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Feynman Path Integrals and Semiclassical
Approximation

By

Naoto KUMANO-GO* and Daisuke FUJIWARA**

Abstract

These notes are rough surveys of our papers [24], [12], [14] on the theory of Feynman
path integrals by the time slicing approximation. Since the RIMS Kokyturoku Bessatsu gives
us a chance to introduce the ideas which are meaningful but are not suited for publication in
ordinary journal, we try to use many figures and to explain the process of our proof.

§1. Introduction

In 1948, R.P.Feynman [6] expressed the integral kernel K (T, z,z,) of the funda-
mental solution for the Schrodinger equation, using the path integral as follows:

(1.1) K(T,xz,z,) = /e%SMD[’y].

Here 0 < h < 1 is Planck’s parameter, v: [0,7] — R? is a path with v(0) = z, and
v(T) = z (see Figure 1), S[y] is the action along the path ~ defined by

(1.2) St = / (2 D VAt

and the path integral / ~ D[y] is a new sum of e#* ) over all the paths . Feynman

explained his integral (1.1) as a limit of a finite dimensional integral, which is now
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Figure 1.

called the time slicing approximation. Furthermore, Feynman considered path inte-
grals with general functional F'[v] as integrand, and suggested a new analysis on a path

space with the functional integration F['y]e%s PIDly] and the functional differentia-

tion (DF)[v][n] (cf. L.S.Schulman [29, Chapter 8]). However, in 1960, R. H. Cameron
[4] proved that the measure e#S1D[4] of Feynman path integrals does not exist in
mathematics.

Therefore, using the time slicing approximation, we prove the existence of the
Feynman path integrals

(1.3) /e%SMFMDM,

with the smooth functional derivatives (DF')[v][n]. More precisely, we give a fairly gen-
eral class F of functionals F'[y] so that for any F[y] € F, the time slicing approximation
of the Feynman path integral (1.3) converges uniformly on any compact subset of the
configuration space R?? of the endpoints (z, z).

There are some mathematical works which proved the time slicing approximation
of (1.1) converges uniformly on any compact subset. See D.Fujiwara [7], [9], [10], [11],
H. Kitada and H. Kumano-go [21], K. Yajima [32], N. Kumano-go [23], D. Fujiwara and
T. Tsuchida [15], and W.Ichinose [17]. However these works treated (1.1), that is the
particular case of (1.3) with F[y] = 1.

Many people have given mathematically rigorous meanings to Feynman path inte-
gral. E. Nelson [27] succeeded in connecting Feynman path integral to Wiener measure
by analytic continuation. K.It6 [19], S. Albeverio and Hgegh Krohn [1], A. Truman [31],
J.Rezende [28], S. Albeverio and S. Mazzucchi [2] defined Feynman path integrals via
Fresnel integral transform and applied many problems. G. W. Johnson and M. Lapidus
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[20], T. L. Gill and W. W. Zachary [16] developed the Feynman operational calculus.

§2. Existence of Feynman Path Integrals

Our assumption of the potential V (¢, x) of (1.2) is the following:

Assumption 1 (Potential).  V (¢, ) is a real-valued function of (¢,7) € R x R,
and for any multi-index o, 99V (t,z) is continuous in R x R?. For any multi-index «
with |a] > 2, there exists a positive constant A, such that |02V (t,x)| < Aq.

Typical examples of the functionals F'[y] in our functional class F are the following:

Example 1. (1) Let m > 0 and B(t, ) be a function of (¢,z) € Rx R%. For any
multi-index «, ¢ B(t, x) is continuous in R x R% and there exists a positive constant
Cy, such that |0¢B(t,z)| < C, (1 + |x|)™. Then, the value at time ¢, 0 <t < T,

(2.1) Fly] = B(ty(t) € F.

In particular, if F[y] = C, then F[y] € F.
(2) Let 0 < T’ <T"” <T. Then, the Riemann(-Stieltjes) integrals,

(2.2) Fm:/ B(t,(t)dt € F .

(3) If |09 B(t, )| < C,, then

T//

(2.3) F[y] = exp(/

B(t,ﬂy(t))dt) €F.
-

(4) Let Z(t,z) be a vector-valued function of (¢, ) € RxR% into C?. For any multi-
index o, 09 Z(t,x) and 920, Z(t, ) are continuous in R x R? and there exists a positive
constant C,, such that |02 Z(t,z)| + 090, Z(t,z)| < C, (1 + |z|)™ and *(9,2) = (0,2).
Then the curvilinear integral along paths

T//
(24) Pl = [ 2@ a0 e F.
T/
We will state how to define the class F of functionals F[y] in §4 and §5. Because,
even if we do not state the definition of F here, we can produce many functionals
F[y] € F, applying Theorem 1 to Example 1.

Theorem 1 (Smooth Algebra).  For any F[y], G[y] € F, any broken line path
¢:[0,T] — R and any real d x d matriz P, we have the following.
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(1) Fll+ Gl € F, FQG[ e F.
(2) Fly+(eF, F[PyleF.
(3) (DF)[Y][¢] € F.

Remark (Functional Derivative).  For any broken line paths «: [0,7] — R? and
¢:[0,T] — R, we have

(25) (DPYn) = 5 Flo + 0n)

Now we recall the time slicing approximation:

0=0

Let Ag o be an arbitrary division of the interval [0, 7] into subintervals, i.e.

(26) AT’OZT:TJ+1>TJ>"‘>T1>T0:O.
Let t; =T, — T;_; and [Ap | = 1§rjn§&L§+ltj. Set ;. =x. Let z; (j =1,2,...,J) be

arbitrary points of R%. Let

(2.7) YA

be the broken line path which connects (7}, z;) and (7;_,7;_,) by a line segment for
any j =1,2,...,J,J + 1 (see Figure 2).

=9 (txy 2,1, 3),

T,0 T,0

(07 xO)

(T27x2)

Figure 2.

As Feynman [6] had first defined (1.1) by the time slicing approximation, we define
the Feynman path integrals (1.3) by

J+1

i 1 d/2 i !
2. SO RNDA = 1 / Pl o
( 8) /en ['7] [7] IATI’ﬁl—’O ol 27rihtj) R4J ¢ i [,YAT’O] jl;[[ E

whenever the limit exists.
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Theorem 2 (Existence of Feynman Path Integral).  Let T be sufficiently small.
Then, for any F[y] € F, the right-hand side of (2.8) converges uniformly on compact sets
of the configuration space R?? of the endpoints (x,x,), together with all its derivatives
inx and xg, i.e. (2.8) is well-defined.

Remark.  There are two hurdles if we try to treat (2.8) mathematically. The first
hurdle is that even when F[y] = 1, the integrals of the right-hand side of (2.8) do not

converge absolutely, i.e.
/ dzr; = oo.
RA

In order to get over the first hurdle, we treat integrals of this type as oscillatory integrals
(cf. H. Kumano-go [22]). The second hurdle is that if [A o] — 0, the number J of the
integrals of the right-hand side of (2.8) tends to oo, i.e.

OO X OO XOO X OO X vevvenens .

In order to get over the second hurdle, we go back to Feynman’s first paper [6]. Since

the functionals S['yAT O] and F[VAT O] are functions of x;_ |,z ;,..., 7,7, i.e.
(2 9) ShAT’O] :SATYO(xJ—I—l’J:Jv"'737175[;0)7
F['YAT’O] = FAT’O(xJ—i—l:xJa s 7'7;17'7;0)7

Feynman used the form of function

J+1 , J

1 d/2 S (z T 1y Ty, Tg)
2]_0 ( - ) / h AT,O J+10b gl d -
( ) JI;[1 27mhtj RAJ ¢ J:l_[l T,

Furthermore, in order to treat the integrals one by one mathematically via the Trotter
formula, Nelson [27] used an approximation of S hAT O], ie.

J4+1 1 /2 . J41 (J} — . )2 J
20 T rt)"” ool S50 ity ) T,
j=1 J j=1 J j=1

Note that (2.11) is not equal to (2.10) (cf. Johnson and Lapidus [20, pp. 109-110]).
On the other hand, treating the multi oscillatory integral of (2.8) directly, we keep
the first step S[F)/AT,O], F[*yAT’O].

We will prove Theorems 1 and 2 in §4 and §5.

Remark.  For the formulation by broken line paths via Fresnel integral transform,
see A. Truman [31].
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Remark.  S.Albeverio and S. Mazzucchi [2] generalized Fresnel integrals for the
polynomially growth potential. T.L.Gill and W. W. Zachary [16] developed an opera-
tor version of the Henstock-Kurzweil integrals for the Feynman time-ordered operator

calculus.

§ 3. Properties of Feynman Path Integrals
Assuming Theorems 1 and 2, we state some properties of path integrals.

§3.1. Fundamental Theorem of Calculus

Theorem 3 (Fundamental Theorem of Calculus). Let T' be sufficiently small.
Let m >0 and 0 < T' < T" < T. Let f(t,x) be a function of (t,x) € R x R For
any multi-index o, X f(t,x), 020, f(t, ) are continuous in R x R, and there exists a
positive constant C,, such that |0S f(t,z)|+ 050, f(t,x)| < C,(1+|z|)™. Then we have

/ eFSUL(F(T" 4(T")) — F(T',~(T"))) D)

= [erl([7 @uneaw-a+ [ @ewa)ol

T//
Remark.  The integral / (0, f)(t,y(t)) - dy(t) is our new curvilinear integral
T/

along paths on a path space because the usual curvilinear integral can not be defined for
all continuous paths 7 or the Brownian motion B(#). In order to explain the difference
with known curvilinear integrals on a path space, please forgive very rough sketch. If
we can set B(T};) = z;, the It6 integral [18] is approximated by initial points, i.e.

T//

(0.1)(t,B(t)) - dB(t) ~ Z(axf)(rj—la%—l) ) (%’ - xj—l)'

’ -
T J

and the Stratonovich integral [30] is approximated by middle points, i.e.

" T +T. .+ x.
| @neBa)edB ~ 300~ B

’ -
T J

Feynman also used middle point method (cf. Schulman [29, p. 23, p. 27], K. L. Chung-
J.C.Zambrini [5, pp.131-132]). On the other hand, if v = VA, > Our new curvilinear
integral is the classical curvilinear integral itself along the broken line path A, (see

Figure 3), i.e.

»
(3.1) | @nes, 0 as, 0.
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=0 ; L : ; o ; — T,
Figure 3.

In other words, the Ito integral and the Stratonovich integral are some limits of the
Riemann sums. On the other hand, our new integral is a limit of curvilinear integrals.
(3.1) is the key of the proof of Theorem 3.

Proof of Theorem 3. By Example 1 (1) and Theorem 1 (1), we have

Fil) = F(I" (1)~ (T (1) € F.
By Example 1 (4), (2) and Theorem 1 (1), we have
T" T"
Rbl= [ @) - a0+ [ @Deaw)ie

By the fundamental theorem of calculus, we have Fy[y,,. | = Fyly A, 0] for any broken
line path ya,, (see Figure 3). By Theorem 2, we get ’

G T (a2 LSlya ] s
£S5k D — 1 rEHAT o B dx ;
/en 1[V]D[] |AT1,£I|1—>0]]‘=_[1 (27rihtj) /RdJ e 1[’VATYO]]‘1;[1 Z;

J+1

. 1 /2 %S[’YA ] d 15[ ]
= a1 (zmm) /RdJ e By, V] ] dey = / er T EDIPhI
T,0 j=1 J 7j=1

(]

§3.2. Interchange of the Order with Riemann Integrals

Theorem 4 (Interchange of the Order with Riemann Integrals). Let T be suf-
ficiently small. Let m > 0 and 0 < T" < T" < T. Let B(t,x) be a function of
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(t,z) € R x R For any multi-index o, 0SB(t,x) is continuous on R x R%, and there
exists a positive constant C,, such that |03 B(t,x)| < C,(1+ |x|)™. Then we have

/T T ([ ersoIBterophl)e = [ ekl ( /T T B(t.(t))dt) Dl].

Remark (Perturbative Expansion).  We can also interchange the order with some
analytic limit. Therefore, if |03 B(t, z)| < C,,, we can prove the perturbative expansion

/eXP(%SM +%/T”B(T,7(T))dT)DM

-
© i [T Tn T2

:;(ﬁ> /, dTn/, dTn_l---/Tl dr,
« / RSO B(7,, (7)) B(Ty_1,¥(T0_1)) - - - B(71,%(7)) DIA.

Remark.  We explain the key of the proof of Theorem 4 roughly. In order to treat
the integrals of (2.8) one by one mathematically via the Trotter formula, many books
about Feynman path integrals approximate the position of the particle at time ¢ by the
endpoint x; or x;_;. On the other hand, using the number j so that T, 4 <t<Tj, we
keep the position of the particle at time ¢, i.e.

t—T T. —t

(t) = J-1 x] + J J}j_l ;
T =T34 T; = T;

T,0

inside the finite dimensional oscillatory integral of (2.8). Furthermore, we treat the
multi integral of (2.8) directly. Therefore, we can use the continuity of the broken line
path y5 O(t) with respect to t (see Figure 4).

Proof of Theorem 4. Note that B(t,,YAT,O (t)) is a continuous function of ¢ on
[T",T"], together with all its derivatives in x;, j = 0,1,...,J,J + 1. By Lebesgue’s
dominated convergence theorem after integrating by parts by z;, j =1,2,...,J (Oscil-
latory integrals), for any division Ary,

J+1

d/
H (QW;htj) 2 /RdJ c

Jj=1

ST

e

J
]
TerolB(t, Vo, (1) H dx;
=1

is also a continuous function of ¢ on [T”,T7"]. By Theorem 2, the convergence of

£ Shl D | I+l 1 d/2 £SMa ]B : d
: e _ . 7,0 t t ;
[ #SB(@)DD) m;iﬁiojzl(mmj) /e (78, (00 [T
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Figure 4.

is uniform with respect to t on [T”,T"]. Therefore, the limit function

/ e+ SPIB(t, (1)) D]]

is also a continuous function of ¢ on [T”,T”] and Riemann integrable. Furthermore, by
T//

the uniform convergence, we can interchange the order of / ---dt and |A]in|1 K
T ol
T// .
/ ( / e*SPIB(E, (1) D] ) dt
T J+1 ‘ s
]_ d/2 ls’[ ]
= li ( ) / #50arl gy dt
/’ |AT1,£I|1—>0 1:[ 2miht R4J € VN 1;[ T,

T J+1

w [ (S et ﬁd "
|AT 0|—>0 T! ] 27“—th RaJ ¢ ,YA : g

By Fubini’s theorem after integrating by parts by z;, j = 1,2,...,J (oscillatory inte-

grals), we have

J+1 ) !
L \4/2 #Sha,. ]
= lim ( § ) / e" AT / B(t,y ))dt | | dx;
lAT,OI_)O ]2111 27'('th] R4J T A H

— /G%SM (/TT B(t, y(t))dt)D[v] .
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§3.3. Translation

Theorem 5 (Translation).  Let T be sufficiently small. For any Flvy] € F and
any broken line path n: [0,T] — R, we have

/ RSt ply 4 D] =/ e# M Fly]Dy].
+(0)=20(T) =2 ()= +1(0) A (T)=a-+n(T)

Remark (Orthogonal Transformation).  Let 7" be sufficiently small. Then, for any
F[vy] € F and any d x d orthogonal matrix @, we have

/ H@IFIQPh = | HSOIFR]Dp].
’Y(O)Zmof)/(T):x ’)’(O)ZQCUO,’Y(T)ZQCU

Proof of Theorem 5. By Theorem 2,

/ en S ply 4 D]
Y(0)=z4,¥(T)=x

J+1

L \92 %Shay,
_ 1 ( : ) / R AT,O F d .
|ATIEI|1—>O _]1;[1 27T'Lht] RAJ ¢ [,YAT’O + 77] H x]

j=1

exists. Choose A, which contains all times when the broken line path n breaks (see
Figure 5). Set n(1;) =y;,j=0,1,...,J,J+ 1.

=0 ; : ; : ; : ; ; —— 7.,
Figure 5.

Since Vag, T is the broken line path which connects (1}, x;+y;) and (T;_1,7;_;+y; 1)
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by a line segment for j =1,2,...,J,J + 1, we can write

J+1

o lim 1 >d/2 e%SATO(a;J+1+yJ+1,mJ+yJ,...,:c1+y1,az0+y0)
[Ar ol—0 i 27T7,htj RdJ

J
X FAT’O(ajJ—l—l +yJ+1,$J +y5,.., 2+ Y1, T —|—y0) dej .
j=1

By the change of variables: z; +y;, — x,;, 7 =1,2,...,J, we have

J+1 ;
' 1 d/2 ig (T 1Y 7o 15T gy, FYg)
T llII|1 H(Q -ht) e TAT T IHLTIIAL R TR0
A1 o|—0 - miht ; R4J
s j=1 J

J
X FATYO(CCJH + Y41, T, T1, T + Yo) H dx;
j=1

/ e+S0LF D).
Y(0)=z4+n(0),¥(T)=z+n(T)

§ 3.4. Functional Derivative

Theorem 6 (Integration by Parts).  Let T be sufficiently small. Then, for any

F[y] € F and any broken line path n: [0,T] — R with n(0) = n(T) = 0, we have
[ S DRRImDR =~ [ A SUDSMEFLIDD]

Remark (Functional Derivative).  Let A contain all times when the broken line
path 7 or the broken line path 1 breaks (see Figure 6). Set v(T};) = x; and n(1}) = y,,
j=0,1,....J,J+1.

Then, for any 6 € R, v + 61 is the broken line path which connects (7}, x; + 0y;)

AR
and (T;_y,7; 4 + 0y;_) by a line segment for j =1,2,...,J,J + 1. Hence we have

Fly+0n] =Fa (€500 + 0y, + 0y, 20 + 0y, 70 + 0yp).

Therefore, we can write (DF)[y][n] as a finite sum as follows:

J+1

d
(DF)[’Y][W] = @F[7+0n]‘0_0 = Z(aa;jFATYO)(xJ—I—l)xJa' . 7'7317330) “Yj-
= o

Note that we ‘restrict’ the direction of functional derivatives to broken line paths (cf.
Malliavin’s derivatives [25]).
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=0 ; : ; : ; : ; ; — T,
Figure 6.

Remark (Taylor’s Expansion Formula). Let T be sufficiently small. For any
F[y] € F and any broken line path n: [0,7] — R<, we have

L
/ #SPIF[y + 7D Zzl/ehsh (DE)f] - 1P

+

/O %/e%s[”](DL“F)h+9n][n]~~~[77]Dh]d9~

§3.5. Semiclassical Approximation as 7 — 0

Theorem 7 (Semiclassical Approximation as A — 0). Let T be sufficiently
small. Let F[y] € F and the domain of F[y] be continuously extended to C ([0, T] — R?)

with respect to the norm ||v|| = Jnax, |v(t)|. Then we can write

i 1 /2 i cl c
[ FIFLIDE) = () DT )V 4 BT T )

Here v°! be the classical path with v'(0) = x4 and v°Y(T) = x, D(T,x,x,) be the
Morette-Van Vleck determinant [26] and for any multi-indices «, 3, there exists a pos-

itive constant C’aﬁ such that
10207 Y(h, T, x,3)| < Cp 5(1 4 || + |ao])™

Remark.  When F[y] = 1, using piecewise classical paths (see Figure 7) instead
of broken line paths in (2.7), Fujiwara [8], [9], [10], [11] proved Theorem 7.

Remark.  For the semiclassical approximation as 2~ — 0 of the path integral via
Fresnel integral transform, see J. Rezende [28].
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(T).,)

Figure 7.

§4. Proof of Existence of Feynman Path Integrals

§4.1. Starting Point is Fujiwara’s Result when F[y] =1

Using piecewise classical paths, Fujiwara [8], [9], [10], [11] proved the semiclassical
approximation when F[y] =1 as h — 0 as follows:

First, Fujiwara divided the time slicing approximation of (1.1) via piecewise classical
paths into the phase function STAT,O (x,2y), the main term DAT,O (a:,a:o)_l/2 and the
remainder term TAT,O (h,x,x), ie.

J+1

1 d/2 %SA (xJ+1,93J,~~~79317930) i
H (27rihtj> /RdJ c o H dxj

j=1 Jj=1

:( 1 >d/2€%SLT’O(a@,mO)(

2mihT DAT,O ($’x0)_1/2 + hTAT,o (h,$,x0)).

Remark.  Piecewise classical paths are sharper as an approximation than broken
line paths. Especially, the phase function STATO(x,xO) is the action defined by the
classical path ¢, i.e. STAT O(:c, 7o) = Sy

Remark.  The main term Dp . (z,24)"/? is defined by the Hessian of the phase
function SAT,O (Tyi, 25,2, 2). Y

For any division Ay, define the coarser division (AT’TN-i-l,

(4.1) (Arr

N41’

Ar

n—1

0):T=Tp > >Ty >T, ;> >T;=0.
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Fujiwara obtained the following estimates

Ag O)(x,x0)| < C(Tyy — Ton)?,

n—1’

1Da, (5 20) = Diarr,, ..

|TAT,O (h, Z, xo) - T(AT;TN+1 ’ATn—l’

and showed all convergences as |A; 4| — 0, i.e.

Da, , (@.20) ~ D(T.2.2)| < ClAy|T)
C
(42) |TATO(hax7aj0) - T(h7 T,$,$O)| S ?|AT,O|T7
T (h,T,z,x4)| < C.

These imply Theorem 7 when F[v] = 1.

§4.2. Question

As h — 0, the right-hand side of (4.2) — oo. Instead of (4.2), why did not he write
|TAT,O (hv £, 211'0) - T(hv T> €, 111'0)| < C1|AT,0|T ?
It is impossible because he defined the remainder term by the main term as follows:

(43) =+ ([Total] - [Main]).

Our first problem was the following: When F'[y] = 1, using broken line paths which are

rougher as an approximation than piecewise classical paths, can we get h times shaper

estimate:
(4.4) T, (s, w0) = T(h, T, 2, 0)| < ClAg o T(1 4[] 4 [o]) 7

Here the term (1 + |x| + |z,|) appears because broken line paths are rougher as an
approximation than piecewise classical paths.

§4.3. Change the Definition

Instead of the definition (4.3), we try to define TATO(h,a:,xO), using Y _(h, z, x)

which connects Ao and (App S Ap ) with a parameter 0 < e < 1. More pre-

N41’

cisely, we try to find S7, D_, T, so that ST = STATO, Dy =Dy_ T, = TATO and that
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x _ qf _ _ .
SO = S(AT,TN+1’ATn_1,0)7 DO = D(AT,TN+1’ATn_1'O)7 TO = T(AT,TN+1’ATn ) 0) as fOHOWS.

1 d/2 igt _1/9

e=1: (zth) Ao (DAY 4ty )
1 d/2 i g* —1/2
i (2m'hT> ert(De "+ )
|
+

v 1 d/2 %S(AT,T Ar o) 1/2
€ = 0 . (27‘(th> [ N+1 n—1 (D(AT,TN_i_l?ATn_l,O) + hT(AT,TNJrl?ATn_l,o))'
Note that 1
TAT‘O a T(AT’TN-H’ATn_l,O) - Tl - TO = /0 (36Te)d€-

If we can define the remainder term Y (%, x, z) such that
10X | < C(Tyy gy = Ty 1) (14 2] + | ),
then we will be able to get the estimate (4.4) independent of A.

§4.4. However, How Can We Define the Remainder Term Y _?

The remainder term Y, is defined by the main term D, 172, We can not change
this fact. Thus, in order to define the remainder term, we must define the main term.
Furthermore, the main term D, /2 is defined by the phase function S.. Therefore, in
order to define the main term, we must define the phase function. Furthermore, the
phase function S, is defined by the path.

§4.5. All are Defined by Paths

We have only to prove all convergences from the beginning in the following order:

| Path | — | Phase | — | Main | — | Remainder |

We repeat similar discussions about convergence four times. At the first step, since we
consider only the broken line paths Apo? the assumption that F'[y] = 1 is not necessary.
In other words, we have no assumption about F[y] at the first step.

To make Cauchy sequences, we compare the functions for the division AT’O and the
functions for the division (AT’TNH,ATn_l’O) four times. At the first step, we compare
the broken path ~ Aro of Figure 2 and the broken line path Y Apr

8.

A ) of Figure

+1 n—
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Tp =0 T, Ty =T,
Figure 8.
For simplicity, for 1 <1 < L < J 4+ 1, we write
(4.5) = (T, T g, 7).
Then the key lemma is the following:

Lemma 4.1.  For any 1 <n < N < J, define vy, = ¥, (Tny15Tpo1) bY

T, - T, Tniq — T,
gd=—4 "l g 4 T j=nn+1,...,N.
! TN—H - Tn—l * TN—|—1 - Tn—l

Set x ,, = xy,,- Then the broken line path Vag, becomes the broken line path

W(AT’TNH,ATn_l’O) (see Figure 8).

We use this lemma four times.

8§4.6. Compare Two Integrals by Two Paths

At the last step, the multiple integral

J
[ofo ] ~ Tl
j=1
implies the paths of Figure 2 and the multiple integral
J+1

[ [ [ [~ TT o T e,
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implies the paths of Figure 8. The two multiple integrals are different in the number
of variables. Moreover the two integrands are different in the number of variables.
However, by the following lemma, we can compare the two integrands. Therefore we

can compare the two multiple integrals.

Lemma 4.2.  Let 2%, be the same as in Lemma 4.1. Then for any functional

F[y] whose domain contains all of broken line paths, we have

Fa,,. O)($J+1,N+1a Tp_1,0)-

<
FAT o (33J+1,N+17 TN ns xn—l,O)
; N1 n—1

Proof. By Lemma 4.1, if x , = oy ,,, we have

FATVO(xJ—i—l,N—Hax?V,n:xn—l,O) = F['YAT’O]

- F[’V(AT’TN-i-l’ATn—rO)] - F(AT'TN-H’ATn_lyo)(xJ_"l’N'i'l’ xn_l’O)'

O

§4.7. Now We Prove Theorems 1 and 2

We hope to prove Theorem 2, i.e.
(4.6) F[y] € F = the time slicing approximation (2.8) converges.

In order to prove this, we add many assumptions so that (2.8) converges. Because we
have no assumption about F'[y] at the first step, we need assumptions. To add many
assumption is valid if we have at least one example. In our case, D.Fujiwara proved
the case where F[y] = 1, using piecewise classical paths. Therefore, using broken line
paths, we will probably have at least one example F[y] = 1.

If possible, we hope two or three examples. For example, we hope to prove

-

(@7) /T Bl € F, B(tA() € F.
In order to prove this, we consider only the convergence of (2.8). We must not consider
other things. Then F will become large as a set. If we are lucky, F may contain other
examples.

Furthermore, if possible, we hope to make many examples. We hope to prove

(4.8) F[v], Gyl € F = F[7]+ Gy, Fy|G[Y] € F.

In order to prove this, All assumptions to add must be closed under 4+ and x.
We found the assumptions satisfying (4.6), (4.8), (4.7). O
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Remark.  Because of the process of our proof, the conclusions of Theorems 2, 1 (1)
are valid for any functional satisfying this assumption. Furthermore, by accident, the
conclusions of Theorems 3, 4, 7 are valid for any functional satisfying this assumption.

§5. Assumption of the Class F

§5.1. Assumption with Non-Decoration

Broken line paths are rougher as an approximation than piecewise classical paths.
Furthermore, we added many assumptions so that (2.8) converges. Therefore, the first
assumption with no decoration has many critical points and consists of four inequalities
as follows. For simplicity, we define the critical point xTL = :CTLl(x L+1>T;_1) by

0z, ,Sa

T, )(xJ+1,L—|—17xTL,laxl—1,0) =0.

T,0

Assumption with no Decoration. Let m > 0. For any non-negative integer M,
there exists a positive constant C', such that for any A of (2.6), any sequence of
integers

O0=Jo<j1 1< <jo—1<jp<-<jg<J+1,
Ji+1—1=J+1and any |ozjk+1|, |ajk| <M,

K

;o
l I Tk+171 9% T

‘(k 8mjk+1—1 8mjk )FAT,O (xJ'H’ Tage+1 Yireo

I T
e 7:Ejs-i-l_]', xjs+1_2’js+1, xjs,xjs_l, xjs_Q’js—l_'_l, xjs—l’

.l.
Lj =05 =25 ot Tj Ty 1585 21 )

S(CM)K+1(1+|33J+1|"‘|33jK|‘|’"'+|xjs+1—1|+|$js|+|$js—1|‘|’|x' |

Js—1
m
gl ey, eyl L)
(2), (3), (4) are omitted (for the details, see [24], [12]).

§5.2. Hide Critical Points inside Classical Path

If we use piecewise classical paths instead of broken line paths, the assumption
corresponding to Assumption with no decoration does not need any critical points.

Proof. If we push the critical points into a piecewise classical path, the piecewise
classical path changes to a single classical path (see Figure 9). We can hide all critical
points of Assumption with no decoration inside single classical paths.

(51) FAT,O('..,xN_'_l,x}-V’n,xn_l,".):F(AT,TN+1’AT O)(""xN—I-]Jx’I’L—l?"')'

n—1’
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7%—1 TN+1 T%—l TN+1

Figure 9.
J+1
Assumption for Piecewise Classical Paths. Let m > 0 and u; > 0 with > u; <
j=1

U < oo. For any non-negative integer M, there exists a positive constant C,; such that
for any division A, any |o;[ < M, j=0,1,...,J+1and any 1 <k < J,

J+1 J+1

(5:2)  N(J[ ) Fa, @y zo)] < (Co) T A+ Y L™,
§=0 ' j=0
J+1 J+1
o m
(5.3) |(H 02 )0y, Fn, (X102 7,521, %0)] < (Car)” ™ (ugyy +ug) (1 + Z ;)™
=0 =0

Remark.  The conclusions of Theorems 1 (1), 2, 3, 4 and 7 are valid for functionals
satisfying this assumption.

§5.3. Define Assumption by Path

Definition 5.1 (Functional Derivatives). ~ For any division Ap,, assume that
FAT,o(xJJrl’xJ""’xl’%) € C®(RAHD) Let v: [0,7] — R? and n;: [0,T] —
RY | = 1,2,...,L be any broken line paths. We define the functional derivative

(D“F)) T[] by

L

L a L
(D*F)] ] [Im] = (H a—9l>Fh +Y 0
1 =1

0,=0,=-=0,=0

Then our assumption for the functionals F[y] € F is the following:
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Assumption (The class F of Functionals F[vy]). Let m > 0 and p(t) be a func-
tion of bounded variation on [0,7]. For any non-negative integer M, there exists a

positive constant C';; such that

“’“ ' J+1 Ly J+1 Ly
J
cay 0= P T )| < @072+ 17 T1 L,
7j=01;=1 j= Ol =1
J+1 L.
1+ L J+L 7
65 |0 =R T I
j=01;=1
T J+1 L
< @2+l [ nolalol) TT T
j=01,=1

for any Ap,, any L; = 0,1,..., M, any broken line path v: [0,7] — R¢, any broken
line path n: [0,T] — Rd and any broken line paths TR [0,7] — R4, l;=1,2,...,L;
whose supports are contained in [T, _;,T;,4] (see Flgure 10). Here 0 = T, = T,

Ty =T, ,=T, | = Jnax, |y (¢ )| and |p|(t) is the total variation of p(t).

Remark.  The conclusions of Theorems 1 through 7 are valid for functionals sat-

isfying this assumption.

0,1, 721,11 7732,12 723,13

T =0 T, T Ty T; Ty T=Tr4

Figure 10.

§6. The second Term of Semiclassical Approximation as h — 0

As a recent development of our approach, we state the second term of semiclassical

approximation that Fujiwara gave in [13], [14].
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Lemma 6.1.  Let 0 <T) <T, <T. Let yp g, p o be the piecewise classical path
which connects (0,x,), (Ty,x,), (Ty,z45) and (T, z) by classical paths (see Figure 11).
Then

q(Ty) = q(Ty, 7, %)

- leifrila Lo, (D(Tb L1 xo)_l/QFWT’Tz»TvOD ’

(6.1)
m2=’yd(T2)v m]_:’yd (Tl)

converges on any compact set of (x,x,) € R2¢,

Figure 11.

Theorem 8 (The Second Term of Semiclassical Approximation as i — 0).
Assume that q(t) in Lemma 6.1 is continuous on [0,T). Then we have

(6.2)

J 1 d/2 ;o _
/enS[v]FMDM = (27rihT> erShy ]D(T,x,xo) 1/2

< (P + 5 [ DA @00 o)t + 7T b)),
0
Here for any multi-indices «, 3, there exists a positive constant C, 5 such that
|8§3§0T/(T, h,x,x0)| < Ca,ﬁ(l + |$| + |x0|)m'

Remark.  If F[y] =1, this second term
ﬁ/T D(t, v (t), z )1/2(A D(t,y,x )_1/2)‘ dt
2 Jo ’ o ym o y=7°1(t)
satisfies the Birkhoff equation [3] for the second term of the solution of Schédinger
equation.



262

[1]
2]
3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]
21]

[22]

NAa0oTO KUMANO-GO AND DAISUKE FUJIWARA

References

Albeverio, S. and Hgegh-Krohn, Mathematical Theory of Feynman Path Integrals, Lecture
Notes in Math. 523, Springer, Berlin, 1976.

Albeverio, S. and Mazzucchi, S., Feynman path integrals for polynomially growing poten-
tial, J. Funct. Anal. 221 (2005), 83-121.

Birkhoff, G. D., Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc. 39
(1933), 681-700.

Cameron, R. H., A family of integrals serving to connect the Wiener and Feynman inte-
grals, J. Math. and Phys. 39 (1960), 126-140.

Chung, K. L. and Zambrini, J. C., Introduction to Random Time and Quantum Random-
ness, World Scientific, 2003.

Feynman, R. P., Space-time approach to non-relativistic quantum mechanics, Rev. Modern
Phys. 20 (1948), 367-387.

Fujiwara, D., Remarks on convergence of the Feynman path integrals, Duke Math. J. 47
(1980), 559-600.

, The stationary phase method with an estimate of the remainder term on a space
of large dimension, Nagoya Math. J. 124 (1991), 61-97.

, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold,
Preprint (1992).

, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold,
Lecture Notes in Math. 1540, Springer, 1993, pp. 39-53.

, Mathematical Methods for Feynman Path Integrals, Springer-Verlag Tokyo, 1999
(in Japanese).

Fujiwara, D. and Kumano-go, N., Smooth functional derivatives in Feynman path integrals
by time slicing approximation, Bull. Sci. math. 129 (2005), 57-79.
, An improved remainder estimate of stationary phase method for some oscillatory

integrals over a space of large dimension, Funkcial. Ekvac. 49 (2006), 59-86.

, The second term of the semi-classical asymptotic expansion for Feynman path
integrals with integrand of polynomial growth, J. Math. Soc. Japan 58 (2006), 837-867.
Fujiwara, D. and Tsuchida, T., The time slicing approximation of the fundamental solution
for the Schrodinger equation with electromagnetic fields, J. Math. Soc. Japan 49 (1997),
299-327.

Gill, T. L. and Zachary, W. W., Foundations for relatives quantum theroy. I. Feynman’s
operational calculus and the Dyson conjecture, J. Math. Phys. 43 (2002), 69-93.
Ichinose, W., On the formulation of Feynman path integral through broken line paths,
Comm. Math. Phys. 189 (1997), 17-33.

Ito, K., Stochastic integral, Proc. Imp. Acad. Tokyo 20 (1944), 519-524.

, Generalized uniform complex measure in Hilbert space and its application to the
Feynman path integrals, Proc. 5th Berkeley Sympos. Math. Statist. and Prob. 2 Part 1,
University of California Press, Berkeley, 1967, pp. 145-161.

Johnson, G. W. and Lapidus, M., The Feynman Integral and Feynman’s Operational Cal-
culus, Oxford University Press, 2000.

Kitada, H. and Kumano-go, H., A family of Fourier integral operators and the fundamental
solution for a Schrodinger equation, Osaka J. Math. 18 (1981), 291-360.

Kumano-go, H., Pseudo-Differential Operators, The MIT Press, Cambridge, Mas-
sachusetts, London, England, 1981.




[23]
[24]

[25]
[26]

[27]
[28]

[29]
[30]
31]

[32]

FEYNMAN PATH INTEGRALS AND SEMICLASSICAL APPROXIMATION 263

Kumano-go, N., A construction of the fundamental solution for Schrédinger equations, J.
Math. Sci. Univ. Tokyo 2 (1995), 441-498.

, Feynman path integrals as analysis on path space by time slicing approximation,
Bull. Sci. Math. 128 (2004), 197-251.

Malliavin, P., Stochastic Analysis, Springer, Berlin, Heidelberg, New York, 1997.
Morette, C., On the definition and approximation of Feynman path integral, Phys. Reuv.
81 (1951), 848-852.

Nelson, E., Feynman integrals and Schédinger equation, J. Math. Phys. 5 (1964), 332-343.
Rezende, J., Stationary phase, quantum mechanics and semi-classical limit, Rev. Math.
Phys. 8 (1996), 1161-1185.

Schulman, L. S., Techniques and Applications of Path Integration, Monographs and Texts
in Physics and Astronomy, Wiley-Interscience, New York, 1981.

Stratonovich, R. L., A new representation for stochastic integrals and equations, J. SIAM
Control 4 (1966), 362-371.

Truman, A., The Feynman maps and the Wiener integrals, J. Math. Phys. 19 (1978),
1972.

Yajima, K., Schrodinger evolution equations with magnetic fields, J. Analyse Math. 56
(1991), 29-76.




