + Py,
Ty Ty =y, Yy = D1, 24 = 1/qy, Wy = —qa(gapy + o),

s %5 =qq, Ys = P1, 25 = —((q2 — 1)py — a5)pa, w5 = 1/py,

T6 I Tg = Qo Yo = P1, 26 = —D2(qaPy — ), we = 1/ps.

(1.3)

(A3) In addition to the assumption (A2), the Hamiltonian system in the coordinate
ro becomes again a polynomial Hamiltonian system in the coordinate system

(T1, Y1, 21, W1 ):
(1.4) i my = —(TalYo — a1)Ya, Y1 = 1/Ys, 2 = 29, Wy = Ws
Then such a system coincides with the system (1.2).

In this paper, we make a reformulation to obtain a clear description of invariant
divisors, birational symmetries and holomorphy conditions for the system (1.2). Our
way is stated as follows:

1. We symmetrize the holomorphy conditions 7} of the system (1.2).
2. By using these conditions and polynomiality of the Hamiltonian, we easily obtain the
polynomial Hamiltonian of the system (1.1).
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This paper is organized as follows. In Section 2, we give a reformulation of Hamilto-
nian of Py; and its symmetry and holomorphy. In Section 3, we state our main results
for the system of type Dél). After we review the notion of accessible singularity in
Section 4, we will state the relation between some accessible singularities of the system
(1.1) and the holomorphy conditions r; given in Section 3. After we present a com-
pactification of C* which is the phase space of the system (1.1), we will construct its
meromorphic solution spaces corresponding to r; (i = 1,2,...,6).

§2. Reformulation of Py,-Case

The sixth Painlevé system can be written as the Hamiltonian system (cf. [2], [4])

dg _O0Hy; dp  O0Hy

. Op ' dt  Oq '’
t(t — 1)t —n)Hyi(q,p,m, t; g, 5 gy g, )
(2.1) =q(q—1)(g—n)(a—t)p* + {as(t —n)alg — 1) + 2aq(g — 1)(g — )

+ az(t —1)q(qg —n) + agt(a — (g —n)}p
+ ag{(ay +ay)(t —n) + as(q — 1) + az(t — 1) +taytq
(g +ay +2a5+a3+a, =1, neC—-{0,1}).

The equation for ¢ is given by

2
(22) %:%(%Jrqil+qit+qin>(%>2_(%+ti1+qit+tin)%

9 —1)(g—t)(g —n) {a_%n(n —D(t—n) aint

_|_

2t—12t-n?2 L2 (¢g—n)? 2 ¢
+Oé_§(77—1)(1—t) (1—0%)75(75—1)(75—77)}
2 (g —1)2 2 (g—1)? ’

If we take the limit 7 — oo, we obtain the sixth Painlevé system Py,; with well-known

Hamiltonian:

g _ aﬁVI dp _ _aﬁw
d — op dt  dq '
HVI(q7p7t;50751752,63,54)

N t(tl— 1) [p*(a = )a =D~ {(8 ~ 1){a — )a +5(a — t)g

+ 54(‘1 - t)(q - 1)}P + 52(51 + 52)‘1] (50 + 0y + 205 + 03 + 0y = 1)9

(2.3)
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whose equation for ¢ is given by

d?q 1/1 1 1 dqg\ 2 1 1 1 \dg
W‘E(frq—frq—t)(ﬁ) _(E+t—1+ )dt
gla—1D(g—1) faf aft of 1-t) ([1-of) t(t—1)

) .

2t—-12 |12 2¢ 2 (¢g—1)? 2 (¢—1t)?

(2.4)
_I_

The system (2.1) has extended affine Weyl group symmetry of type Dfll), whose

generators s;, m; are given by

(6]
. _ 0 .
80(Q7pa t7 050,()(1,042,053,054) - (CLp - q— tap’ta —0p, 0y, Q9 + a05a37a4)a

o
31(q7p»t§040a041»042»043a044) = (q’p - q— n’t7 Qy, =07, Q9 +a1,a3,0z4),
32(Q7p7t;a07a17a27a37a4)

(Q+ p ’p’t O!O+(l/2,(l/1 +(l/2, Oé2,0é3+0é2,0é4+0é2),

83(q,p,t;040,0é1,042,043,044) (q p—= t Qqp, Oy, Qg + Qasg, Oé3,0é4),

1

Qy
34(Q7p7t;a07a17a27a37a4) = (q,p - ?,t;a07a17a2 + 054,053, —054),

(25) 7I-l(q pat 060,061,052,053,064) (1_Q7 pal_nvl_t;a07alaa27a47a3)a

n—q n_n-t
7r2(q,p7t;05070517a27a37054) = (Tl, (1 - U)P, n— 1 n— 1 050,04,&2,053,051)
(n—1)?%(g—1)

t; -
7r3(Q7p7 ,060,051,052,053,064) ({U(t _ 2) + 1}q+ (77 _ 772 _ 1)t+n2’

(¢ —D{(g—Dp+agi{n(t —2) + 1}

S CEDEED
+(q—t){(q—t)p+a2}{n(t 2) +1}
n(t—1)(t—n) ’
1—mn, (- 1) 'a4,a1,a2,a3,a0).

t—mnt+n*(t—1)

Let us consider a polynomial Hamiltonian system with Hamiltonian H € C(t)[q, p).
We assume that

(Al) deg(H) = 6 with respect to g, p.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate
r; (1=0,1,2,3,4):
ro:xg=—((¢g=t)p—ao)p, yo =1/p, 7 :x1=—((¢—n)p—ai)p, y, =1/p,

(2.6) ry:ay=1/q, yo = —(qp + a2)q, rg 23 =—((¢— 1)p — as)p, y3 =1/p,
ry:zy=—(qp— au)p, ya =1/p.
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Then such a system coincides with the system (2.1).

The phase space of the system (2.1) (resp. (2.3)) can be characterized by the rational
surface of type Dfll) (see [6], [8], [9]). Figure 1 denotes the accessible singular points
and the resolution process for each system.

t 1
S o o 00 2 _ > o lo o Ug
Tp -— 4p
¢ -
q | q

for the system (2. for the system (2.1)

3)
/

Dil)-lattice

Tp
)

Figure 1. Each figure denotes the Hirzebruch surface. Each bullet denotes the accessible
singular point of each system. It is well-known that each point can be resolved by
blowing-up at two times (see [6], [8], [9]). By these transformations, we obtain the
rational surface of type Dé(ll) for each system.

We remark that the system (2.1) has the following invariant divisors:

parameter’s relation | invariant divisors
ag =0 for=q—1
o =0 fir=a—m
ay =0 fo=p
az =0 f3i=q—1
ay =0 fi:=4q
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8§3. The Case of Type Dél)

Theorem 3.1.  The system (1.1) admits extended affine Weyl group symmetry
of type Dél) as the group of its Backlund transformations, whose generators s;, m; are
explicitly given as follows: with the notation (%) := (g1, D1, @2, P, M, b3 Qs Qg5 - -+, Q) s

Qg
Sp (*) = (QIapl - q _taq27p27777t; —0p, Oy, Q9 +OéO,Oé3,Oé4,Oé5,046),
1
ay
s1: (x) = (q1, 1 — ———, 02, P2, 1, 1 gy — 1y, Qi + Oy, i3, Oy, 5, ),
4G —"n
Qg
82: (*) — (QI + _aplvc.ZZ’pZ?nat;aO + 052,051 + 042, _052’@3 + a2,Oé4,Oé5,(l/6),
1
a3 a3
530 (%) = (q1,p1 — ——, G2, Do + ——, 1, t; g, 1, g + 3, —Qi3, g + a3, 5, Q)
1~ 42 142
Qy
Sy (*) = (q17p17q2 + _ap2»77,t3040,041a042,043 + Qy, —Qy, Q5 + Qy, Qg + Oé4),
2

a
. 5 .
S5t (%) = (41, P15 42, P2 — 7 — 1 o, Qs g, 3,0y + ag, —as, ag),
2

Qg
s¢: (%) = (q1,P1: G2, P2 — g,n,t;ao,al,ag,ag,oq + ag, a5, —ag),
T (%)
(t—Da (=t +q, +nt —ntqy)(tpy — @;py — ay — ntpy + Ntqypy + agnt)
t—q —nt+ntqy’ tt—1)(n—1) ’
(t—1)gy (—t + qo + 0t — ntqy)(tps — qapa — g — Ntpa + Ntqaps + aunt)
t—qy —nt+ntgy’ tt—1)(mn—1) ’

1 n(t—1)
E’ t— n— nt + 772t; 041,0&(),(142,(143,(1/4,(1/5,(146),

= (

Ty (*) = (1 — 41, =P, 1-— 4o, —D2, 1— m, 1- ta Qg, 0q, Oy, O3, 0y, Og, ()[5),
t(QQ — 1)
gt (%) ,
’ (t(Q2_77)+772(t—Q2)
(t(gs = 1) + 7°(t = ¢2))(t(g2 — M)py + g (t = ) + 7 (t — g3)p2)
tn*(t —n) ’

t((h —1)
tlqg, —n) + 0%t —q,)’
(tqy —n) +7°(t — q1))(t(qy = n)py + ot = 0*) + 7 (t — q1)py)
tn*(t —n) ’

;O y Qg Qg Qlg, Qly, Oy, Oy ).

1 (n—1)t
n—1" t—nt+n3t—-1)

We note that these transformations s,, 7; are birational and symplectic.

Theorem 3.2.  Consider a polynomial Hamiltonian system with Hamiltonian
H € C(t)lq1: p1: 42, P, Assume that
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Figure 2. This figure denotes Dynkin diagram of type Dél).

(A1) deg(H) = 6 with respect to qy, D1, qs, Ps-
(A2) This system becomes again a polynomial Hamiltonian system in each coordinate

system (x;,y;, z;,w;) (1=0,1,...,6):
To i Ly = Z_%(Chz_ t§P1 - O‘Oﬁpl’ Yo = 1/p1, 20 = @z, Wy = po,

riixy=—((¢ —n)pr — )P, Y1 =1/p1, 21 =@, wy =py (1 €C—{0,1}),
Tt Ty =1/qy, Yo = —qi (@11 + Qa)s 29 = Gy Wy = Po,
(3.1) ry:a3=—((q1 —q2)py — a3)py, Y3 =1/p1, 23 =@, W3 =Py +py,
Tyt Ty =Gy, Yy = D1y 2= /0, wy = —q5(qops + ay),
st Ts =qy, Y5 = D1, 25 = —((¢2 — 1)py — a5)py, wy = 1/py,
T 1 Te =1, Yo = P1, 26 = —P2(qaPs — ), W = 1/p,.

Then such a system coincides with the system (1.1).

The proof is similar to [10].

Proposition 3.3. The system (1.1) has the following invariant divisors:
parameter’s relation | invariant divisors
ay =0 Jor=q —1
a; =0 Ji==q —n
a; =0 fo =
az =0 fs'=q — @
ay, =0 f4 =Dy
as =0 fsi=q—1
ag =0 fe == q

§4. Accessible Singularities

Let us review the notion of accessible singularity. Let B be a connected open
domain in C and 7: W — B a smooth proper holomorphic map. We assume that
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‘H C W is a normal crossing divisor which is flat over B. Let us consider a rational
vector field v on W satisfying the condition

v € H'(W;0,,,(—log H)(H)).
Fixing t, € B and P € W, , we can take a local coordinate system (x1,29,...,2,)
of W, = centered at P such that H, ., can be defined by the local equation z; = 0.

Since 7 € H°(W;0,,(—log H)(H)), we can write down the vector field ¥ near P =
(0,0,...,0,t,) as follows:

(4.1) i=2 40 20 L W0

This vector field defines the following system of differential equations

dx dx as(xy,...,2,,1t) dx a,(xy,...,z,,t)
4.2) L =q(zy,...,x, 1), —2 =2 om0 )
(42) = 1 wt T T dt T
Here a,(xy,xq,...,2,,t), i = 1,2,...,n, are holomorphic functions defined near P =
(0,...,0,ty).

Definition 4.1. With the notation above, assume that the rational vector field
v on W satisfies the condition

(A) v € H'(W; 0, (—logH)(H)).
We say that v has an accessible singularity at P = (0,0,...,0,t,) if
xz; =0 and a;(0,0,...,0,t,) =0 for every i, 2 <i<n.

If P e H,,, is not an accessible singularity, all solutions of the ordinary dif-
ferential equation passing through P are vertical solutions, that is, the solutions are
contained in the fiber W, ‘overt =t,. If P € H
may be a solution of (4.2) which passes through P and goes into the interior W — H of
W.

Here we review the notion of local index. Let v be an algebraic vector field with an

smooth 18 an accessible singularity, there

accessible singular point p* = (0,0,...,0) and (zy,2s,...,,) a coordinate system in
a neighborhood centered at . Assume that the system associated with v near p can
be written as
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Ty
d Lo
4.3) —
w3 Lo|”
J’.n
a; L1 xlfl('mla'mQ""axnvt)
1 ) _ Zo f2($1,$2,...,$n,t)
=—qQ QQ ;
Ly
a,, x, folxy, 2o, ... 2z, t)

(fz € (C(t)[wlﬂ ce ’xn]ﬂ Q € GL(TL,(C(t)),CLZ € (C(t))
where f (7, 2y, ...,,,t) is a polynomial which vanishes at p" and f;(x,,zy,...,7,,t),
t =2,3,...,n are polynomials of order at least 2 in x;,2o,...,x,. We call ordered set
of the eigenvalues (a,,a,,...,a,) local index at .

We remark that we are interested in the case where
(4.4) (1,a5/a4,...,a,/a;) € Z".

These properties suggest the possibilities that a; is the residue of the formal Laurent

series:
a _
(4.5) yi (1) = ﬁ by + byt —tg) + -+ b, (E— )" '+ (b €C),
0
and the ratio (ay/ay,...,a,/a,) is resonance data of the formal Laurent series of each
y;(t) (i =2,...,n), where (y,,...,y,) is original coordinate system satisfying

(331, ce ,l‘n) = (fl(yla ce ’yn)’ e '7fn(y1’ e '7yn))’ fz‘(yla ce ’yn) € (C(t)(yla te 7yn)'

Example 4.2. For the Noumi-Yamada system of type Afll), its local index can
be defined at each accessible singular point (cf. [15]).

§5. On Some Hamiltonian Structures of the System (1.1)

In this section, we will give the holomorphy conditions r; (i = 0,1,...,6) by re-
solving some accessible singular loci of the system (1.1). Each of them contains a
3-parameter family of meromorphic solutions.

In order to consider the singularity analysis for the system (1.1), as a compactifi-
cation of C* which is the phase space of the system (1.1), first we take a 4-dimensional
projective space P4. In this space the rational vector field ¥ associated with the system
(1.1) satisfies the condition:

v € H°(P*, Opi(—log H)(3H)),
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where H denotes the boundary divisor H =2 P3. To calculate its accessible singularities,
we must replace the compactification of C* with the condition (A) given in Section
4. We present a complex manifold S obtained by gluing twelve copies U; = C* >

(Xj,Y},Zj,Wj),j:o’l’,”’ll;
4 .
U;x B=C*x B3 (X;,Y;,Z;,W;,t) (j =0,1,...,11)

7770

via the following birational transformations:

0) Xo=aq, Yy =p1, Zy = qa, Wy = pa,
1) Xy = 1/Q1a Y, = _(QIpl +042)Q1a Z1 = qo, W, = p,,
2) X, =q, Y, =py, Zy=1/qy, Wy = —(qapy + ay)qs,
3) X3=4q, Y3:1/p1, Zs = qy, W3:p2/p1,
4) X, =q, Yy = p1/po, Zy = qa, W, =1/p,,
5) Xs=1/q, Ys=—(ap1+)qy, Zs=1/q, Ws=—(qaps+ ay)go,
1 %)
51) 6) Xg=1/q, Yy=—-m—-\ Zy=qy  Wy=-— 12
(5:1) 6) X /n 0 (@101 + @9)qy 6 0 (@101 + @9)qy
Q1P T Q5)q
7) X7:1/Q1, Y7:_(11p—2)1’ Z7:q2, W7:1/p2,
2
1 (q2p2 + ) o
8 X:]‘q’ Y:_—a Zzlq’ = T N
) Xs & s (@1p1 + @9)qy s /4 T (g + an)g
(1P + o)y 1
9) Xqg=1/q,, === Zo=1/q,, Wy=——-—"
) 0 /a ° (q2py + 4)qy ? [ 0 (q2py + y)qy
qaPo + 0y )q
10) X10 = ¢, Yio :1/291, Z1 :1/(]2’ Wloz—(22p+4)2,
1
. . b1 _ _ 1
11) Xy; = ¢4, Yi,=- s I =1/q, Wi =-—

(qaps + ay)qs

We note that the transformation

(q2p2 + a4)qe '

(5.2) 70 (g1, P15 Q25 Do Qg ) > (G2, a5 Q1,5 P15 Oy, Q)

is an automorphism of S.

The restriction {(qy,p1,¢2,P2) | G2 = P2 = 0} (resp. {(q1,P1,42:02) | ¢4 = py = 0})
of this manifold S is a Hirzebruch surface respectively. We remark that this gener-
alization of the Hirzebruch surface is different from the one given by H. Kimura (see

[3])-
The canonical divisor K4 of S is given by
Ks=-3n= ) {(X.Y.Z,W)eU|Y;=0}
(5.3) i€{3,6,8,10}

u U

je{4,7,9,11}

77777



COUPLED PAINLEVE VI SYSTEMS 147

and satisfies the following relations:

1
1
1

5.4
(54 dXo N dYs A dZg N dWs = = dXy AdYy AdZy A dW,
1

1
\ 5
It is easy to see that each patching data (X,,Y;,Z;,W,) (i = 1,2,5) is birational
and symplectic, moreover the system (1.1) becomes again a polynomial Hamiltonian
system in each coordinate system.

Proposition 5.1.  After a series of explicit blowing-ups and blowing-downs of
P4, we obtain the smooth projective 4-fold S and a birational morphism ¢: S --- — P4,

..........

...........

tStep 3 ‘Step 6

Figure 3. This figure denotes the steps which are needed to obtain the 4-fold §. The
first figure denotes the boundary divisor P? in P*. Up arrow denotes blowing-up, and
down arrow denotes blowing-down. Each step is explained in the below summary.

Let us summarize the steps which are needed to obtain the 4-fold S.
1. Blow up along two curves L; = P! and L, = P

2. Blow down the 3-fold V; = P! x P! x PL.
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3. Blow up along two surfaces S; = P? and S, & P2
4. Blow down the 3-fold V, = P? x P!
5. Blow up along the surface S; = P! x PL.
6. Blow down the 3-fold V5 = P? x P!,
7. Blow up along the surface S, = P! x P
8. Blow down the 3-fold V, = P? x P!,
9. Blow up along the surface S5 = P! x P!,
10. Blow down the 3-fold Vj = P? x P*.
11. Blow up along the surface Sy = P! x P!,
12. Blow down the 3-fold Vg = P? x P1L.

It is easy to see that this rational vector field v satisfies the condition:

(5.5) v € H'(S;05(—logH)(H)).

The following lemma shows that this rational vector field v has five accessible
singular loci on the boundary divisor H x {t} C S x {t} for each ¢t € B.

Figure 4. This figure denotes the boundary divisor H of §. This divisor is covered by
eight affine spaces U UU, UUg UU; U ---UU;;. The bold lines C; (¢ =0,1,...,4) in
H denote the accessible singular loci of the system (1.1) (see Lemma 5.2).
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Lemma 5.2.  The rational vector field v has the following accessible singular
loci:
( C'0 = {(X3,Y5,Z3, W) | X3 =1,Y5 = W5 =0},
={(X35, Y5, Z3, W3) | X5 =1,Ys = W3 =0},
(5.6) = {(X35, Y3, Z3, W3) | X3 =Z3, Y5 =0, W5 = —1},
={(Xy, Yy, Zy, Wy) | Y, =W, =0,7, =1},
={(Xy, Yy, Z, W) | Yy = Z, = Wy =0}

This lemma can be proven by a direct calculation. O
Next let us calculate its local index at each point of C;.

Singular locus Singular point Type of local index
Cy (X3,Y3,Z5,W3) = (t,0,a,0) (2,1,0,1)
C, (X3,Y5, 725, W3) = (n,0,a,0) (2,1,0,1)
C, (X4, Yy, 2, W) = (a,—1,a,0) (0,1,2,1)
Cy (X4, Y, Z,,W,) = (a,0,1,0) (0,1,2,1)
C, (X4, Y, Z,,W,) = (a,0,0,0) (0,1,2,1)
Here a € C.

Example 5.3. Let us take the coordinate system (x,y,z,w) centered at the
point (Xs, Ys, Z5, Ws3) = (¢,0,0,0). The system (1.1) is rewritten as follows:

T 2000 T
i Y _1 0100 Y .
dt | z Y 0000 z

w 0001 w

satisfying (4.3). In this case, the local index is (2,1,0,1). This suggests the possibilities
that by = 1 is the residue of the formal Laurent series:
1

(5.7) y(t) = + b+ byt —ty) + b, (t—ty)" - (b €C),
(t—1p)

2 01
and the ratio (-, —,—) = (2,0,1) is resonance data of the formal Laurent series of

(x(t), z(t),w(t)) respectively. There exists a 3-parameter family of meromorphic solu-
tions which passes through (X3, Y3, Z3, W3) = (¢,,0,0,0).

Example 5.4. Let us take the coordinate system (z,y,z,w) centered at the
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point (X,,Y,, Z,,W,) = (0,—1,0,0). The system (1.1) is rewritten as follows:

T 2 0-20 T
dlyl|l 1 n —-21 20 Y
ail:| " wYi=nt=nlooool||:|""

w 0001 w

satisfying (4.3). To the system above, we make the linear transformation

X 0010 x
Y| | 0001 Y
Z| |-1010]]|z=
w 2 1-20 w
to arrive at
X 0000 X
dlY | 1 n 0100 Y N
dt |z | W)t-D@t—-n) [oo20]| | z
W 0001 %%
Proposition 5.5. If we resolve the accessible singular loci given in Lemma 5.2

by blowing-ups, then we can obtain the canonical coordinates r;j(j =0,1,3,5,6).

Proof. By the following steps, we can resolve the accessible singular locus Cj.

Step 1: We blow up along the curve Cj:

Y,

X4(1):X4, Y4(1)Zw’ 4 T W
4 4

Step 2: We blow up along the surface {(X,, v,V z,® w, Wy | 2,0 — o, =

(2) (1) (2) (1) (2) Z4(1) ~— % (2) (1)
X4 == X4 , Y4 == Y4 5 Z4 == W (1) 5 W4 == W4 .
4

Thus we have resolved the accessible singular locus Cy.

By choosing a new coordinate system as
(%6, Y6, 26 We) = (X4(2),Y4(2), —Z4(2), W4(2)),

we can obtain the coordinate r.

By the following steps, we can resolve the accessible singular locus C.



COUPLED PAINLEVE VI SYSTEMS 151

Step 1: We blow up along the curve Cj:

X, —Z
3Y3 LWy, zW=z,, W= Y,

X5(1)
Step 2: We blow up along the surface {(X;V, vz, z,M w, M) | X,V — a, =

2 _ X5( ) — Q3

Xs Y, (1)

, Y5(2) _ Y5(1) , Z5(2) _ Z5(1) , W5(2) _ W5(1).
Thus we have resolved the accessible singular locus Cs.
By choosing a new coordinate system as

(.733, Y3, 23, w3) = (_X5(2), Y5(2)7 Z5(2)7 W5(2))7

we can obtain the coordinate r3.

For the remaining accessible singular locus, the proof is similar.

Collecting all the cases, we have obtained the canonical coordinate systems (x i Yo
z;,w;) (j=0,1,3,5,6), which proves Proposition 5.5. O

We remark that each coordinate system contains a three-parameter family of mero-
morphic solutions of (1.1) as the initial conditions.

The difference between r;, and r/ is only the case of i = 1. The relation between 7,
and r{ can be explained by the one for the accessible singularities C; and C given by

1
Cy ={(Xg, Yy, Zg, We) | Xg = E’Yg =W, =0}
1
(58) U {(XS,Y8,ZS;W8) | Xg == ;,Yg = WS = O},

Coo = {(Xe, Y5, Z6, Wes) | X = Y3 = W3 =0}
U{(Xg, Ys, Zg, Wy) | Xg =Yg = Wy =0}
As n — oo, C] tends to C,,. The resolution of C_ is the same way given in Proof of

Proposition 5.5.

Proposition 5.6.  After a series of explicit blowing-ups gwen in Proposition 5.5,
we obtain the smooth projective 4-fold S and a morphism ¢: S — &. Its canonical
divisor K§ ofS s given by

4
(5.9) Ks=-3H-) &,
1=0

where the symbol H denotes the proper transform of H by ¢ and E; denote the exceptional
divisors obtained by Step 1 (see Proof of Proposition 5.5).
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We note that S is its phase space including the meromorphic solution spaces cor-

responding to r;. It is still an open question whether we will construct the phase space

parametrized all meromorphic solutions including holomorphic solutions.
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