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Remarks on the Kernel Theorems in Hyperfunctions

By

Otto LIESS * and Yasunori OKADA**

Abstract

We give some remarks on the kernel theorems in hyperfunctions. After recalling two types
of kernel theorems in hyperfunctions, we study relations between two notions of semicontinuity

appearing in the two cases, consider the wave front set condition by comparing it with the

case of the kernel theorem in distributions, and study the (singular‐)support property for the

operators with kernels. We also give a characterization of continuous linear maps between the

spaces of real‐analytic functions.

§1. Introduction

We consider the Euclidian spaces \mathbb{R}^{m} and \mathbb{R}^{n} with coordinates y=(y\mathrm{l}, . . . , y_{m})
and x=(x\mathrm{l}, . . . , x_{n}) respectively, and also consider open subsets U\subset \mathbb{R}^{m} and V\subset \mathbb{R}^{n}.

We denote by D(U) the space of differentiable functions on U with compact support

endowed with the Schwartz topology, and by \mathscr{D}'(V) the space of distributions on V.

The Schwartz kernel theorem in distributions states that the following two conditions

are equivalent for a linear map T:\mathscr{D}(U)\rightarrow \mathscr{D}'(V) :

(i) T is continuous.

(ii) T has a distribution kernel \mathcal{K}(x, y)\in \mathscr{D}'(V\times U) . By this we mean that the map

T can be represented as the following integral operator with kernel \mathcal{K} :

(Tu) (x)=\displaystyle \int_{U}\mathcal{K}(x, y)u(y)dy for u\in \mathscr{D}(U) .
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Similar situations have been studied in the analytic category in [4], and in particular
we gave kernel theorems in hyperfunctions in that paper. The aim of this article is to

continue this study and to state some related results referring to kernel theorems.

We first recall the notion of semicontinuity and review the kernel theorems in

hyperfunctions introduced in [4]. Then we will give some remarks on the semicontinuity
in §3.1, consider the wave front set condition in §3.2, study the (singular‐)support
property in §3.3, and give a characterization of continuous linear maps in §3.4.

As for the results in §3.3, the complete proof will be published elsewhere.

§2. Kernel Theorems

We prepare some notations. \mathscr{O}_{\mathbb{C}^{n}} denotes the sheaf of holomorphic functions on

\mathbb{C}^{n} ,
and \mathscr{A}_{\mathbb{R}^{n}}:=\mathscr{O}_{\mathbb{C}^{n}}|_{\mathbb{R}^{n}} the sheaf of real‐analytic functions on \mathbb{R}^{n} . The sheaf \mathrm{B}_{\mathbb{R}^{n}} of

Sato�s hyperfunctions on \mathbb{R}^{n} is defined by

\mathrm{B}_{\mathbb{R}^{n}}:=\mathcal{H}\mathrm{R}_{n}(\mathscr{O}_{\mathbb{C}^{n}})\otimes or_{\mathbb{R}^{n}/\mathbb{C}^{n}}.

(See [5].) For brevity we often write, for example, \mathscr{O} instead of \mathscr{O}_{\mathbb{C}^{n}} if there is no risk

of confusion. A section of \mathscr{B} is called a hyperfunction.

Hyperfunctions have boundary value representations. In fact, using the notation

G[d] :=\{t\in G;|t|<d\} for an open convex cone G\subset \mathbb{R}^{n} and a positive number d>0,
we have a natural injective map

b_{G}:\displaystyle \lim_{\vec{d>0}}\mathscr{O}(V+iG[d])\rightarrow \mathscr{B}(V)
which is called the boundary value map. Moreover if \{G_{j}\}_{j} is a finite family of open

convex cones in \mathbb{R}^{n} whose dual cones Int G_{j}^{\perp} form a covering of \dot{\mathbb{R}}^{n}=\mathbb{R}^{n}\backslash \{0\} ,
then

the map

(2.1) b=b_{\{G_{j}\}_{j}} : \displaystyle \bigoplus_{j}\lim_{\vec{d>0}}\mathscr{O}(V+iG_{j}[d])\rightarrow \mathscr{B}(V)
becomes surjective. Note that for a fixed d>0 ,

the map b_{G[d]}:\mathscr{O}(V+iG[d])\rightarrow \mathscr{B}(V)
is also injective and the map b=b_{\{G_{j}[d]\}_{j}}:\displaystyle \bigoplus_{j}\mathscr{O}(V+iG_{j}[d])\rightarrow \mathscr{B}(V) is also surjective.

Note also that no good topology for the \mathscr{B}(V) is known to exist. For example,

\displaystyle \bigoplus_{j}\mathscr{O}(V+iG_{j}[d]) has a natural Fréchet Schwartz topology, but the topology introduced

on \mathscr{B}(V) by the surjective map \displaystyle \bigoplus_{j}\mathscr{O}(V+iG_{j}[d])\rightarrow \mathscr{B}(V) is not Hausdorff.

On the other hand, for a compact set K\subset V ,
the space \mathrm{B}_{K}(V) of hyperfunctions

on V supported in K can be identified with the dual space of \mathscr{A}(K) ,
that is,

\mathrm{B}_{K}(V)\simeq \mathscr{A}'(K) .
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Thus \mathscr{B}_{K}(V) ,
endowed with the strong dual topology becomes an (FS)‐space. Similarly

the space \mathscr{B}_{c}(V) of hyperfunctions on V with compact support is endowed with a good

topology by

\displaystyle \mathrm{B}_{c}(V)\simeq \mathscr{A}'(V)\simeq\lim_{\vec{K\Subset}V}\mathscr{A}'(K) .

Now we consider linear maps

T:\mathscr{A}'(U)(=\mathscr{B}_{c}(U))\rightarrow \mathscr{B}(V)

and

T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) ,

and introduce the notion of semicontinuity for both types of maps.

Definition 2.1. (1) Let T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) be a linear map. We say that T

is semicontinuous if for any compact set K\subset U and any relatively compact open set

V'\subset V ,
there exist a finite family \{G_{j}\}_{j} of open convex cones in \mathbb{R}^{n} and a family of

continuous linear maps

(2.2) T_{j}:\displaystyle \mathscr{A}'(K)\rightarrow\lim_{\vec{d>0}}\mathscr{O}(V'+iG[d])
such that

(Tu)(x)=\displaystyle \sum_{j}(T^{u)(x)} on V' for any u\in \mathscr{A}'(K) .

(2) Let T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) be a linear map. We say that T is semicontinuous if

for any relatively compact open set V'\subset V ,
there exists a finite family \{G_{j}\}_{j} of open

convex cones in \mathbb{R}^{n} and a family of continuous linear maps

(2.3) T_{j}:\displaystyle \mathscr{A}(U)\rightarrow\lim_{\vec{d>0}}\mathscr{O}(V'+iG_{j}[d])
such that

(Tu)(x)=\displaystyle \sum_{j}(T^{u)(x)} on V' for any u\in \mathscr{A}(U) .

We define subspaces \mathscr{B}_{G_{j}[d]}(V) and \mathscr{B}_{G_{j}}(V) of \mathscr{B}(V) by

(2.4) \mathrm{B}_{G_{j}[d]}(V):=b_{G_{j}[d]}(\mathscr{O}(V+iG_{j}[d])) ,

(2.5) \displaystyle \mathrm{B}_{G_{j}}(V):=\lim_{\vec{d>0}}\mathrm{B}_{G_{j}[d]}(V)=b_{G_{j}}(\lim_{\vec{d>0}}\mathscr{O}(V+iG_{j}[d]))
and identify them with the topological vector spaces \mathscr{O}(V+iG_{j}[d]) and \displaystyle \lim_{d}\mathscr{O}(V+iG_{j}\rightarrow[d])
respectively, since b_{G_{j}[d]} and b_{G_{j}} are injective. Under these identifications, the map
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T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) is semicontinuous if the composition map from \mathscr{A}'(K)\rightarrow \mathscr{B}(V') in

the following diagram can be factorized through \displaystyle \bigoplus_{j}\mathrm{B}_{G_{j}}(V') with a continuous linear

map \displaystyle \bigoplus_{j}T_{j} ,
for any K\Subset U and V'\Subset V.

\mathrm{B}(\mathrm{V})

Similarly the semicontinuity of a linear map T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) can be understood as

the existence of a continuous linear map \displaystyle \bigoplus_{j}T_{j} in the following diagram

For the case T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) ,
we give

Theorem 2.2. For a linear map T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) ,
the following two condi‐

tions are equivalent.

(i) T is semicontinuous.

(ii) There exists a kernel \mathcal{K}(x, y)\in \mathscr{B}(V\times U) such that

(2.6) \mathrm{W}\mathrm{F}_{\mathrm{A}}\mathcal{K}\cap\{(x, y;0,  $\eta$)\in V\times U\times \mathbb{R}^{n}\times \mathbb{R}^{m}; $\eta$\neq 0\}=\emptyset,

and that

(2.7) (Tu) (x)=\displaystyle \int_{U}\mathcal{K}(x, y)u(y)dy for any u\in \mathscr{A}'(U) .

Here \mathrm{W}\mathrm{F}_{\mathrm{A}}\mathcal{K} denotes the analytic wave front set of \mathcal{K}.

We will refer to the condition (2.6) as to the �the wave front set condition�, and

it is equivalent to \mathcal{K}\in \mathrm{B}_{x}\mathscr{A}_{y}(V\times U) ,
that is, \mathcal{K} is a hyperfunction with real analytic

parameter y . This condition is used in classical analytic microlocal analysis to give a

meaning to the product \mathcal{K}(x, y)u(y) in (2.7) for any u\in \mathscr{A}'(U)\simeq \mathscr{B}_{c}(U) .

As for the case T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) ,
we also give

Theorem 2.3. For a linear map T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) ,
the following two condi‐

tions are equivalent.
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(i) T is semicontinuous.

(ii) There exists a kernel \mathcal{K}(x, y)\in \mathscr{B}(V\times U) such that

(2.8) the projection (V \times U)\cap supp \mathcal{K}\rightarrow V is proper,

and that

(2.9) (Tu) (x)=\displaystyle \int_{U}\mathcal{K}(x, y)u(y)dy for any u\in \mathscr{A}(U) .

We shall refer to the condition (2.8) as to �the proper support condition�, and it

is necessary to give a meaning to the integral in (2.9) for any u\in \mathscr{A}(U) in a standard

fashion.

These theorems can be justified by the following remark. If we take an oriented

compact analytic manifold V instead of an open set in \mathbb{R}^{n}
,

then \mathscr{B}(V) is (perhaps not

canonically) isomorphic to \mathscr{A}'(V) ,
which is endowed with the strong dual topology.

Then the theorems above hold if we replace the condition (i) by the following condition

(i) :((T is continuous�

Semicontinuity is thus precisely continuity when V is a compact manifold.

§3. Remarks

§3.1. Two Kinds of Semicontinuity

In Definition 2.1 (1), we defined the semicontinuity of T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) in terms

of decomposability into a finite sum of continuous linear maps T_{j}:\mathscr{A}'(K)\rightarrow \mathscr{B}_{G_{j}}(V') ,

after taking the composition with the inclusion \mathscr{A}'(K)\mapsto \mathscr{A}'(U) and the restriction

\mathscr{B}(V)\rightarrow \mathscr{B}(V') . See (2.2) and (2.5). If we replace them by the existence of d>0 and

continuous linear maps

\overline{T}_{j}:\mathscr{A}'(K)\rightarrow \mathrm{B}_{G_{j}[d]}(V')
with

(Tu)(x)=\displaystyle \sum_{j}(\overline{T}_{j}u)(x) on V' for any u\in \mathscr{A}'(K) ,

then we can define a new notion of semicontinuity which is apparently stronger than

the original one. But in the present situation, we can establish the equivalence between

these notions at the level of each j ,
as follows. Note that \mathscr{A}'(K) is a Fréchet space, and

that \mathscr{B}_{G_{j}}(V') is an inductive limit of a countable inductive system of Fréchet spaces

with continuous injective maps. Moreover \mathscr{B}_{G_{j}}(V') is Hausdorff. Then any continuous

linear map T_{j}:\mathscr{A}'(K)\rightarrow \mathscr{B}_{G_{j}}(V') can be factorized through \mathscr{B}_{G_{j}[d]}(V') for some d>0.

(See theorem [2, page 198, Chapter 4, Part 1, Section 5, Theorem 1].)
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Theorem 3.1. Let. . . \rightarrow X_{i}\rightarrow X_{i+1}\rightarrow\cdots be a sequence of Fréchet spaces and

continuous linear maps. Denote by  X the inductive limit of the X_{i} , by f_{i}:X_{i}\rightarrow X the

natural maps and consider a continuous linear map T:F\rightarrow X where F is a Fréchet

space. Assume that X is Hausdorff. Then there is an index i^{0} such that  T(F)\subset
 f_{i^{0}}(X_{i^{0}}) . Moreover if f_{i^{0}} is injective, then there is a continuous map T^{0}:F\rightarrow X_{i^{0}} such

that T is factorized into F\rightarrow X_{i^{0}}$\tau$^{0}\rightarrow Xf_{i^{0}}.
We can similarly define a new notion of semicontinuity for the case \mathscr{A}(U)\rightarrow \mathscr{B}(V)

by replacing the existence of T_{j} in (2.3) in Definition 2.1 (2) by the existence of d>0

and continuous linear maps

\overline{T}_{j}:\mathscr{A}(U)\rightarrow \mathrm{B}_{G_{j}[d]}(V')
with

(Tu)(x)=\displaystyle \sum_{j}(\overline{T}_{j}u)(x) on V' for any u\in \mathscr{A}(U) .

In this case, a continuous T_{j}:\mathscr{A}(U)\rightarrow \mathscr{B}_{G_{j}}(V') can not in general be factorized

((through� \mathscr{B}_{G_{j}[d]}(V') . However, in this case too we can prove that this new semi‐

continuity is also equivalent to the existence of a kernel \mathcal{K} satisfying (2.8) and (2.9).
Thus, the two notions of semicontinuity are equivalent, but if we are given a semicon‐

tinuous map T=\displaystyle \sum_{j}T_{j} in the sense of Definition 2.1, and if we want to decompose T

into T=\displaystyle \sum_{j}\overline{T}_{j} on V' in the sense of the new semicontinuity, we may need to perform

a re‐decomposition. For example, consider the inclusion map i:\mathscr{A}(V)\rightarrow \mathscr{B}(V) and

the restriction map r_{G}:\mathscr{A}(V)\rightarrow \mathscr{B}_{G}(V') with an arbitrary fixed V'\subset V and an ar‐

bitrary fixed cone G\subset\dot{\mathbb{R}}^{n} . Then we can easily see that i is semicontinuous and that

i(u)=r_{G}(u) on V' for any u\in \mathscr{A}(V) . But there is no d>0 for which any u\in \mathscr{A}(V)
can be continued analytically to V'+iG[d] . Therefore, we can not have a single rep‐

resentation i=\overline{T} on V' with some \overline{T}:\mathscr{A}(V)\rightarrow \mathscr{B}_{G[d]}(V') . We can actually obtain a

decomposition of type i=\displaystyle \sum_{j}\overline{T}_{j} on V' with continuous \overline{T}_{j}:\mathscr{A}(V)\rightarrow \mathscr{B}_{G_{j}[d]}(V') with

some fixed d>0 ,
but the number of cones G_{j} must be at least n+1.

§3.2. The Situations \mathscr{A}'(U)\rightarrow \mathscr{B}(V) and \mathscr{E}'(U)\rightarrow \mathscr{D}'(V)

In Theorem 2.2, a kernel function \mathcal{K}(x, y) which defines a semicontinuous map

was characterized by the wave front set condition (2.6). On the other hand, when we

consider a similar situation \mathscr{E}'(U)\rightarrow \mathscr{D}'(V) in the distribution theory, then it is not

difficult to find continuous linear maps which can not be represented by an integral
with kernel distribution satisfying a wave front set condition (2.6) with \mathrm{W}\mathrm{F}_{\mathrm{A}} replaced

by C^{\infty} wave front set WF.
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Example 3.2. We define a linear map T:\mathscr{E}'(\mathbb{R})\rightarrow \mathscr{D}'(\mathbb{R}) by

(3.1) (Tu) (x) :=\mathcal{F}^{-1}[2 $\xi$ Y( $\xi$)\hat{u}(-$\xi$^{2})](x) for u(y)\in \mathscr{E}'(\mathbb{R}) ,

where û is a Fourier transform of u, \mathcal{F}^{-1} denotes the Fourier inverse transformation,
and Y( $\xi$) is a Heaviside function. Then we can prove that T is continuous and that T

has no kernel with (C^{\infty}-) wave front set property.
The continuity of T can be shown as follows. We can easily see that T is the

transpose of a map S:\mathscr{D}(\mathbb{R})\rightarrow \mathscr{E}(\mathbb{R}) given by

(S $\varphi$)(y) :=\mathcal{F}^{-1}[Y( $\eta$)\hat{ $\varphi$}(-\sqrt{ $\eta$})](y) for  $\varphi$(x)\in \mathscr{D}(\mathbb{R}) ,

and the map S satisfies the estimate

\Vert\partial_{y}^{j}(S $\varphi$)\Vert_{L^{\infty(\mathbb{R})}}\leq\Vert$\eta$^{j}\hat{ $\varphi$}(-\sqrt{ $\eta$})\Vert_{L^{1}(0,\infty)}=\Vert$\xi$^{2j+1}\hat{ $\varphi$}( $\xi$)\Vert_{L^{1}(-\infty,0)}
\leq c\Vert$\xi$^{2j+1}(1+$\xi$^{2})\hat{ $\varphi$}( $\xi$)\Vert_{L^{\infty(\mathbb{R})}}\leq c(\Vert\partial_{x}^{2j+1} $\varphi$\Vert_{L^{1}(\mathbb{R})}+\Vert\partial_{x}^{2j+3} $\varphi$\Vert_{L^{1}(\mathbb{R})}) ,

with some constant c.

Assume that T has a kernel \mathcal{K}(x, y)\in \mathscr{D}'(\mathbb{R}\times \mathbb{R}) satisfying

(3.2) \mathrm{W}\mathrm{F} \mathcal{K}\cap\{(x, y;0,  $\eta$); $\eta$\neq 0\}=\emptyset,

(Tu) (x)=\displaystyle \int_{\mathbb{R}}\mathcal{K}(x, y)u(y)dy for any u\in \mathscr{E}'() .

Then \mathcal{K} must coincide with the unique kernel of the composition map

\mathscr{D}(\mathbb{R})\mapsto \mathscr{E}'(\mathbb{R})\rightarrow \mathscr{D}'(\mathbb{R})T,

which exists by means of the classical Schwartz kernel theorem. In this situation, for

any u(y)\in D() and  $\varphi$(x)\in \mathscr{D}(\mathbb{R}) ,
we have

\langle \mathcal{K}(x, y) ,  $\varphi$(x)\otimes u(y)\rangle_{(x,y)}=\langle(Tu)(x) ,  $\varphi$(x)\rangle_{x}=\langle 2 $\xi$ Y( $\xi$)\hat{u}(-$\xi$^{2}) , (\mathcal{F}^{-1} $\varphi$)( $\xi$)\rangle_{ $\xi$}
=\langle 2 $\xi$ Y( $\xi$) $\delta$( $\eta-\xi$^{2}) , (\mathcal{F}^{-1} $\varphi$)( $\xi$) . û (- $\eta$)\rangle_{( $\xi,\ \eta$)}

=2 $\pi$\langle \mathcal{F}^{-1}[2 $\xi$ Y( $\xi$) $\delta$( $\eta-\xi$^{2})](x, y) ,  $\varphi$(x)\otimes u(y)\rangle_{(x,y)},

which implies \mathcal{K}=2 $\pi$ \mathcal{F}^{-1}[2 $\xi$ Y( $\xi$) $\delta$( $\eta-\xi$^{2})] . If we actually calculate the defining holo‐

morphic function F(z, w) of \mathcal{K} as a hyperfunction, we get the properties

 $\dagger$  F\in \mathscr{O}(\{{\rm Im} w>0\}) . Thus, \mathrm{W}\mathrm{F}_{\mathrm{A}}\mathcal{K}\subset\{ $\xi$=0,  $\eta$\geq 0\}.

\bullet  F(0, w)=-\displaystyle \frac{1}{2 $\pi$ iw} for {\rm Im} w>0 ,
which implies \displaystyle \mathcal{K}(0, y)=-\frac{1}{2 $\pi$ i} \displaystyle \frac{1}{y+i0} . Thus, \mathcal{K} is

not C^{\infty} in any neighborhood of the origin.
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From these properties, we can show that WF \mathcal{K}\ni (0,0;0,1), which contradicts the  C^{\infty}

wave front set condition (3.2).

Note that the canonical inclusion map \mathscr{D}'(V)\mapsto \mathscr{B}(V) satisfies a similar condition

to Definition 2.1 (2); that is, for any V'\Subset V ,
there exist finite number of open convex

cones G_{j} �s with \displaystyle \bigcup_{j} Int G_{j}^{\perp}=\mathbb{R} and continuous maps T_{j}:\mathscr{D}'(V)\rightarrow \mathscr{B}_{G_{j}}(V') ,
which make

the following diagram commute.

\mathrm{B}(\mathrm{V})

This can be shown in the following way. Take a function  $\phi$\in C_{0}^{\infty}(V) satisfying  $\phi$\equiv 1
on V' . For u\in \mathscr{D}'(V) ,

we can calculate a family \{F_{j}\}_{j} of defining functions of  $\phi$ u,

using twisted Radon transforms associated with a decomposition of \mathbb{R} . If we choose

the decomposition of \mathbb{R} suitably (depending of \{G_{j}\}_{j} ), then each F_{j} belongs to \mathscr{O}(V'+

iG]) with some d>0 ,
and the correspondence u\mapsto F_{j} defines a linear continuous

map T_{j}:\mathscr{D}'(V)\rightarrow \mathscr{B}_{G_{j}}(V') . Since  $\phi$\equiv 1 on V' ,
we have \displaystyle \sum_{j}b(F_{j})= $\phi$ u=u.

§3.3. Uniform Estimates for Supports and Singular‐Supports

Consider a semicontinuous map T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) with kernel \mathcal{K} . We denote

by p (resp. q) the projection from the product space V\times U to its first (resp. second)
component.

suppsupp

supp

Assume that the map q'=q|_{\sup \mathrm{p}\mathcal{K}}: supp \mathcal{K}\rightarrow U is proper. Then q^{-1}(supp u )\cap supp \mathcal{K}

is compact for any u\in \mathscr{A}'(U) since it coincides q^{\prime-1}( supp u ) . Therefore supp Tu is also

compact. Note that if K\subset U is a fixed compact subset, then supp Tu are estimated

uniformly in all u satisfying supp u \subset K ,
as

supp T  u\subset p(q^{-1}(K)\cap supp \mathcal{K}) (=p'(q^{\prime-1}(K))) .

Here we consider a converse:

Theorem 3.3. Let T:\mathscr{A}'(U)\rightarrow \mathscr{B}(V) be a semicontinuous map with kernel

\mathcal{K}\in \mathrm{B}(V\times U) satisfy ing (2.6).
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(1) Assume that T(\mathscr{A}'(U))\subset \mathrm{B}_{c}(V)(\simeq \mathscr{A}'(V)) ,
that is, Tu has compact support for

any u\in \mathscr{A}'(U) . Then q|_{\sup \mathrm{p}\mathcal{K}}: supp \mathcal{K}\rightarrow U is proper and T is continuous as a

map from \mathscr{A}'(U)\rightarrow \mathscr{A}'(V) .

(2) Assume that the analytic singular support of Tu is compact for any u\in \mathscr{A}'(U) .

Then q|_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\sup \mathrm{p}\mathcal{K}} : singsupp \mathcal{K}\rightarrow U is proper. Here singsupp \mathcal{K} denotes the analytic

singular support of \mathcal{K}.

Assertion (1) follows from (2) since we have a uniqueness result for kernels. Also

note that in Theorem 3.3, we have assumed only the compactness of supp Tu for each

u\in \mathscr{A}'(U) and have not assumed the uniformity of supp Tu in u
,

but the conclusion

gives us the uniformity.
In the proof of (2), we use the following two propositions.

Proposition 3.4. Let \mathcal{K}(x, y) be a kernel with the wave front set condition (2.6)
defined on V\times U ,

that is, \mathcal{K}(x, y)\in \mathscr{B}_{x}\mathscr{A}_{y}(V\times U) . Then, we can find an elliptic

differential operator P(\partial_{x}) of infinite order with constant coefficients in the x variables,
a kernel \mathcal{K}'(x, y)\in \mathscr{B}_{x}\mathscr{A}_{y}(V\times U)\cap C^{\infty}(V\times U) ,

and an analytic function \mathcal{K}''(x, y)\in
\mathscr{A}(V\times U) ,

such that

\mathcal{K}=P(\partial_{x})\mathcal{K}'+\mathcal{K}

Proposition 3.5. The conclusion (2) in the theorem 3.3 holds for \mathcal{K}(x, y)\in

\mathrm{B}_{x}\mathscr{A}_{y}(V\times U)\cap C^{\infty}(V\times U) satisfy ing (2.6).

§3.4. Linear Maps Between the Spaces of Real‐Analytic Functions

Here we consider a linear map T:\mathscr{A}(U)\rightarrow \mathscr{A}(V) and study the continuity of T

and the semicontinuity of the composition map of T and the inclusion map  i:\mathscr{A}(V)\mapsto
\mathscr{B}(V) . We give

Proposition 3.6. The linear map i\circ T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) is semicontinuous if
and only if T:\mathscr{A}(U)\rightarrow \mathscr{A}(V) is continuous.

Corollary 3.7. For a linear map T:\mathscr{A}(U)\rightarrow \mathscr{A}(V) ,
the following two condi‐

tions are equivalent.

(i) T is continuous.

(ii) There exists a kernel hyperfunction \mathcal{K}(x, y)\in \mathscr{B}(V\times U) with real analytic param‐

eter x(i.e. \mathcal{K}\in \mathscr{A}_{x}\mathrm{B}_{y}(V\times U satisfy ing the proper support condition (2.8) such

that

(3.3) (Tu) (x)=\displaystyle \int_{U}\mathcal{K}(x, y)u(y)dy for any u\in \mathscr{A}(U) .
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For the proof, we use the kernel theorem 2.3 and the following result of Kaneko [3]
(for proofs see Kaneko (loc. cit.) and also [1]).

Theorem 3.8. Let \mathcal{K}\in \mathrm{B}(V\times U) be a kernel satisfy ing (2.8) and consider the

operator T:\mathscr{A}(U)\rightarrow \mathscr{B}(V) given by Tu=\displaystyle \int_{U}\mathcal{K}(x, y)u(y)dy . Assume that Tu is real

analytic on V for any u\in \mathscr{A}(U) . Then \mathcal{K} has x as a real analytic parameter, that is,
\mathcal{K} satisfies

\mathrm{W}\mathrm{F}_{\mathrm{A}}\mathcal{K}\cap\{(x, y,  $\xi$, 0)\in V\times U\times \mathbb{R}^{n}\times \mathbb{R}^{m}; $\xi$\neq 0\}=\emptyset.
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