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Some remarks on field towers arising from
pronilpotent universal monodromy representations

By

Naotake TAKAO*

Abstract

This article concerns Oda’s problem on pronilpotent monodromy representations associ-
ated to universal families of curves (called pronilpotent universal monodromy representations
for short). In the first half part, we review several known results and their recent applications,
and in the second half part, we present some new results obtained by the author.

§1. Introduction

There are two purposes of this article. Ome is to introduce some problems on
field towers (Ihara towers (Definition 1.7)) arising from pronilpotent universal mon-
odromy representations and associated graded Lie algebras (Deligne-Thara algebras
(Definition 1.8)), especially Oda’s problem (Problem 1.10). The other is to report
some recent results on Oda’s problem obtained by the author.

Let ¢ be a prime. The quotient of the image of the outer representation of the
absolute Galois group of QQ in the pro-¢ geometric fundamental group of a hyperbolic al-
gebraic curve by the subgroup which comes from the mapping class group is determined
by the type of the curve (namely, the genus g and the number of cusps r), and does
not depend on the moduli of the curve, from the connectedness of the moduli stack.
This quotient has a natural central filtration induced by the weight filtration of the
fundamental group of the curve. On each graded piece (which is a finitely generated
Zg-module) of the graded Z,-Lie algebra associated to this filtration, Gal(Q(ue=)/Q)
acts by conjugation.

Hypothetically, this graded Lie algebra tensored with Q, (with Galois action) might
be related with the f-adic étale realization of a mixed Tate motif over Z. In conjunction
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with this hypothesis, Oda conjectured that the graded pieces in odd degrees (over Zy)
should all vanish (cf. [O1] Conjecture A). Subsequently some related problems were
submitted in the middle of the 90’s.

1. (Nonfiltered Oda’s problem) Is this quotient of the image of the outer represen-
tation independent of the type of the curve? This problem was solved affirmatively by
Yasutaka Thara, Makoto Matsumoto, Hiroaki Nakamura, Ryoichi Ueno and the author
when the curve is affine (i.e. » > 0), and finally it was generally solved by the author.
Another proof was given by Yuichiro Hoshi and Shinichi Mochizuki later.

2. (Filtered Oda’s problem) Is the above graded Z,-Lie algebra tensored with Qy
independent of the type of the curve ? This problem was also solved affirmatively by
Yasutaka Ihara, Makoto Matsumoto, Hiroaki Nakamura, Ryoichi Ueno and the author.

However, the conjecture by Oda mentioned above has not been solved yet. The
author thinks that Thara towers and Deligne-Ihara algebras might contain arithmetically
interesting phenomenon (cf. Theorem 1.11). So the author studies a certain problem
(Problem 1.10) posed in [NTU] that generalizes the conjecture and problems mentioned
above. This generalized problem is called (generalized) Oda’s problem in this article.

The organization of this article is as follows: In §1.1 the formulation of Oda’s
problem is introduced. In §1.2 known results on Oda’s problem are stated. In §1.3 their
applications are given. More concretely, in §1.3.1 an obstruction to the surjectivity
of the Johnson homomorphism in low-dimensional topology is discussed. In §1.3.2 a
certain result of Grothendieck conjecture type by Hoshi, which can be viewed as a
genus zero analogue of Mochizuki’s Tate conjecture type theorem for non-CM elliptic
curves, is stated. In §1.3.3 a certain result related to anabelian property of the moduli
space of curves by lijima is given. In §2 some recent progress obtained by the author is
reported. More specifically, we prove that the m-th graded piece of the Deligne-Thara
algebra vanishes if m < 3 or ¢ = 1, m = 5 (Proposition 2.3), is independent of the
type of the curve if £ > m (Corollary 2.6), and vanishes if ¢ = 1, m = 1 (mod 2) and
¢ > 2 (Proposition 2.4 (1)).

§1.1. Formulations

Let ¢ be a prime. We begin with the definition of pro-¢ universal monodromy
representations. Let g, r € Z>¢ such that 2g — 2 +r > 0. By M,,, we denote the
moduli stack over Q of (g,r)-curves, that is, proper smooth geometrically connected
curves of genus g with ordered disjoint r sections. We sometimes refer to the pair (g,r)
as the type of the curve. Then we have a short exact sequence ([02])

Pg.,r

1= m(My,®0Q) = m(M,,) = Gg — 1.

Here m1(S) stands for the étale fundamental group of a scheme/an algebraic stack S.
And, for a field K, K is an algebraic closure of K and G is the absolute Galois group
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of K.
Let z : Spec(k) — M, , be a point, where & is a field of characteristic 0. Then we
have a short exact sequence

1—m(X) = m(Mgrr1) = T (Mg,) = 1,
where k(z) 1= K, X 1= Mg 11 Xpm,, Spec(k(z)) and X 1= X Xgpec(u(z)) SPec(k(z)).
This short exact sequence induces a continuous group homomorphism

as follows:

1—» mX) —=mMgrp)— m(My,) —1
1 O 1 O 1

1 — Inn(m (X)) — Aut(m1 (X)) — Out(m (X)) — 1
1 O 1 O 1

1 — Inn(7{ (X)) = Aut(74(X)) — Out(w} (X)) — 1,

where all rows are exact. Here 7¢(S) denotes the maximal pro-£ quotient of 71 (S) for
a scheme/an algebraic stack S.

Definition 1.1 (Pro-/ universal monodromy representation).  The continuous ho-

()
x

momorphism P, regarded as an outer representation of m (M), is called the pro-¢

universal monodromy representation associated to x : Spec(k) = My ...

Remark 1.2 (The kernel and image of universal monodromy represetations).
Ker(q):(f)) C m(My,r), hence also Im(@gf)) ~ (Mg’r)/Ker(@c(f)), are independent of
the choice of x, and depend only on (g,r) and .

Remark 1.3 (Galois representations and universal monodromy represetations).
For z : Spec(k) — My, the pro-£ outer Galois representation @%) = gogf) DG —
Out(74(X)) factors through . Especially, gogf) = 0% when (g,7) = (0,3) and

k(z) = Q.

Next we define truncated outer representations, Thara towers of type (g,r), and
Deligne-Thara algebras of type (g,r). We denote 7{(X) by II = II, . when the type of
X/k is (g,r). (Note that 7¢(X) is determined up to isomorphism by the type of X/k
and /.)
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Definition 1.4 (Weight filtration).  The weight filtration {II(m)},,>1 of IT is de-
fined as follows:

IL,I0] - (all inertia subgroups),

[
T(m) = ([II(m), T(m")][m" +m" =m) (m = 3).

Remark 1.5.  This filtration is central. When r = 0,1, the weight filtration coin-
cides with the lower central filtration. When ¢g = 0, {II(2m — 1)},,>1 = {II(2m) },;>1
coincides with the lower central filtration.

Definition 1.6 (Truncated outer representaion).
For each m > 1, the continuous homomorphism

P (m) : m (My,r) = Out(II)/Out®(II) (m)
induced by <I>§3£) is called the m-th truncated representation, where

Out®(IT) = Aut®(II)/Inn(II),

Aut®(IT) = {f € Aut(Il)| f preserves the conjugacy class of each inertia subgroup},
Out(IT)(m) = Aut®(II)(m)Inn(IT) /Inn(II),

f(w) =w (mod II(1 +m)) for any w € II, }

Aut®(I)(m) = {f € Aut®(II) f(v)=v (mod II(2 +m)) for any v € T1(2)

The kernel and the image of o) (m) are determined by (g,r), ¢ and m (and in-
dependent of the choice of x). We write <I>;(f)(oo) for ¢ and Ggr(m) = Gg{;(m) for
pg’,,(Ker(@;(f) (m))) (1 <m < o00). {Gyr(m)}m>1 is a central filtration of Gy (1) and

ﬂ;;l Gy,r(m) = Ggr(00).

Definition 1.7 (Ihara tower of type (g,7)). We set

Q). = Q) (00) := @Cor (),
Q(e) (m) := Qs (M (;m > 1),

Thus we obtain a field tower Q@ € QA1) ¢ --- c Q¥ (m) c --- c QY) c Q,
which is an infinite sequence of infinite extensions, called the Thara tower of type
(g,r) in this article.

Definition 1.8 (Deligne-Thara algebra of type (g,r)).  We set

gry) "G := Gal(Q) (m +1)/Q4) (m)),
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which is a Z;-module on which Gal(Q(us<)/Q) acts by conjugation, and set
Gl“(g) GQ =D >1gr() GQ,

which is a graded Z,-Lie algebra, called the Deligne-Ihara algebra of type (g,r) in
this article.

We are interested in the following (a little vague)

Problem 1.9.  What structures/information do the Ihara tower and the Deligne-
Thara algebra have?

Especially, we are interested in

Problem 1.10 ((generalized) Oda’s problem).  Are the IThara tower and the
Deligne-Thara algebra (over Z;) independent of the type (g,r)?

§1.2. Known results

In this subsection known results on the problems mentioned above are collected.

Theorem 1.11 (Known results on Probem 1.9).
(1) (g [NTU]) Qyr(1) = Que)-

(2) ([AI)) (/2) = QEWY{0,1,00})). Here E®({0,1,00}) is the group of all higher
circular E um'ts.

(3) (e.g. [I1]) Qé{; is a pro-{ extension of Q(e) unramified outside .

(4) ([S], [B]) If £ is an odd regular prime, then Qé% is the maximal pro-€ extension of
Q(pe==) unramified outside £.

(5) (e.g. [NT], [I1], [N1]) grg ;mGQ is a finitely generated Zo-module. And gr(e)OG (=
Gal(Q(ue==)/Q)) acts on grg +"Go®z, Qo by conjugation via multiplication by x™,
where x : Gal(Q(pe=)/Q)) = Z, is the L-cyclotomic character.

(6) (e.g. [11]) gr((f%mGQ = {0} when m =1 (mod 2) orm € {2,4,8,12}, and gr(£)2mGQ
is a free Zg-module of finite rank, whose rank is denoted by ry,. (Thus, gr(g)szQ ~

Ze(m)®™™ as Gal(Q(pue)/Q)-modules.)

(7) ([01]) For m odd, gr{)" Gg @z, Qe = {0}. If £ > 2, grf{}*Gg = grii)’Go = {0}. If
>0, gr(g)?’GQ = {0}.

(8) ([HM], [B)) Gré%GQ ®z, Q¢ is a free graded Qq-Lie algebra generated by a suitable

set {op, € gr((f;sz@m >3, odd}, where o,, is often called the m-th Soulé element.
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(9) ([HM], [B], [S]) If € is an odd regular prime, then Gré%GQ is generated by {oy, €

gr(()%sz@m >3, odd} in (8).

(10) ([HM], [B], [S]) If ¢ is an irregqular prime such that the generalized Greenberg con-
jecture for Q(ue) holds, then Gr(()%(}@ is not generated by {0, € gr(()%QmG@m >
3, odd} in (8).

Theorem 1.12 (Known results on Problem 1.10).
(1) ([INTUJ,[N1],[M],[IN],[T],[HoMo]) g{; is independent of g and r.

(2) ([NTUJ,[N1],[M],[IN],[T]) {ng}(m)}mzl is independent of v, and almost indepen-
dent of g in the following sense :

Lm) > QY (m) > QY% (m) (9> 2),

@4 (m) : Q% (m)] < oc.

In particular, Grgf)rG@ ®z, Q¢ ~ Gré‘f%,G@ ®z, Qe

§1.3. Applications

In this subsection, we give some applications of Theorem 1.12.

1.3.1. The cokernel of Johnson homomorphism
At first, we introduce an application to low-dimensional topology. Denoting the
mapping class group of a topological surface of type (g,r) by P_S,f?p ) and the profinite

o —

completion of I‘gﬁp ) by I‘g?p ), the diagram

induces a Qg-linear map

T(g, 7 )m grmFgﬁp) ®z Q¢ — (Out®Grll),, ®z, Q,
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which is identified with the Johnson homomorphism tensored with Q. ([J],[N1]). Here
GrIl is the graded Z,-Lie algebra associated to the weight filtration {II(m)},,>1 (which
is central), and (Out“Grll),, is the m-th graded piece of the graded Z,-Lie algebra
OutGrIl consisting of all derivations of GrII which preserve all inertia (Lie) ideals,
divided by the inner derivation algebra InnGrII of GrII (cf. more strict definition in the
proof of Proposition 2.3). Theorem 1.12 implies

Corollary 1.13 ([N1] Theorem C, [T] Theorem 0.7).  If2g —2+r > 0, then
Coker(7(g,7)m) < gry'3Go ®z, Qr-

In particular,

dimg, Coker(7(g,7)m) > rankz, gri’sGo.
Here, 7y, = rankz,grg’3Gg (cf. Theorem 1.11(6)) is given by
1 m\ <
=2 () (e 1= (1),
d|m i=1

where a; (1 <14 < 3) are the roots of 23 — z — 1 (Theorem 1.11(8), [I2]).

—
N
w
W~

m 5|16 [ 7]8]9 10 11 12 13 14 | 15 16 17 18 19 | 20
Tm 0] 0 1 0 110 1 1 1 1 2 2 3 3 4 5 7 8 11 13

rm = rankz, grg’3 Go (1 < m < 20)

We have r,, > 0 for m #£ 1,2,4,6 and r,,, = 1.3™ when m is large enough. Thus,
in particular, 7(g, )2 is not surjective for m # 1,2,4, 6.

1.3.2. Galois-theoretic characterization of isomorphism classes of monodromi-
cally full hyperbolic curves of genus zero

Any one-pointed elliptic curve without complex multiplication over a number field
can be restored group-theoretically from the kernels of all the associated Galois repre-
sentations. More precisely,

Theorem 1.14 ([Mo] Theorem 1.1).  Let k be a number field, and E; elliptic
curves over k which admit no complex multiplication over Q (i = 1,2). Then the
following conditions are equivalent:

(i) Ey is isomorphic to Ey over k;

(ii) k(E1[N]) = k(E2[N]) for all natural numbers N.
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Here k(E;[N]) is the minimal finite extension field of k over which all N -torsion points
of E; are defined (i = 1,2).

In the proof of the following theorem, which can be viewed as a genus zero analogue
of Theorem 1.14, Theorem 1.12 is used to recover the type of a given curve group-
theoretically from the kernel of the associated pro-f outer Galois representation.

Theorem 1.15 ([Ho] Theorem A).  Let ¢ be a prime number, k a field finitely
generated over Q, and X; hyperbolic curves of type (0,1;) over k which are {-monodromically
full (i = 1,2) and satisfy certain additional conditions. Then the following conditions
are equivalent:

(i) Xy is isomorphic to Xy over k;

.. / 14
(i) Ker(p)) = Ker(¢$)).

1.3.3. The type (i.e. (g,r))-independency of the kernel of the Galois action
on the relative pro-/ completion of a mapping class group
Theorem 1.12 brings us

Theorem 1.16 ([li] Theorem 3.4).  Let £ be a prime number and k a field of
characteristic 0. Suppose that 3g — 3+ r > 0 and either (g,7) # (1,1) or £ =2. Then

Ker(Gr — Out(@) (w1 (My,r ® Q) = Ker(! 4, )):

for any point x : Spec(k) — M, ,.
As a corollary, the title of this subsection is partially concluded:

Corollary 1.17 ([Ii] Corollary 3.8).  Under the same condition as in Theorem 1.16,
we have

Ker(Gj, — Out(I'}% %)) C Ker(%p}%?\{o,l,oo})’

where I‘Zfﬁ‘ﬁ is the relative pro-¢ completion of Fg’fﬁp ).

Remark 1.18.  Very recently lijima announced that he succeeded in dropping the
assumption that either (g,7) # (1,1) or £ =2 in Theorem 1.16 and Corollary 1.17.

§2. Recent progress on Oda’s problem

Based on the results of the foregoing section, we turn to the study of the Ihara

tower and the Deligne-Thara algebra (over Zy). Oda conjectured that grffig?m_lGQ =
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(E)Qm 1G

{0} (]O1] Conjecture A). So one of our goal is to prove that gry, o is independent

of the type (g,r) and to 1nvest1gate the pos&ble dependency on (g,7) of gr(ﬁ)QmG@.

Note that there exist maps gr G@ — gr G@ — gr G@ as Zg-modules and
they are isomorphic after tensored Wlth Qy (Theorem 1.12 (2))

Proposition 2.1.  Let £ be a prime. Let g and r be non-negative integers such
that 2g — 2 4+ 1r > 0. For each 1 < mg < oo, consider the following conditions:

(a) Qf}(m) = %mw=$wmuSmSmm4»
(b) grﬁm(} = gr( )mG = gr GQ (1 <m < my),
(¢) QY (m) = QEA(m) (1 <m <mo+1),
(d) gri)"Gg S griy"Gg (1 <m < my),

() g1 G = gy} G (1 < m < my),

(f) grl 1 "G is torsion-free (1 < m < myg),

(g) grﬁq G@ﬁ*gr "Go (1 <m<mg+1).

Then we have (a) < (b) & (¢) & (d) & (e) & (f) = (g). If, moreover, mg = oo, then
(a)—(g) are all equivalent.

Proof. (a) = (b) is trivial. (b) = (a) follows (by induction on m) from the fact
that Q(E)( 1) = (g)( 1) = ((f;(l) (cf. Theorem 1.11(1)). (c) < (d) is proved similarly.
(a) < (c) follows from the fact that Q(Z)( ) D Q(Z)( ) D Q(E) (m) (Theorem 1.12(2)).
(d) = (e) is trivial. (e) = (f) follows from the fact that grog Gy is torsion-free (Theo-
rem 1.11(6)). (f) = (c) is proved by using that Gr GQ ®z, Qe = Gro’gGQ ®z, Q¢ (The-
orem 1.12 (2)), (E)(l) (E)(l) and the 1nduct10n on m. More precisely, suppose
that Q(ﬁ)( ) = (E)( ). Then it is clear that grli Gg — gréﬁg Gg. Moreover the
Zy-modules grli Gg and grg ; Gg have the same rank (Theorem 1.12 (2)) and are
torsion-free from (f). Hence gr( )mGQ o~ gr(z)mGQ. Hence Ql’l( +1) = (E)( +1).
This induction step, together with Q(e)( 1) = (()Lj) (1) (Theorem 1.11(1)), leads us to (c).
(¢) = (g) is trivial. Finally, we shall prove (g) = (c) when mg = co. We first show the
following

Claim 2.2. For i = 0,1, let H; be a profinite group with a central filtration
H, = H;(0) D H;(1) D --- D Hiy(m) D -+ such that (1) Hi(m) C Hy(m) for any
0 <m < o0, (2) Hi(c0) = Hp(o0), where Hi(co) = Np>oHi(m) (1 = 0,1), and
(3) gr™Hy; — gt Hy for any 0 < m < oco. Then we have Hy(m) = Ho(m) for any
0<m<oo.
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Proof. The proof has three steps. First, for 0 < m < n < oo, we prove the
assertion Py, (n) that Hy(m)/Hy(n) — Ho(m)/Hy(n) by induction on n. More precisely
P,,(m) is trivial. Suppose we have P,,(n). Then in the following commutative diagram

0—gr"Hy — Hi(m)/Hi(n+ 1) — Hi(m)/H1(n) — 1 (exact)

L O { O 4
0 —gr"Hy— Ho(m)/Hy(n + 1) — Ho(m)/Hp(n) — 1 (exact),

the left vertical arrow is surjective from assumption (3) and the right vertical arrow is
also surjective from the induction hypothesis. Hence the central vertical arrow is also
surjective, which means P,,(n + 1). Thus, for m < n, Hy(m)/H;(n) - Ho(m)/Hy(n).
Second, we can see Hi(m)/Hyi(oco) — Hy(m)/Hp(oo) by taking the inverse limit of
Hy(m)/H;(n) — Ho(m)/Hy(n) with respect to n. Third, in the following commutative
diagram

1 — Hy(oc0) = Hi(m) — Hy(m)/Hy(c0) — 1 (exact)

I o 1 0O 1
1 — Ho(oco) — Ho(m) — Ho(m)/Hp(oco) — 1 (exact),

the left vertical arrow is surjective from assumption (2) and the right vertical arrow is
also surjective from the conclusion of the second step. Hence we have Hy(m) — Ho(m).
In addition, we have Hy(m) C Hy(m) (assumption (1)). Therefore we have Hy(m) =
Hy(m), which is the conclusion of the claim. O

Applying this claim to Hi(m) = G1,1(m) and Ho(m) = Go z(m), we conclude (g)
= (¢) when mg = oo. More precisely, we have G11(m) C Gpsz(m) (1 < m < o0)
(Theorem 1.12 (2)), G1,1(00) = Go,3(c0) (Theorem 1.12 (1)) and grgli)lm(}@ — gr(()%m(}@
(1 <m < o0) (condition (g)). O

As gr(()gm(}@ = {0} when m =1 (mod 2) or m € {2,4,8,12} (Theorem 1.11(6)), if

Oda’s problem (Problem 1.10) is solved affirmatively, then grgf)ﬁn(}@ = {0} whenm =1
(mod 2) or m € {2,4,8.12}. In fact, Oda proved grg;«mGQ ®z, Q¢ = {0} for m =1
(mod 2), grgli)TlGQ = grg??(}@ = {0} when ¢ > 2, and grgﬁg(}@ = {0} when £ > 0
(Theorem 1.11(7)).

Next propositions generalize Oda’s result (Theorem 1.11(7)).

Proposition 2.3.
(1) For1<m <3 orm=5, grgljim(}@ = {0}.

(2) For1<m <3, gr{)"Gg = {0}.
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Proof. (1) For x : Spec(Q) — M 1, we have Ker(@;(f) (m))/Ker(q);(f) (m+1)) —»
grglj)lm(}@ and Ker(@;(f) (m))/Ker(q);(f) (m + 1)) — (Out°Grll),, from the definitions of
the filtrations (Definitions 1.6-1.8,§1.3.1 and [NT] (5.6)). (Here Il = II; ; = m(X) =
(o, B, 2|[a, B]z = 1) and X := M2 X, , Spec(Q).) Moreover we have the following
commutative diagram in which all rows and columns are exact and all homomorphisms

are compatible with the actions of GLy(Z¢) ([NT] (1.10.2), (1.13) and Theorem 1.14):

0 0
1 1

0— gr’1l — gr'Il — 0
1 R \J

0 — (Der®GrIl),, % Cp 3 gr™™211(—1) — 0
1 1 \J

0 — (Ouwt°GrIl),, —» C,, — gr™2II(-1)—0
1 1 \J
0 0 0

Here, (—1) denotes the twist by det ", where det : GLa(Z,) — Z, is the determinant
map. Writing A for o mod II(2) (€ gr'll), B for 8 mod II(2) (€ gr'll), Z for 2
mod TI(3) (€ gr?I),
Der¢GrlIl = {D € Der(GrII)|D induces an inner derivation on the inertia ideal (Z)},
= {D € Der(GtII)|D(Z) = [T, Z] for some T € Grll},

which is a Zy-graded Lie algebra, and (Der“GrII),, is the m-th graded piece of DerGrII,
namely

(DerGrI),,, = {D € Der®(GrII)| D(grIl) € gré*™II for any d > 1}.
And
InnGrll = {D € Der(GrII)| there is some T' € Grll such that D(W) = [T, W]
for any W e GrIl},
Out®GrlIl = Der®GrII/InnGrlII (cf.§1.3.1),

(Out®GrIl),, is the m-th graded piece of Out®GrIl,
~ (Der®GrIl),, /Im(gr™1I),

where

grII — (Der®Grll),, is defined by W +— ad(W),
ad(W) is the inner derivation defined by V — [W, V].
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In addition,

o Homg, (gr'IL, gt H1I) @ g™ I1 (m # 2),
" | Homg, (gL, gr™ 1) (m =2),

D — (D|gr1H7T) (m 7£ 2)7

im : (DerGrIl),, — 6’; is defined by
D — Dlgan (m = 2),

Jm : Cm — gr™2II(—1) is defined by

(f; W) = [F(A), B+ [A, f(B)] + W, Z]  (m #2),
f=[f(A), Bl +[A, f(B)] (m =2),

gr'"Il — 6’; is defined by

W i— (a’d(W)|gr1Ha W) (m # 2)7
W adWlgn  (m=2),

and
Cp, = Cp/gr™IL.

Moreover (Out®Grll),, is a finitely generated free Z,-module ([NT] Corollary 1.16).
Consequently, we have (Out®Grll),, is a free Z,-module of rank

2rim+1) —r(m+2) (m #2),
2r(3) =r(2) —r(4)  (m=2),

(INT] Corollary 1.16), where r(m) = rankg,gr™Il; ;. And we have r(1) = 2, r(2) = 1,
r(3) =2, r(4) =3, r5) =6, r6) =9, r(7) = 18 ([K] Proposition 1 or [NT] (1.1.2)).
Hence (Out®Grll),, = {0} when m = 1,2,3,5. Therefore grﬁmGQ = {0} when m =
1,2,3,5.

(2) This follows from (1), together with Proposition 2.1 (b) < (d) and the fact
(Theorem 1.11(6)) that gr(()%m(}@ ={0} (1 <m <3). O

Proposition 2.4.
(1) gri)"Gg = {0} if m=1 (mod 2) and ¢ > 2.

(2) (2) For each m > 1, grﬁmGQ ~ grélj;m(}@ for almost all £. (More precisely,

gr&?[mGQ =~ gr(()%mGQ for{>m+5.)
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Proof. grgmG@ may not be torsion-free, unlike gr(()%mGQ. Thus, the usual weight
argument does not work well. Instead, this proposition is proved by a certain “torsion
weight argument”. More precisely, this proposition is a direct consequence of Theo-
rem 1.11 (7), Proposition 2.1 (d) < (f) and the following

Claim 2.5.
(1) grgli)lm(}@ is torsion-free if m =1 (mod 2) and ¢ > 2.

(2) grgli)lm(}@ is torsion-free if £ > m + 5.

Proof. We may assume that m > 4 (Proposition 2.3). Let p # ¢ be a prime and
denote by F_rp the (p-th power) Frobenius element in Gy, . Let E be an elliptic curve over
IF), for which the characteristic polynomial of F_rp is X2 + p. (The existence of such an
elliptic curve is shown, for example, by Honda-Tate theory. See [W], Theorem 4.1 (5).)
Let E be any elliptic curve over Q which has good reduction at p and whose reduction
at p is E. We denote by Fry, a lift in Gg of Fr,. Then Fr? acts on gr'll ~ Ty(E ®q Q)
by (—p)-multiplication. Since Ty(E ®¢ Q) is self-dual, C,,, ~ gr'Tl(—1) ® gr™H11II. As
gr'™II is the m-th graded piece of the graded Lie algebra generated by gr'Il, we have
(gr'I)®™ — gr™II. Hence (gr')®(m2)(—1) — gr'll(—1) ® gr™ 11 Therefore Fr?
acts on Cyp, by (—p)™-multiplication. Consequently, Fr2 acts on gri";Gg by (—p)"-
multiplication (the commutative diagram in the proof of Proposition 2.3).

Suppose that (gr{’ Gg)ior # {0}. As the Gal(Q(pe~)/Q)(~ Z; )-module (gr?*; Gg)or
is of finite length, there exists a simple Z,-module M C (gr7’1GQ)tor- Because M is
simple, 1 4 ¢Z, acts on M trivially. So, the action of Z, on M factors through F.
Hence there exists an ¢ with 1 <14 < ¢—1 such that M ~F,(i) as a Z; -module, namely
v-0 = ~'c for any v € F,; and ¢ € M. Thus, F?“f7 acts on M by p?’-multiplication.
On the contrary, F 1“129 acts on M by (—p)™-multiplication since M C gri’;Gg. So
p?* = (—p)™ (mod £). For any a # 0 (mod /), there exists a prime p such that a = p
(mod /) by Chebotarev’s density theorem. Thus, we have a* = (—a)™ (mod ¢) for any
acF).

Assume that m is odd. When £ # 2, there exists b € F) \ (F,)?. For such a b,
(b)? = (=b)* = b™ (mod ¢) by the above discussion. On the contrary, b™ ¢ (F))?,
because b ¢ (F;)? and m is odd. This is a contradiction. Thus, we get the first
assertion (1).

Assume that m is even. Then we have a* = a™ (mod ¢) for any a € F. Hence
m—2i =0 (mod £—1). Because M # {0}, there exists some & € Gy 1(m)\ G11(m+1)
and m’ > m such that o := 6§ mod Gy 1(m+1) € M and ¢ € Gos(m') \ Gos(m’ +
1) (Theorem 1.12 (2)). We may suppose that m' is even (Theorem 1.11 (6) the first
assertion). So Z, acts on & mod Goz(m’' + 1) by Tate twist %/ (Theorem 1.11 (5)).
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Since M is simple, M ~ Fe(%l). By this together with M ~ Fy(i), we have m’ = 2i
(mod £ — 1). Hence m’ —m =0 (mod ¢ — 1). On the contrary, 0 < m’ —m < m + 4,
because m < m/ < 2m + 4 ([IN] the proof of Theorem 3C). Hence we have m’ = m
since m +4 < £ — 1 from the assumption of (2). Therefore o is a torsion-free element
in gr";Gg (Theorem 1.12 (2) and Theorem 1.11 (6)). This is a contradiction. Thus,
(gr71Go)tor = {0} if m is even and £ > m + 5. Combining this with (1), we get the
second assertion (2).

Thus, we complete the proof of Claim 2.5. O

This completes the proof of Proposition 2.4. O

Corollary 2.6.  For each 1 < mg < oo, grf)lmGQ ~ g "Gy ~ grégmGQ
(1 <m < myg) for almost all £.

Proof. Immediate from Proposition 2.4 and Proposition 2.1 (b) < (d). O

By Proposition 2.1, the main difficulty to investigate the (g,r)-dependency of Thara
towers of type (g,r) is possible existence of nontrivial torsion. Thus, a good approach
may be to choose a suitable single (1,1)-curve X corresponding to z : Spec(k(z)) —
M 1 and to observe the natural map

¢ ¢
grg()mGn(x) — grg,}mG@

because grgﬁ)mGK(x) is torsion-free. (We might even expect that this map is an isomor-
phism, which, in particular, implies that grglf)lmGQ is torsion-free.) Here gr%)m(}n(x) =
Gx(m)/Gx(m+1), Gx(m) = Ker(gogf—) (m)) and gog? (m) is the truncated Galois rep-
resentation

P (m) : Gy = Out®(wf (X)) /Out*(w{ (X)) (m)

(cf. Remark 1.3, Definition 1.4, Definition 1.6). However, another difficulty arises in
this approach, as shown in the following

Remark 2.7.  Let X be an elliptic curve over a number field x(x), which, together
with the origin, is regarded as a (1,1)-curve over x(x). Then the natural Q-linear map,

px(m) : g™ Gy 2, Qp — grfimG@ ®z, Qe

is surjective ([N1] Lemma 4.5). But, as Gx(1) # Gi,1(1), the induction to prove

grg?me (@) & grﬁm(}(@ does not work well.

This remark implies that the above approach does not go well as far as we choose
an elliptic curve X over a number field. A study from a different approach is in progress.
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