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Formal Solutions and True Solutions
with Gevery Type Asymptotic Expansion
for Some Nonlinear Partial Differential Equations
in the Complex Domain

By

Hiroshi YAMAZAWA*

Abstract

Ouchi [3] showed that for some linear partial differential equations in a complex domain,
there exists a true solution wug(¢, ) which is a holomorphic function in a sector S, and has
an asymptotic expansion as t — 0 in S. In this paper, we extend these results for nonlinear
equations, and give another construction of such a solution.

§1. Introduction

Let C be the complex plane or the set of all complex numbers, ¢ a coordinate of C,,
and z = (zy,...,z,) coordinates of Cj = C, x---xC, . Set N:={0,1,2,...}. Fora =
(ag,...,a,) € N" weset |a] :==a;+---+a,, and (0/0x)* := (0/0x,)* --- (0/0x,,)*".

Set |x| := 11212;1<xn{|xi|}, Dy :={z e Cl; |z| < R} and

Se(T):={teC;; 0< |t| <T, |argt| < 6}.

We denote by 0(Dp) (resp. O(Sy(T") x Dy)) the set of all holomorphic functions defined
on Dy, (resp. Sy(T') x Dp).
In this paper, we consider the following equation:

(1.1) D(u(t,x)) = f(t,x).

Here D(u(t,z)) is a nonlinear partial differential operator with coefficients in holomor-
phic functions on a neighborhood of the origin for an unknown function (¢, x), and
f(t,z) is a given function.
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Problem 1. Suppose that f(¢,z) is a holomorphic function. Can we construct a true
solution?
Then the answer is “Yes” (Ouchi [1], [2], Yamazawa [4]).

Problem 2. Suppose that f(¢,z) is a function with Gevrey type asymptotic expan-
sion. Can we construct a true solution of the same type?

In this paper we consider Problem 2; we construct a true solution to (1.1), and
moreover, we prove that the solution has the same Gevrey type asymptotic expansion

as f(t,x).

§2. Solvability in Asy{.,

We define some function spaces which will be used in this paper.

Definition 2.1.  Let 7 > 0. Then we define a subspace Asy?,y} (Se(T') x D) of
O(Sy(T) x Dp) as follows: f(t,x) € Asy({),y} (So(T) x Dp) if for any S, = Sa, (T})) with
0 <6y, <6and0<T,<T (which we denote by S, € 5), there exist f,.(z) € O(Dp)
and C and ¢y > 0 such that

[f(t,2)| < Cexp (—colt| ™)
holds in S,.
Definition 2.2.  Let v > 0. Then we define a subspace Asy.y(Sy(T") x Dp) of

O(S5(T) x Dy) as follows: f(t,) € Asy,y(Sy(T) X Dp) if for any S, € Sy (1), there
exist f(x) € O(Dy) and Ay, By > 0 such that for any N € N\ {0}

N-1 N
(2.1) [70.2) = 3 fula)tt| < ABYHNT (T + 1)
k=0

holds in S. If the condition (2.1) is satisfied, then we write
f(t2) ~oy Flt2) =D fi(@)t in Sy(T).

k>0

We call f(t,x) an Gevrey type asymptotic expansion with index v for f(t,x).

We consider the following operator D(u):

(2.2) D(u(t,z)) = F(t,z,{(9/0t) (9/0x) u(t, ¥)}j+|aj<m)-
We assume that F(t, 2, Z) (Z ={Z; .}, 4|<m) admits an expansion which is a conver-
gent power series with respect to Z:

(2.3) F(t,z,Z) =Y a,t,x) [ {Zja}%e,

lg|>1 Jtlal<m
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here ¢; , € N, and we set ¢ := {q;, € N; j+ |af <m}, [¢] == >  ¢q;,, and we
Jtlal<m
assume that a,(t,z) € Asy.1(Sy(T) x Dg). Then we consider the following equation

(Eo)-
(Eo) D(ult,x)) = f(t,) € Asy(,y(Sy(T) x Dp).

For the equation (FE,) we introduce Newton polygon due to Ouchi [2], [3]. We write
each coefficient a,(t,x) € Asy .1 (S4(T) x Dp) as

a,(t, ) =t7b,(t, ) (b,(0,z) #0, 0, € N\ {0}).

We set
(a,b) := {(z,y) € R* z < aand y > b}.
Moreover, set I, := max{j + |a[; ¢, , € ¢, ¢;, # 0} and ¢, =0, — Ze J4j.- Then we
4;,.€4
define Newton polygon NP; (D) for the linear part of the operator D(-) by

NP,(D) := OH{ U T, e,); b,(tx) ¢0},
lgl=1
where CH{-} is the convex hull of a set.

The boundary of Newton polygon NP, (D) consists of a vertical half line 35, a
horizontal half line 337 and segments 37 (1 <i < p—1). Let 7] be the slope of ¥} for
i =0,...,p. Then we have 0 =, <, 4 <--- <7y = co. Further Newton polygon
NP, (D) has p-point vertices which we denote by (I}, e;) with I5_; <15 5 <--- <l =
m.

Next let us define an operator £, with respect to X7 fori=1,--- ,p — 1. We set

I, ={qCN; e — €y = vi (= lq) and |g| = 1}.

Then we set

Loult,z) = > t7ab,(t,2) ][] {(%)j(%)au(t,x)}%

a€l; j+lal<m .
= Y e () (L) .
(J,)€d;

where

Let m} be the order with respect to 9/0z of L,.
We assume the following conditions for the equation (E,):

(C;) D(u) has a linear part of order m,
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(Cy), the operator L, satisfies

(1) if j + |a| < I then |a| < m] and
2 > bj’a(0,0)ﬁo‘ # 0 with £ := (1,0,---,0).
J‘|+I|g|=§
If we assume that the equation (E,) satisfies the condition (C,), then it is sufficient to
define Newton polygon for the only linear part (see Ouchi [2, Proposition 1.7]).

We have an existence theorem concerning exponential decay solutions.

Theorem 2.3.  Let vi, , < v < v and f(t,x) € Asy({)v}(Se(T) x Dg) (0] <
7/27). Suppose the conditions (Cy) and (Cy); (i =0,...,s). Then for any 0 < r < R,
there exists a solution u(t,z) € Asy?w}(Se, (T) x D,) (|¢'] < 7/27F) to the equation

(Ep)-

In the case where v = 7} ;, Theorem 2.3 was obtained in Ouchi [2] under the
condition that F(t,z,7) is a polynomial in Z, and this condition was removed in Ya-
mazawa [4]. If v > ~¥ |, we can prove this theorem as same way as in the case where

Y= Vet
§ 3. Construction of True Solution

We consider the following equation:
(El) D(u(t,x)) :f(tvx)a

where each a,(t,x) in (2.3) is holomorphic in a neighborhood of the origin, and f(t,z)
belongs to Asyy.y(Sp(T) x Dp).

For the equation (F;) we want to construct a solution that belongs to the same
class as f(t,x). In a linear case we shall recall Ouchi’s result in [3].

Let us consider the following condition (CY), for the operator L;:

(C%), (1) 04 =0 for any (j,a) with j + |a| =[] and |a| = m].
(2) Z bj,a(oa O)é\a 7é 0.
jtlal=t;
|laf=m

Then we have the following theorem:

Theorem 3.1 (Ouchi [3]).  Assume that D(u) satisfies (C%), (i =1,...,s). Let
Y = Yiy1- Then for any Sy € S with 0 < 0y < 7/(277) there exists a solution u(t,x) €
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Remark.  In [3], Ouchi constructed a solution to (FE;) by using an integral kernel
G and the solution is expressed as follows:

[ Gtz

C

but it is very complicated to construct G(t,z;w).

Next let us consider a nonlinear case. We shall get the same result as in a linear
case, and give another construction of a true solution.
Let s be a nonnegative integer with 3, ; <~ <7, and we set k] = [; —m;. We

will give a condition for nonlinear terms.

For all nonlinear term, let us assume the following condition:

(A;) For any (l4,eq) with |g] > 2, there exist J~ > 0 and J > 0 such that

*
€ - eq * — *
—— +15 = J, for e" >e,,
l _ 73—‘,—1
4 e, — ¢

— + - JF for e, >e".
Vs

Further we assume

m
[*S} <J, if e >e,and|q| > 2,
Vs+1-0

where [a], is the decimal part of a number a.

Then we have the following result for a formal solution.

Theorem 3.2.  Suppose the conditions (A1) and (C4), for (Ey). Then for |0| <

7/(27), we can construct a formal power series u(t,x) = > uy,(t,x) that formally
h<0
satisfeis (Ey). Further u g, (t,x) satisfies the following estimate:

*

i h k *
(31)  Jugy(t,a)| < T_mSU(h)BhI‘( -t 1)r(78 + 1) [t¥: =R in S, € S,(T),

and Y ﬁ(h)t_h is a convergent power series in a neighborhood of the origin.
h<0

We shall give a sketch of proof of Theorem 3.2 in Section 5.
As for the formal solution u(t, z) we have the following fact.

Lemma 3.3.  There exists a function uso(t,x) € Asy(y1(Sy x D,.) with 0 <
0o < 7/(27%) such that for any S, € S,

—N+1

~ N
s (6:2) = 3 o (60 S Tild“T (T +1) for tes,
h=0
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where U(/h)tN 18 a convergent series.

n>0
Proof. Put
Uy (823 6) = Ug(te; &) = D g (,t,6),

T T(—h7; + 1) W

a(tax;é) = Za(h)(xat,g)

h<0
It follows from Theorem 3.2 that Uy (¢, x; &) and u(t, z;§) converge on Dy x Sy x {|£] <
&y} for some &, > 0. Then there exist £ with 0 < £ < &, and B, such that

[ (8,2 €)] < ABGT e 72 1€| D% on Dy x Sy x {l¢] < €},

—H
D [y ()] < ABFH 7% ¢ DT on Dy x Sy x {¢] > €.
h=0
Define R
3
us,(ta) =% [ exp(—¢t )t €)de.
0
By the estimates above we can see that u S, (t,x) is the desired function. O

We can construct a true solution as u(t,z) = ug, (t,x) +v(t,x), where v(t, x) is an
unknown function. Set D“% (v) := D(ug +v) — D(ug ). Then we have the following
theorem.

Theorem 3.4.  Suppose that for the differential equation D"So(v) with respect
to v(t,x), the conditions (Cy); are satisfied (i = 0,...,s —1). Then for any S; € S,
with 0 < 61 < 7/(277), there exists a solution Ug, (t,x) € Asy .1 (S x D,) to (Ey).

Proof. If the condition (C;) is satisfied for the equation (E;), then the same
condition is also satisfied for the equation D"% (v). As the proof of in [2, Lemma
4.4] we can prove that f(t,z) — D(ug,) € Asy?ﬁ}(SO x D,.). Therefore we can adapt
Theorem 2.3 to an equation D“% (v) = f(t, x) —D(uso), and this equation has a solution
Vg, (z) € Asy?%}(Sl x D,). Then ug, (t,z) + Vg, (t,x) is a solution to the equation
(Ey). O

Remark. ~ We can prove Theorem 3.4 if we replace the condition (Cy); by (C5),.

§4. Majorant Function

First let us introduce a majorant function in [2]. Set

o= —L  and e(k)(t):(%>k0(t),

)
= (n+1)m
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where m € N.

Lemma 4.1. There exists a positive constant ¢ such that for 0 < k' <k <m
(4.1) o) (£) 0 (1) < %) (¢).

We fix ¢ > 0 so that (4.1) holds.

Lemma 4.2. (1) There exists a constant C > 0 such that the following holds for
any k:

) () « ——0%*+D (1),

kE+1
(2) Let 0 < k' <k <m. Then

i L) (1) g5 ) (1) o L gtk g
—il(n —1)! (p+p")! '
Set Wr(t) = 0(t/R) and U (t) = (8/0t)* U (1) for 0 < R < 1. By Lemma 4.2 we
can prove the following proposition:

Proposition 4.3. (1) There exists a constant C > 0 such that the following
holds for any k:

C
v (1) <« k—HR\pg“)(t).

(2) Let 0 < K <k <m. Then for§ >1

n __nl ((n—1)/d]+k+p) ([i/8)+K'+p") PPk g (/) k)
Z; il(n — i)!\PR ()T (t) < WR Uy ()

Y

where [a] denotes the integer part of a number a.

8§ 5. Sketch of Proof of Theorem 3.2

First we study a solvability for an operator with respect to a vertex of Newton

polygon.
We set

A(s) :=={g; [, =I5 and e, = e;}.

Then we define an operator by

Su(t, z) = Z a,(t, ) H {(%)j(%>au}%’a.

qeA(s) j+lal<m
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Under the condition (A;), the operator S is a linear operator. So we can write:
O\ O\
5= (j,a%(s) eoebata) () (57)
where
A(s) = {(j,0); j + ol = £ and o, — j = €1},
We fix s and set A* = A(s), k* = k¥ and m* =m? and (I*,¢e*) = (I%,e

S’S

¥) for short.
Let us consider the following equation:

(Eg) Su(t,z) = F(t, ),

where F'(t,x) satisfies the following estimate as a formal power series in (¢,z) for some
F > 0:

1 k+k™)/8]+m™* +c t\Fk
Flta) < F 37 g el (G

kzmh

n
where x =12, + > 2, 7, ( > 0.
i=2

Lemma 5.1.  Under the conditions (C%), and (A1), the equation (Eg) has a
solution u(t,x) satisfying

* * ]_ c t k
ut,a) < TN Py U (2)

kth—i—k* C
where ¢(T) is a positive and bounded function of T > 0.

We will construct a formal solution u(t,z) = > u9(t,x) to the equation (F,): We
920
choose the sequence {u9(t,x)} satisfying the following equations:

+ ) b, (tx) ] {(%)j(%fuo(t,w)}% = f(t,2),
e < j+iel<m
B0 Sud(t,x) FE tffqb (t,x j+|1;|[<mzl_[1 <8t> (%> udi(t, x)
19" 1=
= — Z 70, ( H qﬁ( ) (—) wi(t,x) (g >1).
eg>e” J+Ioz|<mZ 1
L o/ I=g—(eq—e*)
Here we set |¢'| :== > qf ;-

Jtlal<m i=
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We solve the equation (EY) inductively: First let us solve the equation (E°). We
construct a solution u’(¢,z) = > u (¢, ) as

h>0
Sug(tvx) = f(t,.fl?),
Sul (t, ) := WP(t,x)
4o
= Y e T (5) () o)
eg<e* Jtal<m =1
|h/|=h—(e*—eq)
4o
Z t%ab,(t, x) ]+|1;|[<m21_[1( ) ( > ugi(t,a:) (h>1).
|h| h—1
4j.a
Here we set |h/| == > Z h,;.
JH|al<m i=

Since the function f(t,z) belongs to Asy 41 (Sp(T) X Dg) we can assume that f(t, z)
satisfies

1 * m* t k:
flta) < FY E\If%('”k o )(X)<Z> ,

k>0
1 1 .
where 5= 1 + —, and each b,(t, x) satisfies for some B, > 0:
Y
1 (& t\k
b,(t,2) < B, > Ew;)(x)(a .
k>0

Then by Lemma 5.1, we get

i 5 t\F
ud(t,x) < 7™ U Z k'\IJ(k/ ])(X)(Z> ,
k> ke

where U{) := (~¢ ¢(7) F. By induction on h > 0, we can obtain u} (¢, ) by Lemma 5.1.
So we will inductively give an estimate for u? (¢, z).

Proposition 5.2.  Under the conditions (C%), and (A1), for any h € N there
exists Uy > 0 such that

k
0 —-m™ ([k/5
(5.1) ud(t,z) < 7 UD k;: kv‘I’ (g) ,

and that Y Uy converges for a sufficiently large 7 > 0 and a sufficiently small R > 0.
h>0
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Proof. We set vy = 75, for short. We already obtain the estimate (5.1) for A = 0.
Let us assume the following estimate for h; < h:

NI O\ . . .
(a)j(a—x) up (tx) < 79TCIUR Y %\p%{(/ﬂﬂ)ﬂsh—l ')(x)(%) ,
k> (k=)

where (a), =aifa>0and (a), =0 if a <0 for a € R. By Proposition 4.3, we have
4o

(G () e

Jtlal<m i=1

9. a i
< C%(% H H a;—m* Uh Zk' g ([B/5=¢ /7+z]( )(2) .
j+|a|<m i=1 E>0

It follows [[k* /9]y + 1 — J;] < 0 from the assumption (A;). If e, < e* and [h'| =

h —(e* —e,), then we have

[_Teqﬂq]::_jq—e;Oeq+k*+m*—Jq—}
52 [l oSt
g_%—l—m* ol =w+] ]+m*—1+[[k—] +1-J;]
] .

and if e, = €*, by the same manner we have

—e k* . . L «
(5.3) [T‘]+lq]:[7+k +m 1] =[] +m -1
Thus by Proposition 4.3, we have
Wi(t, z)
< Z C’%C%RB H ﬁ a;—m UO Z '\I/([(]H_k )/8]4+m” )(X)( )k
eg<e* jtlal<mi=1 k>0 k! C
|h’|=h—(e*—eq)
+ Z CaqceqRB H qu_([l oy —m UO Z l\Ilg%[(k—i_k*)/é]—i_m*)(X)(E)k.
— k! ¢
eq=c* J+]a|<m i=1 k>0

|h|h1
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Thus by Lemma 5.1, we get the estimate (5.1) for any h > 0, where

95, a
Up:=c(r) >  C%¢«“RrRB, [[ [[= U
eq<e” JjHla|<mi=1
(5.4) |h/|=h—(e*—eq)
95 a
+er) > c%RrB, [[ [[= w0l
eqze*,|h/|=h—1 Jt|al<m =1

Next let us give an estimate of the coefficient Up. Let us consider the following
functional equation for Z(t):

2(t) =e(r) y_ CTCm =B, [ e Z()) e

(5.5) eq<er jt+lal<m
te(r) > C%t [ {r™ ™ Z(t)}%e + ¢ e(r)F.
eq=e" j+lal<m

By the implicit function theorem, we have the holomorphic solution near t = 0. More-

over substituting Z(t) = > ZYt" into (5.5), for any T' > 0, we can take a sufficiently
h>0

large 7 > 0 and a sufficiently small R > 0 such that Up < Z)T . Hence we have the
desired result. O

We construct a true solution to (E?). Set @°(¢,z) := > ul(t,z). Then we have:
h>0

aO(t’x) < Fm Z U}? Z %\ng/é])(X) (E)k

h>0  k>k* ¢

If we set ﬁg := > Uy, then by Proposition 5.2, we get
h>0

_ T 1 k/S t\k
k>k*
For |0] < m/(27), as in Lemma 3.3 we can prove the existence of a holomorphic function
u%(t,x) such that
ug(t, ) oy W(t, ) i Sp(T).
So we construct a true solution u°(t, z) to (E°) such that u’(t,z) = ul(t, z) + v°(¢, x),

where v%(¢, ) is an unknown function; we can adapt Theorem 2.3 to the equation for
vY(t, ), and we can solve (E°) with v%(t,z) € Asy({Jﬂ/}(Se(T) X Dp).

We can solve each equation (E9) for g > 0 by repeating the procedure of construct-
ing a true solution u°(t, x):



276 HIROSHI YAMAZAWA

First we construct a formal solution u?(t,z) = > wuj(t,z) for g > 0 as follows:
h2>—g
.
Suly(ta)== > Y ) TT (o) (o) e
eqg>e” |9/|=g—(eq—e*) J4|a|<m i=1
Ih!|==g+(eg—e™*)
%o
sgna=-> 5 aen T 1(G) (5) e
€q>€" |g/|=g—(e,—e*) ]+|a|<m i=1

Ih/|=h+(eq—€*)

9j

"X 2 e T TG @) e
eq<e” lg'1=g J+lal<m i

|hﬂ=h—@*—e)
"X T aen T TG @) e
e,=¢€ g’ 1=g 7+ <m¢1

|n!|=h—1

Proposition 5.3.  Under the conditions (C%), and (A1), for any g € N and
h > g, there exists a U7 > 0 such that

- L ((k/5+(h)_ /y—(h)_/7*]) AN
(5.6) uf(tx) <7 U Y VR ! ! (X)(Z)’

k>k*—(h)_
and that Y, > U converges for any sufficiently large T > 0 and sufficiently small ¢,

g>20h>—g
R>0. Here v* =~%, and (a)_ :=0ifa>0 and (a)_ :=a ifa <0 for a € R.

Proof. In the case where g = 0, we showed the estimate (5.6) by Lemma 5.2. Let
us prove that uj (¢, z) satisfies (5.6) by induction on g > 0. We assume for g; < g

() (5) wete)

ot A—iT10s L (k- (ktii+(hy) ) /rv—(hy) _ /v * +i+]al]) t\F
& TUTMm C jU}éLIi Z _'\IJR[ J Y Y i+l (X)(_) )

kZ(k*_(hi)__j)+ C
qj,«
Set |(M)_|= >_ > (h;i)—. By Proposition 4.3, we have

Jtlal<m i=1

qj,oz 8 ] a a gi
I UG () we
Jtlal<mi=1
95 o k
< C7agts o Q([k+<k+|<h> I=e/r=l 1Dy (1Y
AL Py ()
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First let us estimate u? (¢, ). Under the conditions that e, > e*, |¢'| = g—(e,—¢¥)

and |h'| = —g + (e, — €*), we have

6T k= k|0 |~ Y g o, =kl — e, > g
Jtlal<m
and
Y | — h h|l—e h'
Y Y Y Y
K —g  —g E* —g —g
=|[F+Z2-Fm-g| < |5+ 2w
[5 v ! 5y
Thus by Proposition 4.3 we have
4o .
o ONI O\ g
e 1 () () e
J+lal<m i=1
q,
7o * 1 * _ _(_ * * t k
o, e a,—m* 779 ([(k4+E™)/6+(=g)/v—(=9) /7" ]+m")
< C qu‘ H HTl Uh¢ZH\IJR (X)(Z) :
Hlal<m i=1 k>g

Therefore by Lemma 5.1, the estimate (5.6) holds for u? (¢, ), where

95,0
U, =c(t) Y > co¢ B, [ J[= ™ Ui
€q>€" |g'|=g—(eg—e®) Jtlal<mi=1

Ih/|=—g+(ey—e*)

Let us assume that a function ] (¢,z) satisfies the estimate (5.6) for h; < h. Here we

give an estimate for the following three cases:
(i) ey > ¢ |g'| = g — (e, — ) and [I/] = h+ (g — )
(ii) e, <e*, |g'| = g and |W'| = h — (e* —¢,);

(iii) e, =€, |¢'| =g and [W'| =h — 1.
(A) Assume h < 0. Then as for (5.7), we have kj, > —h for the all cases. First consider

the case (i). Then as for the estimate (5.8) we have

()| —eq - -
[ W)

Therefore by Proposition 4.3, we have

e I TH(G) () e

j+lal<m i=1

+m*.

h h
TS T~
v

95, a

* X 1 * _ * * t k

< C%(Ca H HTocl—m U,‘f Z Em%(lmtkz )/8+h/y—h)/y*]+m )(X)(Z> .
jHlal<mi=1 k>—h "
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Next consider the cases (ii) and (iii). Then as for the estimates (5.2) and (5.3) we

have
*

M)y |—e n k h h

[I( )-l—e 2‘|+lq] [ RO ey
gl gl o v

Therefore by the same proposition, we have

i H(m) (837) up (1 2)

Jtlal<m i=1

Qja

< %R [ [[r o

Jtlal<m i=1

1 k+k*) /54 (h)— Jy—(h)— /v*]+m* AN
<Y Ll ) (1Y

k>—(h)- ¢
(B) If h > 0, then we have k;,, > 0 for the all cases.
In the case (i), we have
[Kh/)jl i Wiz" +lq] < [—Teq +lq} < [% +m* —Jq] < [%] +m*
Therefore we have
%o
VR CHCARTACE
jtlal<m i=1
< CG‘ICG H qJHa Tal m* ng Z '\P([(k+k )/5]—|—m*)(X)(£)k
jt|al<mi=1 k>0 k! S

In the cases (ii) and (iii), as for the estimates (5.2) and (5.3) we have

*

[|(h)jy|_eq—|(:2‘|+zq} S[—Teqﬂq} S[%]—!—m*—l.

Therefore we have the estimate (5.9). Hence by Lemma 5.1, we have the estimate (5.6),

where
45, c
o re —e* a;,—m*r19;
)Y X s, I oo
€q>€" g/ =g~ (eq—e*) JHlal<m i=1
|h,’|=h,+(eq—e*)
9,a
o re —e* a,—m*r19;
) >, > cuerp, [[ [[uR
eq<e” , ld'I=g JHlal<m i=1
| |=h—(e —eq)
.
7)Y, >, C¢%uRrB, 1] [ "ui
€g=¢" |g'I=g Jtlal<mi=1

R/ |=h—1
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Next let us give an estimate of the coefficient U;. Let us consider the following
functional equation:

Z(t 8 Z (%4 5% —e” B H {Tal m* Z(t S)}q]a

€q>€" jtlal<m

(5.10) + c(7) Z C’queq_e* e —eq Bq H {Tal_m*Z(t, $)}%.a

eg<er j+lal<m

7)Y C%utB, [ {7 Z(ts)} %+ e(r)F

€q=e" Jtlal<m

As in the case of (5.5), we have the holomorphic solution near (¢,s) = (0,0). Moreover
substituting Z(t,s) = >, Y. ZJt"(ts)? into (5.10), for any 7" > 0 and S > 0 we

g>0h>—g
can take a sufficiently large 7 > 0 and sufficiently small R > 0 and ¢ > 0 such that
U < ZJT"(TS)9. Hence we have the desired result. O

Next for g > 0 we construct a true solution to (EY).
—1
Set wI(t,x) = > wuj(t,z)= >, uy(t,x)+uf(t,x). Then we have
h2—g h=—g

u(t,z) < ZT_m*U;L] Z %\I'gk/é])(x)<%>k.

h>0 k> K

By Proposition 5.3, > U/ converges. Further, if we set g .= U7, then > U¢ also
h>0 h>0 9>0

converges by Proposition 5.3. For h < 0 set uj (¢, x) := uj (t,z) and (7;5 := U/. Then
we have

0

0
_ _ S L (k/s+h/~y—h/~* A
ud(t,x) = E uy (t,x) < E " U E E\I’g (/AR D(X)(Z) :

h=—g h=—g k>k*—h

Therefore for each g > 0, we can construct a true solution of (EY) inductively as in the
case g = 0. Hence we have the following result for g > 0:

Proposition 5.4.  Under the assumptions (C4), and (A;), there exists a true
solution u9(t,z) to (E9) such that for |0| < 7/(27)

wI(t, ) vy W)= > 0 = > D @t in Sy(T).

—g<h<0 —g<h<0k>k*—h

1 -
Here uj ,(z) <17 ™ U,f—k\Il([k/Hh/ﬂ/ "Dy and DY U] converges for a
’ k¢ 920 —g<h<0
sufficiently large 7 > 0 and sufficiently small R > 0 and ¢ > 0.
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Proof of Theorem 3.2. Let us construct u(h)(t, x). We define

ﬂik(x)

up (z,8) = Z_ —F(k/ﬂy—l—l)gk/v’

£
uj o (t,x) = t_v/o exp(—&t™7) uf (z, &)dE.

First let us estimate uj (z,§). By Proposition 5.4, there exist positive constants A and
B such that

o —m* 7 DA/ + 1) e
i < m gAgBh (k*—h)/~ f > _h>0.
|Uh($,€)| =T Uh F(—h/’y+ 1) |§| or g = -
Therefore we have
u o (tx)| < T ™ UIAIBIT _h +1)T L + 1)t " for g>—h>0.
h.S h v v

Setting u,, (t, z) 1= ;huiﬂs, (t,z), we have
el

. _ h k* .
gy (o) <77 Y U;ZAQB"F(—? - 1)F(7 + 1) tF" =" for h<O.
g=—h

For a sufficiently large 7 > 0 and sufficiently small R > 0 and ¢ > 0, we can show that

> ﬁ,ng converges. Set ﬁ(h) = > (75/19. Then )’ ﬁ(h)t_h also converges. This
g=—h g=>—h h<0
completes a proof of Theorem 3.2. O
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