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Explicit construction of semi-stable models of
Lubin-Tate curves with low level

By

Naoki IMAT * and Takahiro TSUSHIMA **

Abstract

In this paper, we construct semi-stable models of Lubin-Tate curves with level one or two,
and determine their reductions. We also give a description of an action of a subgroup of the
product group of the Weil group and the multiplicative group of the central division algebra
of invariant 1/2 on the reductions.

Introduction

Let K be a non-archimedean local field with a finite residue field k& of characteristic
p. Let Ok be the ring of integers of K and p the maximal ideal of O. Let v: K —
Z U {c} be the valuation such that v(p\p?) = 1. We fix an algebraic closure of K, for
which we write K¢, Let K" denote the maximal unramified extension of K in K?®°.
The completions of K¢ and K" are denoted by C and Kur respectively. Let n be a
natural number. We put

Kl(pn) = {(CL Z) € GLQ(OK)

C

c=0, dElmodp"}.

Let X1 (p™) be the connected Lubin-Tate curve with level K1 (p™) over KY. Let W be
the Weil group of K and D the central division algebra over K of invariant 1/2. Let
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~

Artg: KX = W2P be the Artin reciprocity map normalized such that a uniformizer is
sent to a lift of the geometric Frobenius. We write v: W — Z for the composite

rt ot v
Wi — Wab 20 pex oy g
Let Nrdp,g: D* — K* be the reduced norm map. We set
(Wg x D*) = {(0,d) € Wg x D* | v(Nrdp/x(d)) +v(c) = 0}.

Then, (Wx x D*)? acts on X;(p")c = Xi1(p") X zu C and induces an action on the
stable reduction X (p7).
In this paper, we determine semi-stable coverings of X;(p™) for n = 1,2 and calcu-

late the action of (Wx x D*)Y on the reductions. A notion of semi-stable covering is
due to Coleman in [CM]. It is known that we can construct a semi-stable model from
a semi-stable covering (cf. [IT1, Theorem 3.5]).

There are a lot of researches on the stable models of modular curves. The calcu-
lation of the stable models in the modular curve setting is equivalent to that in the
Lubin-Tate setting where K = Q,,.

The stable reduction of the modular curve Xo(p?) is computed by Edixhoven in
[Ed]. He finds an irreducible component, whose affine model is defined by zy(z—y)P~! =
1. In the stable reduction of X;(p?), we will find a component, whose affine model is
defined by z%y — xy? = 1. As for the calculation of the stable reduction of the modular
curve X;(p"), it is given in [DR] if n = 1. In [CM], Coleman-McMurdy calculate the
stable reduction of the modular curve Xo(p®) under the assumption p > 13. In [IT2],
we compute the stable reduction of X;(p?) by a similar method as in [CM]. However,
detailed studies of the stable reduction of X;(p™) for n < 2 are not written anywhere.
Therefore we write down the stable coverings of them in this paper.

The method in this paper is a bit different from that in [IT2]. In [IT2], we use
a cohomological argument to show that a constructed covering is semi-stable. On the
other hand, we show it by direct calculations in this paper. A merit of direct calculations
is that we can determine the widths of open annuli in a constructed semi-stable covering.

The authors greatly thank Yoichi Mieda for kindly suggesting arguments in the
proof of Lemma 2.1. They also thank a referee for very helpful comments and a lot of
suggestions.

Notation

We fix some notations. We fix a uniformizer @w of K. Let ¢ = |k|. Let O¢ be the
ring of integers of C and k?¢ the residue field of C. For an element a € O¢, we write
a for the image of a by the reduction map O¢c — k*°. Let v(-) denote the normalized
valuation of C such that v(w) = 1. For a,b € C and a rational number a € Q>o,
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we write ¢ = b (mod «) if we have v(a — b) > «, and a = b (mod a+) if we have
v(a—0b) > a. Let Op be the ring of integers of D and pp the unique maximal left ideal
of Op. For a smooth curve X over k¢, we denote by X°¢ the smooth compactification
of X, and the genus of X means the genus of X¢. For an affinoid X, we write X for its
canonical reduction. The category of sets is denoted by Set.

§1. Preliminaries

§1.1. The universal deformation

Let 3 denote the formal Ox-module of dimension 1 and height 2 over k£2¢, which
is unique up to isomorphism. Let n be a non-negative integer. We define K;(p™) as in
the introduction. In the following, we define the connected Lubin-Tate space X;(p™)
with level K7(p™).

Let C be the category of Noetherian complete local O z..-algebras with residue field
k*. For A € C, a formal Og-module F = Spf A[[X]] over A and an A-valued point
P of F, the corresponding element of the maximal ideal of A is denoted by z(P). We
consider the functor

A;(p™): C — Set; A — [(F,t, P)],

where F is a formal Ox-module over A with an isomorphism ¢: ¥ ~ F ® 4 k*¢ and P
is a w"-torsion point of F such that

I[I x-a(a=P)) | [="](X)

a€Ok [p™

in A[[X]]. This functor is represented by a regular local ring R4 (p™) by [Dr, Lemma in
p.572]. We write X1 (p™) for Spf R1(p™). Its generic fiber is denoted by X;(p™), which
we call the connected Lubin-Tate space with level K;(p™). The space X;(p™) is a rigid
analytic curve over K. We can define the Lubin-Tate space LT (p™) of height 2 with
level n by changing C to the category of Oz.,.-algebras where w is nilpotent, and ¢ to
a quasi-isogeny ¥ ®pgac A/pA — F @4 A/pA. We consider LT;(p") as a rigid analytic
curve over K.

The ring R4 (1) is isomorphic to the ring of formal power series O 7., [[u]]. We simply
write B(1) for Spf Oz..[[u]]. Let B(1) denote an open unit ball such that B(1)(C) =
{u € C | v(u) > 0}. The generic fiber of B(1) is equal to B(1). Then, the space X;(1)
is identified with B(1). Let F"" denote the universal formal Og-module over X;(1).

In this subsection, we choose a parametrization of X;(1) ~ B(1) such that the
universal formal Og-module has a simple form. Let F be a formal Og-module of
dimension 1 over a flat Og-algebra R. For an invariant differential w # 0 on F, a
logarithm of F means a unique isomorphism F: F = G, over R ® K with dF = w
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(cf. [GH, 3]). In the sequel, we always take an invariant differential w on F so that a
logarithm F' has the following form:;

F(X)=X+Y_ f;X" with f; e RO K.

i>1

i

Let F(X) = Y .50 fiX? € K][[u, X]] be the universal logarithm over Og|[u]].
By [GH, (5.5), (12.3)?_Pr0position 12.10], the coefficients {f;}i>o satisfy fo = 1 and
wf; = Zogjgz'—l fjvgij for ¢« > 1, where v1 = u, v = 1 and v; = 0 for ¢ > 3. Hence, we
have the following;

u 1 uq+1 1 uq2+q+1
(11) f0:17 f1:_7 f2: 1+ 7f3:_ u+uq2+ P
w w?

@ @
By [GH, Proposition 5.7] or [Ha, 21.5], if we set
(12)  FUNXY) = FAFX) + F(Y), [o]me(X) = F@F(X)

for a € Ok, it is known that these power series have coefficients in Ok [[u]] and define
the universal formal Ox-module F*™ over O, [[u]] of dimension 1 and height 2 with
logarithm F(X). We have the following approximation formula for [c] zuniv (X).

Lemma 1.1.  Let the notation be as above. Then, we have

(@] puniv (X) = @X + uX9 4+ X7 mod (uwX?,uX?,wX?,XCH),

Proof. This follows from a direct computation using the relation F'([co]zuniv (X))
wF(X) and (1.1).

ool

In the sequel, 7"V means the universal formal Og-module with the identification
X1(1) ~ B(1) given by (1.2), and we simply write [a], for [a]zuiv. The reduction of
(1.2) gives a simple model of 3 such that

(13) X+4sY =X+Y, [(Jo(X)=C(X for € € pg_1(0k), [@]s(X) = X9

We put
Ay, = O gl Xo])/ ([ (Xn) /[@"~Hu (X))

Then there is a natural identification
(1.4) X1 (p") ~ Spf 2,

that is compatible with the identification X1 (1) ~ B(1). Note that, under (1.4), we have
x(P"V) = X, for the level structure PV of the universal family over X;(p™). The
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Lubin-Tate space X;(p™) is identified with the generic fiber of the right hand side of
(1.4). We write X(1) for X1(1).
§1.2. Group action on Lubin-Tate curve

In this subsection, we recall a left action of (Wx x D*)? on the space X;(p")c.

First we recall an action of OB on X;(p™). Let K5 be the unramified quadratic
extension of K. Let kg be the residue field of K5, and o € Gal(K2/K) be the non-trivial
element. The ring of integers Op in D has the following description; Op = Ok, ®¢Ok,
with ¢? = @ and ap = pa’ for a € Ok,. The maximal ideal pp is generated by ¢.
We define an action of Op on ¥ by ((X) = (X for ¢ € pg2_1(Ok,) and o(X) = X1.
Then this gives an isomorphism Op ~ End(X) by [GH, Proposition 13.10]. Note that
the action of the subring O C Op on ¥ coincides with the Og-multiplication (1.3) on
>

Let d = dy + ¢dy € OF, where dy € O and dy € Ok,. By the definition of the
action of Op on 3, we have

(1.5) d(X) = di X + (d2X)? mod (X7).

We take a lifting d(X) € O, [[X]] of d(X) € ko[[X]]. Let F; be the formal O-module
defined by

FiX,Y) = d(F(d1(X),d (V). lalz, (X) = d(falu(d (X))
for a € O. Then, we have an isomorphism
d: Fuiv =, Fi (u, X) = (u, d(X)).
By [GH, Proposition 14.7], the formal Ox-module F; with
n Ly by Funiv g gee DO, g e
gives an isomorphism
(1.6) d: X(1) — X(1),
which is independent of a choice of a lifting J, such that there is the unique isomorphism
i dF s Fr (u,X) o (u, (X))

satisfying j(X) = X mod (w,u), where d*F"V denotes the pull-back of F™™V over
X(1) by the map (1.6). Hence, we have

(1.7) [@]a- Funi (57H(X)) = 57 ([w] 7, (X))
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On the other hand, we have an isomorphism

~

d*F S FUY (u, X e (d(u), X).
Furthermore, under the identification (1.4), we consider an isomorphism

(1.8) Ya: Z1(p") — X1 (0"); (u, Xp) = (d(w), 5 (d(X0))),

which depends only on d as in [GH, Proposition 14.7]. We put d*(X) = j~1(d(X)). We
define a left action of d on X1(p™) by [(F,¢, P)] — [(F,t0dt, P)]. Then this action
coincides with 4 by the definition.

By (1.5), we have

(1.9) dNX)=d ' X —d; UM diX 7 mod (w, X9)

in O, [[X]]-
Next, we recall a left action of Wi = {(o,907 ") € Wik x D*} on the space
Xi(p™)c. The formal scheme 21, is the base change to Oz, of the formal scheme

Ql;z = OKHuvXn]]/([wn]u(Xn)/[wn_l]u(Xn))-

Therefore an element of o € Wi induces (¢71)* : X1(p")c — X1(p™)c. We define an
action of (0,7 ") € Wi by (c71)*.

Remark 1.2.  Usually, we define an action of ¢ € Wx on LTi(p")c as the
composite of (¢ 71)* and ¢" . Hence, the above definition is compatible with the usual
one.

In the sequel, we simply write X;(p™) for X;(p")c, and sometimes consider the
action of W, as the action of Wx by the identification Wx = Wi 0 — (0,07 7).

§2. Semi-stable covering of X;(p)

In this section, we construct a semi-stable covering of Xj(p). In the subsection
2.1, we prove that X;(p) is an open annulus and, as a result, construct its semi-stable
covering. In the subsection 2.2, we calculate the action of (Wx x D*)" on the semi-stable
reduction of X (p).

§2.1. Analysis of the space X;(p)

In this subsection, we prove that the space Xj(p) is isomorphic to an open annulus
of width 1/(q —1).
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Lemma 2.1.  Let L be a complete subfield of C with a discrete valuation. Let W
be a smooth rigid analytic space over L of dimension 1 and A an open annulus over L.
Let f: W — A be an L-morphism. Suppose that there is an admissible affinoid covering
{U;}ier of A such that f~1(U;) is an affinoid for any i € I. For any circle C in A, let
Lo be a finite extension of L over which C' reduces to G,,. Suppose that, for any circle
C in A, the inverse image f~1(C) is an affinoid and reduces to G,, over the field L¢,
and furthermore f induces an isomorphism f~1(C) =5 C. Then, f is an isomorphism.

Proof. In this proof, we regard rigid analytic spaces as adic spaces. We note
that the quasi-compact admissible open subsets of a quasi-separated rigid space over a
complete non-archimedean field correspond to the quasi-compact open subsets of the
corresponding adic space (cf. [Hu, p. 43]).

Let C be any circlein A. Let Ac and Aj-1(¢y be the affinoid algebras corresponding
to C and f~1(C). We write A% and A;’c_l ©) for the subalgebras consisting of the power
bounded elements of Ac and Ay-1(¢y. Let pc be the maximal ideal of Or.. By the
assumption that f—1(C)—C is an isomorphism, we can see that Ay — A;’c_l(c) is an
isomorphism, because Az and A}—l(C) are po-adic complete separated and torsion free
over Op. Therefore, f~}(C) — C is an isomorphism. Hence, we see that f becomes
an isomorphism over an open neighborhood of any classical point of A. The morphism
f is etale by [Hu, Proposition 1.7.11].

We take i € I and x € U; arbitrarily. By [Hu, Lemma 2.2.8], there is a connected
affinoid neighborhood U of = in U; such that f~1(U) — U factors through f~1(U) —
Z — U where the first morphism is an open immersion and the second morphism is finite
etale. Then it suffices to show that f~!(U) — U is an isomorphism. We take a finite
etale connected covering V' of U such that Z x V decomposes into a finite disjoint union
HjeJ V; where V; is a copy of V for any j € J. We note that f~(U)xyV — V becomes
an isomorphism over an open neighborhood of any classical point of V. In particular, it
induces a bijection between the classical points. Since the image of f~}(U) xy V. —V
is a quasi-compact open subset of V' and contains all classical points of V', the morphism
7Y U) xuy V = V is surjective.

We show that the image of the open immersion f~}(U) xyV — ZxyV & e/ Vi
is contained in V; for some j € J. Otherwise, {(f~}(U) xu V) N V,}jes gives a non-
trivial quasi-compact open covering of V. For any different 7, 7’ € J, the intersection of
(f7Y(U) xg V)NV, and (f~1(U) xy V) NV, is empty, because it is a quasi-compact
open subset of V' that contains no classical point. This contradicts the connectedness
of V.

Hence, f~1(U) xyy V. — V is an isomorphism, because it is a surjective open
immersion. By faithfully flat descent, we see that f~!(U) — U is an isomorphism. [

Let (u, X1) be the parameter on X (p) under the identification (1.4). For rational
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numbers 0 < a < b, let A(p~?, p~?) denote an open annulus such that A(p~°,p~2)(C) =
{r € C|a<v(xr) <b}. The width of an open annulus A(p~?,p~?) means b — a. For a
rational number r > 0, let C[p~"] be a circle such that C[p~"](C) = {x € C | v(z) =r}.
A closed annulus in A(p~%,p~%) means an affinoid defined by a’ < v(z) < b’ for the
parameter z of A(p~%,p~%) and a < a’ < b’ < b.

Lemma 2.2.  We have the following:
1. If v(X1) < 1/(¢* — 1), we have v(X1) = v(u)/(q(q — 1)) and v(u) < q/(q+ 1).
2. If v(X1) = 1/(¢®> — 1), we have v(u) > q/(q + 1).
3. If v(X1) > 1/(¢% — 1), we have v(X1) = (1 —v(u)) /(g — 1) and v(u) < q/(q+ 1).
4. We have v(X;1) < 1/(qg—1).
5. We define f: X1(p) — A(p_q%, 1) by (u, X1) — X1. Then, f is an isomorphism.

Proof. We prove 1. By v(X1) < 1/(¢* — 1), we have v(u) = U(Xf(q_l)) by Lemma
1.1 and hence v(u) < ¢/(g¢+1). Therefore, the assertion 1 follows. The assertions 2 and
3 also follow immediately from Lemma 1.1. The assertion 4 follows from 3.

We prove 5. First we note that the inverse image under f of any closed affinoid is
affinoid by the assertions 1, 2 and 3. We choose a rational number 0 < r < 1/(¢ — 1).
Set C = C[p~"]. Now, we compute the reduction of the inverse image f~1C and the
induced map f: f~1C — C by f. Let a € O¢ be an element such that v(a) =r. We
define £ by

5= dla=t)if 0 <r < 1/(¢% — 1),
) w/att i 1/(P 1) <r<1/(g—1).

On f~1C, we set u = Bug and X; = ax;. Then, by Lemma 1.1, on f~1C, the function
ug is written as follows;

_gdla=D) (mod 04) if 0 <r < 1/(¢*>—1),
(21) o= —af Y — a7 @V (mod 04) if r=1/(¢> 1),
@D (mod 0+) if 1/(¢*—1)<r<1/(g—1),

with some unit ¢ € Og. Hence, the reduction of f~'C is isomorphic to G,, =
Spec k*[z=1] by (2.1). We also have f: f~1C' ~G,, — C ~ G,, = Spec k*[zT'];z; —
x1. Therefore, f is an isomorphism by Lemma 2.1. O

Let X be the affinoid in X;(p) defined by v(X;) = 1/(¢*> — 1). By the proof
of Lemma 2.2, the reduction of X is isomorphic to G,,. Then, the space X;(p) is a
basic wide open space with the underlying affinoid X by Lemma 2.2. The covering
Ci(p) = {(Xi1(p),X)} is a semi-stable covering. A semi-stable covering determines a
semi-stable model by [IT1, Theorem 3.5]. The reduction of the semi-stable model of
X1(p) determined by Cy(p) is isomorphic to P1L.
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§2.2. Group action on the reduction X

In this subsection, we give a description of the action of (Wx x D*)? on the
reduction X.
Let & be an element such that x%°~! = w. On X, we change a variable by X; = ka;

with v(z1) = 0. Then, we identify the reduction X with G,, = Spec k*[zF!].

Lemma 2.3. Let d € OF. We write d for the image of d by the canonical
surjection OF — (Op/pp)* =~ k5. Then, the element d acts on the reduction X as
follows;

X = X; z; — dz;.

Proof. By (1.9) and j(X) = X (mod (w,u)), we obtain d*z; = dx; (mod 0+).
Hence, the required assertion follows. O

Remark 2.4. Let A € (Og/p")*. Let A act on X1(p™) by [A]: [(F,¢, P)] —
[(F,t, [N £(P))], which is called the diamond operator. This action of [A] corresponds
to the action of A € O C OF given in the subsection 1.2. Hence, for A € (Ok/p)*,
the action of [A] on the reduction X is computed by Proposition 2.3.

In the following, we briefly recall an action of the Weil group Wi on the reduction
of an affinoid over C, and compute the action of W on the reduction X.

Let Z be a reduced affinoid over C with an action of Wg. For P € Z(C), the image
of P under the natural reduction map Z(C) — Z(k*°) is denoted by P. The action of
Wx on Z is a homomorphism wz: Wx — Aut(Z) characterized by o(P) = wz(o)(P)
for 0 € Wg. For 0 € Wk, we simply write r, for v(o) € Z defined in the introduction.

Lemma 2.5. Let o € Wg. Let k be an element such that KTl = . We write
o(k) = (ok with (5 € pg2_1(C). Then, we have

To

wx(0): X = X; x1 — (eal

Proof. Let P € X(C). By X1 = kxi, we have kx1(c(P)) = Xi(c(P)) =
o(X1(P)) = o(k)o(z1(P)). Hence, we acquire z1(c(P)) = (,o(x1(P)). Since we
have o(z1(P)) = z1(P)? " (mod 0+), we obtain z;(c(P)) = (ox1(P)4 " (mod 04).
Hence, the assertion follows. O

Let Z act on k5 by n: ( — ¢ 4" for n € Z. This action factors through the canonical
surjection Z — Z/27Z. We consider the semidirect product k5 x Z with respect to this
action and the homomorphism

0: (Wi x D)0 = kX x Z; (0,dp™ ") = ((od, rs).
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Corollary 2.6.  Let the notation be as above. Furthermore, let k' x 7 act on X
by (¢,r): X — Xomy s Cad | for (C,r) € kS x Z. Then, the group (Wi x D*)° acts
on X through ©.

Proof. The required assertion follows from Lemma 2.3 and Lemma 2.5. O

§3. Stable covering of X;(p?)

In this section, we calculate the stable reduction of X;(p?). In the subsection 3.1,
we define an affinoid subspace Y31 C X;(p?) and compute its reduction. The reduction
of Y is defined by

2y —xy? =1
with genus g(g—1)/2. In the subsection 3.2, the space X1 (p?) is proved to be a basic wide
open space with the underlying affinoid Y; ;. Namely, the complement X; (p?)\Y1; is

a disjoint union of open annuli. We also determine the width of each open annulus. In
the subsection 3.3, we compute the action of (Wx x D*)Y on ?1’1.

§3.1. The reduction of the affinoid Y, ;

In this subsection, we define the subspace Y ; in the Lubin-Tate curve X; (pz) and
compute its reduction in Proposition 3.2.
Let (u, X2) be the parameters on X (p?) under the identification (1.4).

Definition 3.1.  We define an affinoid subspace Y11 C X1 (p?) by the following

conditions;

Lt
(> -1)

In the following, we compute the reduction of the space Y ; defined above. We

! (X1) = 2q

v(u) = ——, v —_
(u) qg+1 g —1

v(X2) =

choose an element ~ such that ’y‘I(qz_l) = w. On Y, ;, we change variables by u =
Aala=Dy X, = 'yqle_l, Xo = yag with v(ug) = v(z1) = v(z2) = 0. By [w]u(X1) =0,
[ww]u(X2) = X7, and Lemma 1.1, we acquire congruences

(3.1) uy = —z47" (mod 0+),

1 2
(3.2) r] =a% +upxrd (mod 04).
By substituting (3.1) to the right hand side of (3.2), we have
(3.3) 1= a:lajgz — (x122)?  (mod 0+).

Finally, changing a variable by

1
(3.4) t = w,
T2
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we acquire 1 = t¢ (mod 0+) by (3.3). Hence, by (3.4), the reduction Y ; is defined
by

xdt — zot? = 1.

Hence, we have proved the following proposition.

Proposition 3.2.  Let the notation be as above. Then, the reduction of the affi-
noid space Y11 is defined by xdt — xot? = 1.

§3.2. Analysis of the space X;(p?)

In this subsection, we analyze the wide open space X;(p?). As a result, we will
prove that the space X;(p?) is a basic wide open space with the underlying affinoid
Y 1. In other words, the complement X;(p?)\Y1; is a disjoint union of open annuli.

Let (u, X2) be the parameter on X;(p?) as before. By comparing the valuations
of the main terms X, Xéf, uXJ and @wXs of the equation X; = [w]y(X2), we define
several subspaces in X (p?) below.

Definition 3.3.  Let the notation be as above.
1. Let Wy denote a subspace of X;(p?) defined by v(Xl) v(uXg) < v(Xéf).
2. Let Wp,x denote a subspace of Xj(p?) defined by v(XJ ) v(uXd) < v(Xy).
3. Let W, denote a subspace of X;(p?)\Y1,1 defined by v(X7) =v(X 2).

We have v(X;1) > v(u) on Wy U W . Hence, by considering [w],(X1) = 0, we
2
have v(wX;) = v(uX{) < v(X{ ) on the union.

Lemma 3.4.  Let the notation be as above. Then, we have X1(p?) = Wy U
Wix UWoo UY 1.

Proof. Let (u, X2) € X1(p?)\Y1,1. We consider X; = [w]y(X2). Since we have
v(X1) <1/(¢—1) by Lemma 2.2.4, we acquire (u, X2) € WoUWx UW .. Hence, the
required assertion follows. O

Lemma 3.5.  Let the notation be as above.
1. We have v(u) < 1/(g+ 1) on Wyx.
2. We have v(X32) < 1/(q(¢* — 1)) on W
8. If v(X3) < 1/¢*(¢? — 1), we have v(X3) = v(u)/(¢3(q — 1)) and v(u) < q/(q+ 1) on
W.
4. If v(X2) = 1/¢%(¢* — 1), we have v(u) > q/(q+ 1) on Wy,
5. If v(X2) > 1/¢%(¢® — 1), we have v(X3) = (1 —v(u))/q*(¢ — 1) and v(u) < q/(qg+1)
on W
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Proof. We prove 1. As mentioned before, we have v(X;) = 1_q+(1u) on W;x. By
the definition of Wy x, we have v(X3) = v(u)/(q(¢ — 1)) on Wyx. By U(X2q2) < v(X1),
we obtain v(u) < 1/(g+1) on Wyx.

We prove 2 by contradiction. Assume that there exists a point P € W, such
that v(X2(P)) > 1/(q(¢*> — 1)). By v(X1(P)) = ’U(XQ(P)q2), we acquire v(X1(P)) >
q/(¢> — 1). In particular, we have v(wX;(P)) < v(Xl(P)qz). Hence, by considering
[@w]u(X1) = 0, we acquire v(wX;(P)) = v(u(P)X;(P)?) and hence v(X;(P)) = (1 —
o(u(P)))/(q —1). By v(X:(P)) > ¢/(¢* — 1), we obtain

(3.5) v(u(P)) <1/(g+1)

and v(X2(P)) = (1 — v(u(P)))/(¢*(q — )) In particular, we have v(u(P)X2(P)?) <
v(wXs(P)). Hence, we acquire v(Xa(P)4) < v(u(P)X2(P)9) by considering [w],(Xs) =
X1. Therefore, we have v(X2(P)) = (1 — v(u(P)))/(¢*(q¢ — 1)) < v(u(P))/(q(q — 1)).
This implies that v(u(P)) > 1/(¢+ 1). By (3.5), we acquire v(u(P)) = 1/(¢+ 1) and
hence v(X1(P)) = q/(¢*> — 1) and v(X2(P)) = 1/(q(¢* —1)). This means that P € Y7 ;.
Since we have Wy, MY 1 = 0, this is contradiction.

Since v(X1) = v(X§ ) on W, the assertions 3, 4 and 5 follow from 1, 2 and 3 of
Lemma 2.2. O

Proposition 3.6.  Let the notation be as above. Then, the space Wyx has ¢ — 1
connected components {W¢}ccpx. Furthermore, the spaces {Wa}acrufoo} are open
annuli with width 1/(q(¢® — 1)).

Proof. We choose a ¢3-th root of w, for which we write w'/ . We prove the
required assertion for Wy. On Wy, we have

(3.6 o) = o) = T o) <104 1),

We consider X| 7 x [w],(X;) = 0. By Lemma 1.1 and U(Xf(q_l)),v(uw) > ’U(Xg(q_l)),
we obtain

(3.7) u=—w/XI (mod v(XEV)4)
on Wy. By X? x ([w]u(X2) — X1) = 0, Lemma 1.1 and v(uwXd) > v(X§2), we have
(3.8) X0 — X0 X = XU'XE + wX0' X, (mod v(XET XS ) 4)

on Wy. We set t = X; + w'/9X,. By substituting (3.7) to the left hand side of (3.8),
we acquire

(3.9) = X0'X$ + wX0'X,  (mod v(XTTTXY)4)
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on W. Hence, we have
(3.10) o(t) > b= min{v(XI X)), v(wXI " X2)} /g.
Note that, by (3.6), we have

2¢° — 2q + 1 — ¢*v(u)
q(qg —1)

29— 1 —(¢? —1
,U(Xi]—lX2q2) _ q (Z _+1q ),U(u), 'U(WXil_lXQ) _

on Wy. Hence, by the definition of b in (3.10), we have

_ _ . 2¢° -1 3% — 2
(29—3)/qa xa—2 _

v(w X —|—2b—m1n{ v(u),
( 2 ) q(¢—1) qlg—1) (u)

2¢3 — 3¢+ 2 g v(u)}
(g —1) q—1

on Wj. We can directly check that the right hand side is greater than v(X7{ _IXQqZ) on
2

Wy. Therefore, by (3.10), we obtain v(w@4-3/4X37%2) > (X' XT). Therefore,

we obtain

wa_le = w(—wl/ng +) Xy =w (w(q_l)/ng_l — (¢ — 1)w(q_2)/qX§_2t) Xo
= wa-D/axd 4 2 D/1xI7 1 (mod ’U(X](_]_ngz)-i-)

on Wy. Substituting this to the right hand side of (3.9), we acquire

(3.11) 11 = Xf_1X§2 + i V/axd 4 p2a-Y/axd  (mod v(Xf_lXSQ)—i-)

on Wy. We choose an element 8 € O¢ such that 89 = w(24-1V/a 4 2a=1/45 Note
that we have v(8) = 2‘251 and v(wX? ' Xy) = qu(BXs) on Wy. Hence, we have
v(fX2) > bon Wy. We put t; =t — X2. By (3.10), we obtain v(t;) > b on Wy. By
v(p)+gb>1+qgb> v(Xf_lXéf) on Wy, we acquire

9 =19 4+ (BX2)? (mod v(X¥ XY )+)

on Wy. Substituting this and ¢ = t; + X5 to (3.11) and using the equality 57 =
wa=1/a 4 52(a=1/43 we acquire

(3.12) t9 = X9 x84 w2 D/axd ) (mod w(XY XY )+)

on Wy. We prove v(t;) = U(Xf_1X2q2)/q by contradiction. First, assume v(t1) <
v(Xf_ngz)/q. By (3.12), we have v(t?) = v(w> @ D/4X37't;). Hence, we obtain
v(ty) = v(w?9X,). But, this contradicts the assumption v(t;) < U(Xf_1X2q2)/q.
Secondly, we assume v(t;) > v(Xf_ngz)/q. By (3.12), we have v(Xf_lXQ‘f) =
v(w2@~D/ax37 ) and hence

2q — 1 ¢
— v
ql¢g—1) q—1

v(ty) = (u).
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But, this contradicts the assumption qu(t;) > v(X f_lXéf). Therefore, we have v(t;) =
2

v(X8'XT) /q and hence v(ww @ V/4XI 1) > v(t?) on Wy. Therefore, by (3.12), we

obtain

(3.13) = X9'XS (mod v(XTT X )+)
on Wy. We set f(X1,Xs) = X1 + (w'/9 — 8) X, and
(3.14) te = X1 X3 f (X1, X2) ™"
By (3.13) and (3.14), we obtain
(3.15) td =X, (mod v(Xy)+)
on Wy. Hence, we can define a morphism
FrWo = A(p Va1 =@ =1y (4 Xo) 5ty = X3 XIf(Xy, Xo) L

We show that f is an isomorphism. First note that the inverse image under f of any
closed affinoid is affinoid by (3.6) and (3.15). Let 1/(¢> — 1) <r < 1/(q(g— 1)) be a
rational number and C' = C[p~"]. By Lemma 2.1, it suffices to show that the induced
map f: f~1C—C is an isomorphism. Let o be an element such that v(a) = r. On
f~1C, we set u = wa‘q(q_l)uo, X1 =z, Xy = alw~ M/ Dgy and ty = aty. Then,
by (3.7), (3.14) and (3.15), we acquire

= —:El_(q_l),

U Ty = —x9, 1 =t¢ (mod 0+).

Hence, the reduction of f~'C is isomorphic to G,, = Spec ka‘c[toﬂ]. Therefore, the
required assertion follows.

We prove the required assertion for W,. By Lemma 3.5.2, we can define a mor-
phism f: Woo — A(p~ Y@@ =1) 1) by (u, X3) — X5. We show that f is an isomor-
phism. First note that the inverse image under f of any closed affinoid is affinoid by
3, 4 and 5 of Lemma 3.5. We choose a rational number 0 < 7 < 1/(q(¢* — 1)) and set
C = C[p~"]. By Lemma 2.1, it suffices to show that the induced map f: f~1C — C is
an isomorphism.

Let a be an element such that v(«) = r. We define 5 as follows;

Cfaf@ i< <1/(¢%(¢? - 1)),
T w/a @1/ (2~ 1)) < < 1/(q(¢? — 1)).

On f~1C, we change variables by u = Bug, X1 = aq2x1 and X5 = axs. Then, on f~1C,
we obtain the same relationships between ug and x; as (2.1). Furthermore, by Lemma

1.1, we acquire z; = xg2 (mod 0+). Hence, the reduction of f~1C is isomorphic to
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G = Spec k*°[zF'] and the map f: f~1C — C ~ G,, = Spec k*[zF'] is given by
r9 — 9. Hence, the required assertion follows.

We prove the required assertion for Wyx. We choose a (¢ — 1)-th root of w,
for which we write w'/(9=1). Note that we have v(X;) = (1 — v(u))/(¢ — 1) and
v(X2) =v(u)/(g(g —1)). By X; % x [w]u(X1) =0 and Lemma 1.1, we obtain

(3.16) u=—w/X (mod v(u)+).
By X{ x ([@]u(X2) — X1) =0, Lemma 1.1 and Lemma 3.5.1, we acquire
(3.17) (X1 X+ u(X1X2)2=0 (mod q/(q—1)+)

on Wyx. Note that
1 v(u
v(u) + qu(X1X2) = v(u) + ¢ (_ _ Q) __ 4

on Wyx. Hence, by substituting (3.16) to (3.17), we obtain

(X1 X)) —@X1X] =0 (mod ¢/(¢g—1)+)
on W, x. Hence, on W x, we acquire
(3.18) X1 X4 = (oY (mod 1/(q—1)+)

with some ¢ € pq—1(Or). We write W, for the subspace of Wyx on which we have
(3.18). We define a morphism f: Wy — A(p~ /@@ =1) 1) by (u, X5) — Xs. Then, we
can prove that f is an isomorphism in the same way as the case for W,,. We omit the
details. O

By Proposition 3.2 and Proposition 3.6, the space X;(p?) is a basic wide open
space with the underlying affinoid Y ;. Since the reduction of Y ; has positive genus
by Proposition 3.2, the covering C;(p?) = {(X1(p?),Y1.1)} is a stable covering. The
reduction of the stable model of X;(p?) determined by C;(p?) is isomorphic to ?i,l'

§3.3. Group action on the reduction ?1,1

In this subsection, we calculate the action of (Wg x DX)0 on the reduction ?1’1.
First, we compute the action of OF on the reduction Y1

Lemma 3.7. Let d € OF. We write d for the image of d by the canonical
surjection OF — (Op/pp)™ =~ k5. Then, the element d acts on the reduction ?1,1 as

follows;
?1,1 — ?1,1; (CCQ,t) — (CZCCQ,CZ_qt).
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Proof. By (1.9) and j(X) = X (mod (w,u)), we obtain
d*ry =d 'z, d*zy =dry  (mod 04).
By (3.4), we have d*t = d—9 (mod 0+). Hence, the required assertion follows. O

Remark 3.8. Let A € (Of/p?)*. Then, the action of the diamond operator )]
on ?1,1 is calculated by Lemma 3.7 by the same reason as Remark 2.4.

Secondly, we compute the action of Wg on the component ?1,1.

Lemma 3.9. Let 0 € Wg. We choose v as in the subsection 3.1. We write
o () = &y with & € pgq2—1)(C). Then, we have

le’l(U): ?1’1 - ?171; (ant) = (goxq_ ’ ,fgqtq_w).

Proof. We use the same notation as in the subsection 3.1. Let P € Y; ;(C). Since
we set Xo = vz, we have yza(o(P)) = Xo(o(P)) = 0(X2(P)) = o(v)o(x2(P)). Hence,
by o(x2(P)) = 29(P)? 7 (mod 0+4), we acquire z3(o(P)) = &xa(P)4 " (mod 04).
In the same way, we obtain z1(o(P)) = & 'a1(P)? " (mod 04). By (3.4), acquire
t(o(P)) = &9 (P)4 " (mod 04). Hence, the assertion follows. O

—ro

Let the notation be as in Lemma 3.7 and Lemma 3.9. Let k5 X Z be the semidirect
product as in the previous section. We consider the homomorphism

Q' (Wg x DX)° = kX xZ; (0,do™ ")+ (€5d, 75).

Corollary 3.10.  Let the notation be as above. Furthermore, let k&' x Z act on
Y1 by (6,7): Y11 — Yiq;(w2,t) — (€2 Lenay for (&,1) € ky X Z. Then, the
group (W x D*)° acts on ?1,1 through ©’.

Proof. The required assertion follows from Lemma 3.7 and Lemma 3.9. O
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