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Remark on Division Theorem of Ultradistributions
by Fuchsian Differential Operator

By

Susumu YAMAZAKI*

Abstract

We announce recent results about division theorem of ultradistributions by a Fuchsian
differential operator in the sense of Baouendi-Goulaouic. Details will be appeared in a forth-
coming paper.

Introduction

In order to formulate initial value or boundary value problems in the framework
of algebraic analysis, so-called division theorem plays a crucial role. In the category of
hyperfunctions, this theorem is first proved by Komatsu-Kawai and Schapira in the case
of an analytic differential operator under the non-characteristic condition (cf. [5], [10]
and [15]), and is extended to the case of systems (cf. [4]). Further, Laurent-Monteiro
Fernandes [11] extended this theorem to the cases of a Fuchsian system. Next, if we
replace hyperfunctions by distributions, then we can easily prove similar results.

Therefore, we consider the same division problem for Gevrey ultradistributions by
Fuchsian differential operators, and shall state our results under the assumption of an
irregularity introduced by Tahara [16]. This irregularity is regarded as a counterpart of
that in ordinary differential operators.

Further, we give an example that if the assumption of irregularity is not satisfied,
then the division theorem does not hold for ultradistributions by using results of Tahara
[16].

Details of this article will be appeared in a forthcoming paper [17].
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§1. Known Results

First, we shall fix the notation: We denote by Z, R and C the sets of all the integers,
real numbers and complex numbers respectively. Moreover we set N := {n € Z; n > 1},
Ny :=NU{0} and Ry :={t e R; 7 >0} CR,,:={t € R; r > 0}.

In this article, all the manifolds are assumed to be paracompact. Let M be a
real analytic manifold, and X a complexification of M. We denote by O the Ring of
holomorphic functions, and by Zx the Ring of holomorphic linear differential operators
on X respectively (for Z2-Module theory, we refer to [2]).

Let N be an analytic hypersurface of M, and Y a complexification of N in X.
Since the problem is local, we fix the following coordinates:

N =R" x {0} M =R” x R,

Yy =C" x {0} X =C" x C,
) )

E 0, = 9 and so on. Moreover, for « = (ay,...,q,) € NJ' we set
Z; T
J

n
la] := '21 a; and 0 := it 0.
J:

Let £2 C M be an open set such that 2, := 2NN # 0.
Let i: Y — X be the natural inclusion. For a coherent Zy-Module .#Z defined on
a neighborhood of Y, we denote by Di*.# the inverse image in Z-Module theory; that

L
is, Di*. A/ = Oy @ M. Let #,,; be the sheaf on M of Sato hyperfunctions.
1

X

We set 0, =
J

Definition 1.1.  We say that {B,(2,7,0,,0,) ;”:_01 is a Dirichlet system on §2 if

zZ)T

(1) each B, is a holomorphic differential operator of order j defined on a complex

neighborhood of (2;

(2) Y is non-characteristic for each B;(z,7,0,,0,).

Let P be a holomorphic differential operator of order m defined on a complex
neighborhood of 2. Then the classical division theorem due to Komatsu-Kawai and
Schapira states:

Theorem 1.2 (cf. [5], [10], [15]).  Assume that Y is non-characteristic for P.
Then:

(1) If u(z,t) € I'y(£2; B,,) satisfies Pu =0, then u = 0.
(2) For any u(z,t) € I'n(§2;B),) and Dirichlet system {B; ;”:_01 on (2, there exist
uniquely v(x,t) € I'n(£2;DB),) and u;(x) € I'(25; By) (0 < j < m —1) such that
1

w(z,t) = Po(z,t) + mgo B, (uy,_;1(x) ®6(2).
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If we set 4 = Dy /PP, then Di* 4 ~ )", and Theorem 1.2 can be written
canonically as

(1.1) RHomg (M ,I'Nn(By)) = RHomg (Di* M, By) @ or [ —1].

Here, ory and or,, denote the orientation sheaves of N and M respectively, and set
Or N/ = OTN ®i_10rM; that is, the relative orientation sheaf attached to N — M.
We remark that (1.1) also holds for the system case.

Remark 1.3. By using (1.1), non-characteristic boundary value problem can be
formulated as follows: First, recall an exact sequence

0— I'y(By) — FM+(’93M)|N — FQ+(%M)|N®OTN/M — 0.

Here, 2, := {(x,t) € M;t > 0} C M, := 2, UN. Hence there is a distinguished
triangle

RHom@X (M, TN(PBrr)) — RHom@X (A, FM+ ('%M))|N
— RMomyg, (M. Tq (%Br))|n @ ory e
Taking cohomologies and using (1.1), we obtain the boundary value morphism:
b+: Hom@X(%’F9+(%M))|N — HOmgy(D'L*%,%N) ~ (%]\G’Bm
Let Z. y be the transfer (Zy, 7y ) bi-Module associated with i: Y — X. Then
.1 L B
D % = RHOm@Y (RHOm@X (%, @X(_y),gy)[ 1]

is called the extraordinary inverse image of .# in ¥-Module theory. Note that if Y is
non-characteristic for .#, then by a result of [14] we have

(1.2) Di'# ~ Di* A .

Next, we extend (1.1) to Fuchsian Modules in the sense of Laurent-Monteiro Fer-
nandes [11].

Theorem 1.4 ([11], [12]).  Let .# be a Fuchsian P -Module along Y in the
sense of Laurent-Monteiro Fernandes [11]. Then:

(1) All the cohomologies of Di*.# and Di'.# are coherent Py, -Modules.
2) Th st fol
() There exist follgng Sopgyolismy ) . mom, (il 7,

(1.3) RIy RHomy, (M,0)[2] ~ RHomg, (Di' M, 0y).
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Applying the functor Ry (x) ® or,, to (1.3), we obtain the following isomorphism
as a generalization of (1.1) (see (1.2)):

(1.4) RHomg (M ,I'n(By)) ~ RHomg, (Di' A, By) ®ory/rl—1]-
We refer (1.4) as a division isomorphism.

Remark 1.5.  Let .# be a Zy-Module. Since Zy_ y is flat as a right Zy-Module,
by Theorem 1.4 we see

RHomg, (Di'#,7F)[~1] ~ RHomg (Di'.#, %) & F[-1]

N
h<

L L
(1.5) ~ RHomg (M, Px_v) g F ~ RHomg (M,Px_y g’ F)

Y Y
~ RHomy (M, Dy, v R F).
0 (M Ty 9 )
Set 24 = Dy |y and 5, v = Dy vIn ® or /5 We can write a section (or a germ)
of Dy N as Y a;(z,0,) 9/ ®|dt|®t, where |dt|® ! is a generator of or /- Then by
J

(1.5), the isomorphism (1.4) is equivalent to:
RHomg, (M, Diyr—N k] By) ~ RHomg, (M, Tn(By)).
N

Here, a canonical morphism 24y y ® By — ['x(%,,) is induced by
7%

(1.6) P4 n 207 @|dt|®t — 87 5(t).

Next we replace hyperfunctions by distributions: Let Db,, be the sheaf on M of
Schwartz distributions. By a structure theorem, we see that (1.6) induces an isomor-
phism:

Dire N k) Dby ~ I'n(Dby,).
N

Therefore by (1.5), we see that (1.4) induces the following division isomorphism:

RHomg,_ (M, Ty(Dby)) =~ RHomg, (Di'#,Dby) ® oryp[—1] .

§2. Statement of Main Results

We shall consider the same division problem for Gevrey ultradistributions. In
what follows, we use the symbol x = (s) or {s} to indicate the Gevrey growth order
for 1 < s < co. Let Db}, be the sheaf on M of Gevrey ultradistributions of class * (for
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the convenience of the reader, we recall the definition of ultradistributions in the next
section).

Take k € Ny, m € N with £ < m. We shall consider the following holomorphic
differential operator of order m defined on a complex neighborhood of (2:

m—1 . .
P(z,7,0,,0.) =trFom™ + 3 a;(z) rimmtk i
j=m—k
+ Z Da, ~(Z, 7_) 6za7_max{0,j—m+k—|—l} 87?,
lalti<m "

P is said to be of Fuchsian type with weight (k,m) due to Baouendi-Goulaouic [1].
We set A = Py /P P. Then A is a Fuchsian Z,-Module along Y in the sense of
Laurent-Monteiro Fernandes [11].

In order to state our main theorem, we need the notation due to Tahara [16]. First,
assume that the weight of P is (m,m). Then we can write P as

P(z,7,0,,0.) =b(z,0)+ >, 7rl@ig
la| 45 <m

where ¥ := 70, (or 9, in real cases), l(a,j) € N, q, ;(2,0) # 0 if g, ;(2,7) # 0, and
b(z,1) is of the form

0, (2, 7) O 9,

(2.1) (s ) = O™ 45 b (2) 9.
5=0

We set
‘SﬂP = {(avj)a qa,j §—£ 0 and |(l(| - l((l/,_]) > 1}
Then Tahara’s index is defined by
min - S 0),
II(P) = { (a)ep { la| = (e, 5) } e £

Remark 2.1.  If Z2(P) = oo, then Qo ; #Z 0 imply l(c,j) > |a|. Hence P is
written as
P(z,7,0,,0,) =b(z,9) + > rleD7lelg (z,7)(r0,)* 9.
J+lal<m
This means that P has regular singularities along Y in the sense of Kashiwara-Oshima

[3]. Hence .#2(P) measures the difference of Fuchsian operators from operators with
regular singularities.

Definition 2.2. If the weight of P is (k,m), then since 7™ ¥ P is of weigh
(m,m), we set

I (P) = Z2(t™FP).
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Remark 2.3. (1) If the weight of P is (m,m), then ..(P) = Z2(P).

(2) We denote by ‘P the formal adjoint of P. Then it is easy to see that
(2.2) I (P) :jT(tP)'

We are ready to state our main theorems:

Theorem 2.4.  Assume the condition
(2.3) 1<s< Ip(P).
Then there exists the following division isomorphism for x = {s} or (s):
(2.4) RHomg, (M, Ty(Dbyy)) ~ RHomg, (Di' s, Dby) @ ory (1] .

Note that by (1.5), the isomorphism (2.4) is equivalent to the isomorphism:

RHomg, (M, Diyr_N k] Dby) = RHomg, (M, Iy(Dbyy)).
N

Remark 2.5. (1) If Y is non-characteristic for Q € Z of order m, then @ is
Fuchsian with weight (0,m), and Z,(Q) = Z,(t"Q) = oo. In particular, @) satisfies
(2.3) for any * = {s} or (s) with 1 < s < co. Thus Theorem 2.4 is a special case of

Komatsu [9].
(2) Since s > 1, if .#;(P) < oo then the assumption (2.3) can be written as

m—l(a,j)—j}}< s

max{l, max { —1

ot <m - m = la| — j

[

Therefore, we can regard (2.3) as a counterpart of an irregularity condition for ordinary
differential equation.

As is mentioned in § 1, we can prove the division isomorphism without assumption
(2.3) in the category of hyperfunctions or of distributions. On the contrary, we state:

Theorem 2.6.  For any o, € Q with o, > 1, there exists an operator P € .@X|M
such that I(P) = o, and if
Ip(P) < s < oo,

then the isomorphism (2.4) does not hold.

8§ 3. Gevrey Ultradistributions

We refer to [6], [7] (and [8] in Japanese) for exposition of ultradistributions from the
viewpoint of algebraic analysis. We inherit the notation from the preceding section. We
denote by C§y the sheaf on M of (complex-valued) functions of class C*>°. Let U C M
be an open set.
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Definition 3.1. Let K € U be a compact set with sufficiently smooth boundary.

We set
C37(K) = lim CR7(V)|k,
KCV
where V' ranges through the family of open neighborhoods of K in U.

For u(x,t) € C37(K) and h > 0, we set

Y

s} 10,0/ u(x, t)|
u):= su
Pk (w) (LUEK ol ([a] + v)ls
(a,V)ENg 1

s},h 00
G (K) = {u(x,t) € OF(K); pi)(u) < oo}
%{f}’h(K) is a Banach space under the norm p,{jK( - ). Further, we set
gés}’h = {u(x,t) € gﬁ}’h(K); suppu C K}.

%I?}’h is also a Banach space as a closed subspace of %Ags}’h(K ). Under this notation,

we set
%E?(U) = lim liﬁl%{f}’h(K), pc(gﬁ))(U) = lim @gi{{s},h’
(3.1) KeU h—0 K€U h—0
gﬁ}(U) = lim h_I)H%}f}’h(K), Fc(g}j})((]) = lim hi)ﬂgi{{s},h'
Keuh=0 K€U h—0

I'.(95)(U) (x = (s), {s}) is nothing but the subspace of ¥;,;(U) consisting of
compactly supported elements.

The assignment U — ¥;,(U) defines the sheaf ¥;, of Gevrey ultradifferentiable
functions of growth order * on M. Further I,(4;,)(U) = I.(U;%,;).

Using the expressions (3.1), we can endow I'(U;¥5;) and I.(U;%,;) with natural
locally convex topologies respectively, and consequently I'(U ;%]E;)) is an (FS) space,
F(U;%f/_,s}) a (DLFS) space, FC(U;%E;)) an (LFS) space, and I,(U; %&s}) a (DFS)
space. These all spaces are reflexive.

Definition 3.2.  We take * = (s) or {s} with 1 < s < co. Let ¥} be the sheaf
on M of volume elements with coefficients in ¥;;; that is,

n+1
V= N\ G @ory, .

Remark 3.3.  Since we fix the coordinates, we have a global isomorphism
(3.2) Gy —=—— Vp

Wy w
u(z,t) —— u(z,t) dx dt,



216 SUSUMU YAMAZAKI

where dz dt denotes the standard Lebesgue mesure on M ~ R"*1. We endow ¥}, with
a locally convex topology under which (3.2) is a topological isomorphism.

Definition 3.4. For x = (s) or {s} with 1 < s < oo, we set:
Db, (U) = LU 457)'

Here the prime means the strong dual of a topological vector space, and the subscript
¢ means the sections with compact support.

We can prove that the assignment U +— Db}, (U) defines a sheaf Db}, on M. Dbg\?
(resp. Dbj{\j}) is called the sheaf on M of Gevrey ultradistributions of Beurling-Bjorck
type (resp. of Roumieu type).

By Remark 3.3, we identify I'(U; Db},) with I'.(U;¥;;)" as usual, and we can show
LU;95)" = I (U; Dbiy) € I'(Us Dbay) = T (Us %)

Hence F(U;Dbg\?) is a (DLFS) space, F(U;Db}f,}) is an (F'S) space, FC(U;DbS\i,)) is a
(DF'S) space, and FC(U;Db}f,}) is a (LFS) space. If 1 < s < t, then as subsheaves

Dby, c Db c DbYY) c Dbl c D) .

We prove Theorems 2.4 and 2.6 by the duality method. To this end, we introduce
several function spaces: Let U, C N be an open subset, and K € U, a compact set
with sufficiently smooth boundary. We define CJ(K') as in Definition 3.1.

Definition 3.5. Let C{(K)[[t]] be the space of formal power series of ¢ with
coefficients in CR7 (K). Set

v

CRIH) = {5 () € CRU([]; suppu, © K.

v=0
For u(z, (t)) = > u,,(a:)% € CY(K)[[t]] and h > 0, we set
r=0 .
S ) s 05" w,, (z)]
Pr(u)i= s

n+1
(a,u)ENO

Then we set

>{s}t.h ~{s

D" () = {ula, (1) € O (K)|[H]: B Je(u) < oo}
g?\]é,s}’h(K ) is a Banach space under the norm Eﬁsl}(( - ). Further, we define

G = {ux, (1) € CR([H]); ik (u) < 0o} C " (K).
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gés}’h is also a Banach space as a closed subspace of S%éls}’h(K ). Under this notation,

we set
T Uy = tim 1 G E),  LESOW) = lim lim G,
3 3 K@UO h—0 K@UO 2o
OV G ) = i AR, LT = i i G
MIN O M — —_— M ) C MIN 0 . 1111 111 K A
K@UO h—0 K@UO s

o0 tV —~
The support of u(z, (t)) = > uy(a:)7 € 9y v (Up) is defined by

v=0
00

suppu := CI[ |J suppu,,].

v=0

Here Cl means the closure. I ( AA}| ~)(Uy) is nothing but the subspace of gﬁl ~ o)
consisting of compactly supported elements
Note that the assignment Uy — @y (Up) defines the sheaf ng y on N. Further

we see that FC(UO,E%\}'N) = C(%]\’/}W)(UO).

Using the expressions (3.3), we can endow F(UOZE%\ZW) and FC(UO;E!?]\}W) with
natural locally convex topologies respectively, and consequently I'(Uy; gZ\I\%)N) is an (FS)
space, F(Uo,g]\glj\,) (DLFS) space, I, (Uo’gz\(ﬁ)zv) an (LFS) space, and Fc(U05g?1\{/_rﬁv)

a (DFS) space. These all spaces are reflexive. Further,

Theorem 3.6 ([7, Theorem 4.4]).  For any open subset Uy, C N,
Fc(Uoégz\Zw)/ = I'(Up; I'y(Db}y)) D F(Uoégz\}w)/ = I'.(Up; I'y(Dbiy))-

Therefore we see that I'(Uy; FN(Dbg\S/[))) is a (DLFS) space, FC(UO;FN(Db]{\;})) an
(FS) space, FC(UO;FN(DbE\‘?)) a (DFS) space, and FC(UO;FN(Db]{\j})) a (LFS) space.
For any v, € N, we have the following splitting exact sequences as C-vector spaces:

(34) 0=t I (Uy: 9y n) = Le(Uos 9y n) — Te(Up; A}m)/tylrc(Uo; vin) — 0

[

0 — t" I'(Uo; 9ypn) — T'(Uoi 9y ) — I(Uy; Gy n) /11 T (Uy; ain) =0

t”lF(UO;f%\}W) (resp. t”lFC(UO;g?ﬁlN)) is a closed subspace of F(UO;EJ?A}W) (resp.
I'.(Uy; gﬁj\% ~))» and moreover inherits the same type of locally convex topology. Then,

under the quotient topologies with respect to (3.4), as locally convex spaces we have:

vi—1 v

2 % v t % * \ UV
F(Uoéng)/t 1 UOagM|N) ~ { Z (@ )_, € F(Uoéng)} ~ I'(Uy; 98)",
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v,—1 v

7 % v 7 % 13 7 % * \ U
Fc(UO;gM|N)/t o (Uos Gapn) =4 2_:0 uy, (2)— € I, (Up; Yapn) } = Te(Up; Gn)7

vl

Hence, we have the following splitting topologically exact sequences:

(3.5) 0 — 1Ty (Uy: Gy ) — TelUs Gyigy) = TolUp; 930" — 0

[ [

0— t’ﬁ[‘(UO; A]\i[|N) — F(Uo,g?\]\le) — F(U0§g]>\kf)yl —0

§4. Sketch of Proof of Main Theorems

If the weight of P is (k,m) with k # m, then we set
L = @X/@XP? %:: gx/ngm_kP, N = gx/ngm_k.

By a commutative diagram

and Snake Lemma, we have the following exact sequence:
0—- N - M — %L — 0.
We can prove

RHomg (A, Ty(Dbyy)) ~ RHomg, (Di' N, Dby) © oryp[—1]

Thererfore, we have the following morphism of distinguished triangles:

RHomg, (Di'Z,Dby) @ ory ) /[~1] = RHomg, (£, I'y(Db},))

l |

RHom,, (Di'#,Dby)@ory,[—1] 2, RHom,, (4, Ty(Db;,))

l |

RHomg, (Di' N, Dby)®ory,y[~1] =% RHomg, (A, Iy(Dby,))
™ A

Therefore, if # is an isomorphism, then so is a. Hence the proof of Theorem 2.6 is
reduced to the case where the weight is (m,m). For the same reasoning, the proof of
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Theorem 4.2 is also reduced to the case where the weight is (m,m). Thus from now on,
we assume that the weight of P is (m,m).

Take any open subset (2 € (2. Then each b;(x) in (2.1) is continuous on CI 2.
In particular, there is a v, € N, such that

b(z,v) #0 for z € C1£2 and v > v,.
We can prove the following:

Theorem 4.1.  Under the condition (2.3), for any v, > v, the operator P in-
duces the following topological isomorphisms:

Pt T (020G n) = T (20950 8-

Further, supp u = supp Pu holds for any u € t"11"(£2); %AA}W).

The proof of this theorem is essentially same as in [16, Theorem 1].

Sketch of Proof of Theorem 2.4. For P:.% — %, we set for short

Kerp.# :=Ker(P: # — %), Cokerp.# := Coker(P: F — F).

We define a filtration {@A’gg\,},‘j":o on P4 N by

A,(v - j _
PN = 2 ay(2.0,)0, @|a|> 1}
]:

Then, by (1.6)

280 @ Dby € 28y ® Dby = U Zix"% © Dby C Ty (DY),
74 74 veN, N
Take any open subset 2/ € {2 and set ) :=2' NN € (2.
Note that for any v € N, the operator P induces
P: T(24 73"\ @ Dby) — T(2; 7"\ @ Dby).
@N @N

Taking duals of splitting exact sequences in (3.5) and using [7, Theorems 3.1 and 4.4],
we have

0 (" T(20:G5n)) — T(82; Ty (Dbyy)) — I'(£25; Dba)®” 0.

Here we remark
D25 775 © Dby) = I'(2%; Dby)™"
Y
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regarded as subspaces of I'(£2(; I'(Db3,)). Thus we have
I'(024; I'y(Dby))) ‘
(2% 75" © Dby)
@A

N

(t" T(2: Gyiyn)) =~

By (2.2), if P satisfies (2.3), then so does the formal adjoint ‘P. Hence by Theorem 4.1,
there is a vy € N such that ‘P induce a topological isomorphism ‘P: ¢ I, (£20; y; n) =
t" I ($2); M| 71n) for any v > v . Therefore we have an isomorphism
L2 In(Dby) —  T'(2; In(Dbiy))
ﬁ .
T 75" ® Dby) (2 2y ® Dby)

[P]:

Hence we have

I'($2; Iy (Dby,))

A(V 1) * /
0— L2 725" ® Db %) — D(2; Ty (Db%,)) — o 0
7% (2% 7N & Do)
N
P P [P]J/Z
v I'(£20; ' (D))
0— D2 725D & Dby,) — D02 Ty (Dbt,)) — 0
(020 Pvin P! N) (£26; ' (D)) F(\Q(,),@A(u 1)®Db*)
N
By Snake Lemma, we have
Kerp I'(2; 717 5 ® Db = Kerp I'(£2); Ty (Db%,)),
Cokerp I'(£2; 71 Y ® Db%) ~ Cokerp I'(20; T (Db%))).
Taking inductive limits, we obtain the theorem. O

By using Theorem 4.1, we also obtain:

Theorem 4.2 (Cauchy-Kovalevskaja type Theorem).  There exists an isomor-
phism under the condition (2.3):

RHomeg_ (M, Gyyn)|n 4 RHomg, (Di* M, 95).

Sketch of Proof of Theorem 2.6. We use the argument of the proof in [16, Propo-
sition 1]. Take o, € Q with o; > 1 arbitrary. Recall the following operator considered
in [16, Proposition 1]:

m—1 . . .
Li=9"™+ 3 b = 5 e, ;0707
J=0 la|+i<m

We assume that I(«, j) € N and further that
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(i) b; € R and b(v) # 0 for any v € Z, and b(v) > 0 for any v € Ny;
(ii) ¢, ; = 0.

m—1 .
Moreover we can choose L as J5.(L) = oy. Set b(v) :=v™ + > b1/,
§=0

Now, set P := 'L and 4 := Py /Py P. Take s as
Ir(P) = 7:('P) < 5 < 0.
By (i) and [12], we have Di'.# = 0. Hence if the isomorphism (2.4) holds for P, then
RHomg (A, I'y(Dby)) =0
that is, we obtain a sheaf isomorphism:
(4.1) P: I'y(Dbyy) =~ I'(Dbyy).
Hence, we obtain an isomorphism
(4.2) P: Iy (2, Db%,) & Ty (£2;DbE,).

(1) First assume that *+ = {s}. Since I'y(2; Db}&}) is an (FS) space, we can
apply Banach’s open mapping theorem to prove that (4.2) is a topological isomorphism.
Taking the dual, we have a topological isomorphism:

L: T(R0:9%) = T(20: 9,0 %)-

For the operator L, we take an index («, j) € .7, such that

_j — l(Oé,]) < s
laf —l(a,j) '
We consider the following differential equation:
(4.3) b(V)w — C’a’jtl(o"j)ﬁfﬂjw = p(z).

Then for any smooth function ¢(x), the equation (4.3) has a unique formal solution

wlx :M L > _1( ( )) Caly)j pe (e pl(a,j)
(= 0) =30y T 50y 20 L vlatta, ) 20pia, ) O PO

Further, if u(z, (t)) is a solution to Lu = ¢(x), then

0 < w(0,(t)) < u(0,(t)).
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However we can prove that there is a ¢(z) € I, C(QO;%{,S}) such that the solution
w(z, (t)) € C§°(£2y)][[t]] to (4.3) satisfies

lim sup(w”—m)) v =0

V—00 vl

Hence
~ L ~
p(x) ¢ Tmage(I.(20;9,514) = T(20:9,50).
(2) If * = (s), then supp Pu = suppwu holds for any u € I'y({2; Dbg\‘})) by (4.1).

Hence we obtain an isomorphism
(4.4) P: I, (Q0; In(DY37)) = L.(20; Ty (Db7).

Since I,(£2y; 'y (Db%‘?)) is a (DFS) space, we can apply Pték’s open mapping theorem
(see [13]) to prove that (4.4) is a topological isomorphism. Taking duals, we obtain an
isomorphism

L: D(Q0: 95 ) 5 T(20: 9,5y,

As in (1), we can prove that there is a p(x) € F(QO;%SS)) such that
p(z) & Image(I'(20:Fyf)y) = T(20:G57))).

Therefore we reach a contradiction. O
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