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Albanese varieties, Suslin homology and Rojtman�s
theorem

By

Thomas Geisser*

Abstract

We recall the denition of the Albanese variety and of Suslin homology, and discuss

generalizations of Rojtman�s theorem, which states that the torsion of the Albanese variety
is isomorphic to the torsion of the 0th Suslin homology for certain varieties over algebraically
closed fields.

§1. Introduction

A classical theorem of Abel and Jacobi states that for a smooth projective curve

C over an algebraically closed field k
,

two finite formal sums of points D=\displaystyle \sum_{i}n_{i}p_{i}
and E=\displaystyle \sum_{j}m_{j}q_{j} with n_{i}, m_{j}\in \mathbb{N} and p_{i}, q_{j}\in C are the zeros and poles of a function

f on C if and only if \displaystyle \sum n_{i}=\sum m_{j} and the sums \displaystyle \sum_{i}n_{i}[p_{i}] and \displaystyle \sum_{j}m_{j}[q_{j}] ,
taken in

the Jacobian variety Jac_{C} , agree. In modern language, this means that there is an

isomorphism between the degree zero part of the Chow group of zero‐cycles and the

rational points of the Jacobian variety

CH_{0}(C)^{0}\rightarrow^{\sim}J_{ac_{C}}(k) .

For a smooth and proper scheme X of arbitrary dimension, the natural generalization
is to replace the Jacobian variety by the Albanese variety (the universal object for

morphisms from X to abelian varieties), and to study the Albanese map

alb_{X}:CH_{0}(X)^{0}\rightarrow Alb_{X}(k) .
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This map is surjective, but it was shown by Mumford that it cannot be an isomorphism
in general: For smooth and proper surfaces, the Chow group on the left hand side is

too big to be captured by an abelian variety in general. However, Rojtman [12] proved
that alb_{X} induces an isomorphism of torsion subgroups away from the characteristic.

Rojtman�s theorem has been generalized to smooth (open) schemes having a smooth

projective model by Spiess‐Szamuely [16]. Here the Chow group has to be replaced by
Suslin homology, and the right hand side by Serre�s Albanese variety, an extension of

an abelian variety by a torus:

alb_{X} : {}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(X, \mathbb{Z})\rightarrow torAlbx (  k) .

The same statements holds for the p‐part in characteristic p under resolution of singu‐
larities ([4] based on [9]). Recently, this result was generalized to all normal schemes:

Theorem 1.1 ([5]). Let X be a reduced normal scheme, separated and of finite

type over an algebraically closed field k of characteristic p\geq 0 . Then the Albanese map

induces an isomorphism

{}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(X, \mathbb{Z})\rightarrow^{\sim} torAlbx ( k)

up to p ‐torsion groups, and H_{1}^{S}(X, \mathbb{Z})\otimes \mathbb{Q}/\mathbb{Z} is a p ‐torsion group. Under resolution of

singularities, the restriction on the characteristic is unnecessary.

The theorem has been proved previously in characteristic 0 by Barbieri‐Viale and

Kahn [1, Cor.14.5.3]. In particular, this removes the hypothesis on the existence of a

smooth projective model in the theorem of Spiess‐Szamuely. The aim of this paper is

to give an introduction to the ingredients of this theorem, and to sketch its proof.

Throughout the paper, we assume that the base field is algebraically closed.

We thank the referee for his careful reading and helpful comments.

§2. Universal group schemes

We denote by \mathrm{S}\mathrm{c}\mathrm{h}/k the category of separated schemes of finite type over k . For

a scheme X in \mathrm{S}\mathrm{c}\mathrm{h}/k ,
it is natural to ask if there is a map from X to a group scheme

over k which is universal for maps from X to a certain class of group schemes. Since

this is well‐dened only up to translation in the group scheme, we rigidify this by fixing
a base point x\in X and requiring that x maps to the origin in the group scheme. In

general, there is no such universal group scheme, but in [14], Serre proved the following
theorem:

Theorem 2.1 ([14, Theoreme 7 Let C be a category of reduced commutative

group schemes over k closed under products and extensions with finite kernel. Assume
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that C does not contain the additive group \mathbb{G}_{a} . Then for every pointed reduced scheme

(X; x) ,
there is universal map to an object in C.

§2.1. The Albanese variety

The most important application of this is to take the categories of abelian varieties

or semi‐abelian varieties (a semi‐abelian variety is an extension of an abelian variety A

by a torus T\cong \mathbb{G}_{m}^{r} ). In this case, the universal semi‐abelian variety u:X\rightarrow A_{X} is

called the Albanese variety of X . Note that the image of X generates A_{X} in the sense

that there is no semi‐abelian subvariety containing the image of X (for otherwise, this

subvariety would also have the universal property).

Remark. 1) Classically, the Albanese variety was the universal abelian variety
and not the universal semi‐abelian variety. But if X is proper, it is easy to see that the

universal semi‐abelian variety is in fact an abelian variety, so that the universal semi‐

abelian variety is a good generalization of the universal abelian variety from proper

schemes to arbitrary schemes.

2) There is another object sometimes called Albanese variety, which is the universal

object for rational maps (i.e. morphisms dened on a dense open subset) to abelian

varieties. If X is smooth, the two concepts agree (as any rational map to a group

scheme can be extended on a smooth scheme).
3) If X is not reduced, there is no universal homomorphism to semi‐abelian varieties.

For example, every map from the scheme Spec k [t]/t^{2} to \mathbb{G}_{m} can be dominated by an

isogeny \mathbb{G}_{m}\rightarrow \mathbb{G}_{m} ,
so there is no initial object.

If \overline{X} is smooth projective variety, D_{1} ,
.

::, D_{r} integral subschemes of codimension 1

and X=\overline{X}-\cup D_{i} ,
then Serre gave the following explicit construction of the Albanese

variety A_{X}[15] :

Let I be the free abelian group with generators D_{i} ,
and J be the kernel of the map

I\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(\overline{X})\rightarrow \mathrm{N}\mathrm{S}(\overline{X}) :=\mathrm{P}\mathrm{i}\mathrm{c}(\overline{X})/\mathrm{P}\mathrm{i}\mathrm{c}^{0}(X^{-})

sending a generator 1_{D_{i}} to the class of \mathcal{O}(-D_{i}) in the Picard group Pic(X‐), with

\mathrm{P}\mathrm{i}\mathrm{c}^{0}(X^{-}) the subgroup of line bundles algebraically equivalent to 0 . By denition of

J ,
there is a map  $\theta$ :  J\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}(X^{-}) . Then J is a free abelian group of finite rank,

and we let S_{X}=\mathrm{H}\mathrm{o}\mathrm{m}(J, \mathbb{G}_{m}) be the torus with character group J . Let \overline{X}\rightarrow A_{x^{-}} be

the Albanese variety of \overline{X} (an abelian variety, since \overline{X} is proper). From the duality
of the Albanese variety and the Picard variety (for smooth and projective schemes),
one has \mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Z}, \mathrm{P}\mathrm{i}\mathrm{c}(X^{-}))\cong \mathrm{P}\mathrm{i}\mathrm{c}(X^{-})\cong \mathrm{E}\mathrm{x}\mathrm{t}(A_{x^{-}}, \mathbb{G}_{m}) and hence \mathrm{H}\mathrm{o}\mathrm{m}(J, \mathrm{P}\mathrm{i}\mathrm{c}(X^{-}))\cong
\mathrm{E}\mathrm{x}\mathrm{t}(A_{x^{-}}, S_{X}) . Thus the element  $\theta$ denes an extension of the abelian variety  A_{x^{-}} by the

torus S_{X} . This is the Albanese variety of X [ 15 ,
Theoreme 1].
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§2.2. Example: The maximal torus of a scheme

We can also apply Serre�s theorem to the category C of tori (i.e. group schemes

of the form \mathbb{G}_{m}^{r} ), and obtain the maximal torus v_{X} : X\rightarrow T_{X} of a scheme. We can

recover the maximal torus from the Albanese variety:

Theorem 2.2. Let X be a reduced scheme and u_{X} : X\rightarrow A_{X} be the Albanese

variety of X. Then the maximal torus of X and of A_{X} agree.

Proof. From the universal property we obtain the following commutative diagram

X \rightarrow^{v_{X}} T_{X}

 u_{X}\downarrow  $\alpha$\downarrow
 A_{X}\rightarrow^{vA_{X}}T_{A_{X}}.

The map  $\alpha$ is necessarily surjective (because the image of  X generates A_{X} and the

image of A_{X} generates T_{A_{X}} ). By the universal property of A_{X} ,
there is a diagonal map

 $\beta$ :  A_{X}\rightarrow T_{X} with  $\beta$ u_{X}=v_{X} (which is surjective because the image of X generates

T_{X}) . Then by the universal property of T_{A_{X}} ,
there is a map  $\gamma$ :  T_{A_{X}}\rightarrow T_{X} with

 $\gamma$ V_{A_{X}}= $\beta$ . Combining this, we get  v_{X}= $\gamma$ v_{A_{X}}u_{X}= $\gamma \alpha$ v_{X} . Since the image of v_{X}

generates T_{X} ,
we obtain that  $\gamma \alpha$= id. But  $\alpha$ is surjective, so  $\gamma$ and  $\alpha$ are mutually

inverse isomorphisms. \square 

The theorem implies that the maximal torus T_{X} of X agrees with the torus in the

maximal split quotient of the Albanese variety A_{X} of X . If X is smooth, we can see

from the above description of the Albanese variety that the character group of T_{X} is

the kernel J' of  $\theta$
,

as one sees from the diagram

 $\theta$\in \mathrm{E}\mathrm{x}\mathrm{t}(A_{x^{-}}, S_{X})- \mathrm{H}\mathrm{o}\mathrm{m} (J, Pic(X))

\downarrow \downarrow
 0\in \mathrm{E}\mathrm{x}\mathrm{t}(A_{X^{-}}, T_{X})-\mathrm{H}\mathrm{o}\mathrm{m} ( J' , Pic(X)).

§2.3. The Albanese scheme

Serre observed that in order to get rid of the dependence on the base point, it is

more natural not to consider universal maps to semi‐abelian varieties, but to consider

universal maps to torsors under semi‐abelian varieties. Recall that a torsor under a

group scheme G is a scheme Z together with an operation  $\sigma$ :  G\times Z\rightarrow Z such that

the map ( $\sigma$,p_{2}) : G\times Z\rightarrow Z\times Z is an isomorphism This idea has been extended by
Ramachandran [11], see also Kahn‐Sujatha [8]. A locally semi‐abelian scheme \mathcal{A} is a

commutative group scheme such that the connected component \mathcal{A}^{0} is a semi‐abelian
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variety, and $\pi$_{0}() is a lattice D . Recall that for a scheme X/k ,
the scheme of com‐

ponents $\pi$_{0}(X) of X is the spectrum of the largest etale extension of k in \mathcal{O}_{X}(X) . For

example, if X is connected, $\pi$_{0}(X) is just Spec k. Ramachandran gave the following
construction. Let Z_{X} be the sheaf on the big flat site (\mathrm{S}\mathrm{c}\mathrm{h}/k)_{f^{l}} associated to the free

abelian group on the presheaf represented by X, U\mapsto \mathbb{Z}[\mathrm{H}\mathrm{o}\mathrm{m}_{k}(U, X)] . The albanese

scheme is the universal object for morphisms from Z_{X} to sheaves represented by locally
semi‐abelian schemes. For reduced schemes of finite type over k

,
the Albanese scheme

exists [11, Thm.1.1]. The image of \mathrm{i}\mathrm{d}_{X}\in Z_{X}(X) in \mathcal{A}_{X}(X) gives the universal mor‐

phism u_{X} : X\rightarrow \mathcal{A}_{X} ,
and the assignment X\rightarrow \mathcal{A}_{X} is a covariant functor. It is also

contravariant for finite flat maps [16]. There is an exact sequence

0\rightarrow \mathcal{A}_{X}^{0}\rightarrow \mathcal{A}_{X}\rightarrow D_{X}\rightarrow 0,

and D_{X} is the sheaf (for the flat topology) associated to the presheaf T\mapsto \mathbb{Z}\mathrm{H}\mathrm{o}\mathrm{m}(T, $\pi$_{0}(X)) .

For a connected scheme X with base point x_{0} ,
the connected component \mathcal{A}_{X}^{0} is isomor‐

phic to the usual Albanese variety A_{X} ,
because the map X\rightarrow \mathcal{A}_{X}^{0}, x\mapsto u_{X}(x)-u_{X}(x_{0})

factors through A_{X} by the universal property.

§3. Suslin homology

Suslin homology is an analog of singular homology of topological spaces, and

an important invariant of schemes, see [4], [17]. It is dened as follows: Let \triangle^{i}=

Spec k [t_{0}, . . :, t_{i}]/(1-\displaystyle \sum_{j}t_{j}) be the algebraic i‐simplex and C_{i}(X) be the free abelian

group on closed integral subschemes of X\times k\triangle^{i} which are finite and surjective over \triangle^{i}.

The alternating pull‐back to faces \triangle^{i-1}\subseteq\triangle^{i} dened by t_{j}=0 makes this a complex
of free abelian groups. For an abelian group A

,
the Suslin homology H_{i}^{S}(X, A) with

coefficients in A is the ith homology of the complex C_{*}(X)\otimes A . In particular, H_{0}^{S}(X, \mathbb{Z})
is the free abelian group C_{0}(X) on the closed points of X modulo the relation dened

by Z\cap(X\times\{0\})-Z\cap(X\times\{1\}) for Z\subseteq X\times\triangle^{1} finite and surjective over \triangle^{1} . If X

is proper, then H_{0}^{S}(X, \mathbb{Z}) agrees with the Chow group of zero cycles CH_{0}(X) ,
because

then any closed Z\subseteq X\times\triangle^{1} is automatically proper over \triangle^{1} . But for non‐proper

schemes, Suslin homology is better behaved for our purposes. Let H_{0}^{S}(X, \mathbb{Z})^{0} be the

kernel of the canonical degree map H_{0}^{S}(X, \mathbb{Z})\rightarrow H_{0}^{S}($\pi$_{0}(X), \mathbb{Z})\cong D_{X}.
Suslin homology appears in a wide variety of arithmetic applications. For example,

Schmidt and Spiess [13] show that for a smooth variety over a finite field, the tame

geometric abelianized fundamental group agrees with the finite group H_{0}^{S}(X, \mathbb{Z})^{0} . If

X is not smooth, then a similar results is expected to hold for a modied version of

Suslin homology [4]. Over an algebraically closed field, H_{1}^{S}(X, \mathbb{Z}/m) surjects onto the

tame abelian fundamental group modulo m
,

and this map is an isomorphism if the

characteristic does not divide m or if resolution of singularities holds [7].
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Another useful property is that over an algebraically closed field and with finite

coefficients \mathbb{Z}/m prime to the characteristic, Suslin‐homology H_{i}(X, \mathbb{Z}/m) is dual to

etale cohomology H_{\'{e} \mathrm{t}}^{i}(X, \mathbb{Z}/m)[17].

Lemma 3.1. The Albanese map u_{X} : X\rightarrow \mathcal{A}_{X} induces a map from Suslin‐

homology to the Albanese scheme H_{0}^{S}(X, \mathbb{Z})\rightarrow \mathcal{A}_{X}(k) such that the following diagram
commutes:

0\rightarrow H_{0}^{S}(X, \mathbb{Z})^{0}\rightarrow H_{0}^{S}(X, \mathbb{Z})\rightarrow D_{X}\rightarrow 0

(3.1) \downarrow  al  b_{X}\downarrow \Vert
 0 \rightarrow \mathcal{A}_{X}^{0}(k) \rightarrow \mathcal{A}_{X}(k) \rightarrow D_{X} \rightarrow 0.

§4. Rojtman�s theorem

Rojtman proved in [12] that for a smooth and projective scheme over an alge‐

braically closed field of characteristic 0 ,
the Albanese map induces an isomorphism on

torsion groups. A cohomological proof was later given by Bloch [2], and Milne proved
the same statement for the p‐part in characteristic p . The idea of the cohomological

proof for smooth projective X is as follows (see [16]). For m prime to the characteristic

of k
,

consider the following map of short exact sequences:

 0\rightarrow H_{1}^{S}(X, \mathbb{Z})\otimes \mathbb{Z}/m\rightarrow  H_{1}^{S}(X, \mathbb{Z}/m) \rightarrow {}_{m} H_{0}^{S}(X, \mathbb{Z}) \rightarrow 0

\Vert alb\downarrow
 0\rightarrow  C_{m} \rightarrow H_{\'{e} \mathrm{t}}^{1}(X, \mathbb{Z}/m)^{*}\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m}, \mathrm{P}\mathrm{i}\mathrm{c}_{x^{red}}^{0})^{*}\rightarrow 0
The middle vertical map is the above mentioned duality isomorphism of Suslin‐Voevodsky

[17]. The middle lower group is isomorphic to \mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m}, \mathrm{P}\mathrm{i}\mathrm{c}_{X})^{*} ,
which is the dual

of the group of homomorphisms of group schemes from the kernel $\mu$_{m} of multiplica‐
tion by m on \mathbb{G}_{m} to the Picard scheme. The dual of the group of homomorphisms of

group schemes of $\mu$_{m} to the reduced part of the connected component of the Picard

scheme \mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m}, \mathrm{P}\mathrm{i}\mathrm{c}_{X}^{0,red})^{*} is a quotient group of \mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m}, \mathrm{P}\mathrm{i}\mathrm{c}_{X})^{*} ,
and by duality

of Albanese and Picard variety, Cartier‐Nishi duality gives

\mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m},{}_{m}\mathrm{P}\mathrm{i}\mathrm{c}_{x^{red}}^{0})^{*}\cong \mathrm{H}\mathrm{o}\mathrm{m}_{GS}(_{m}Alb_{X}, \mathbb{Z}/m)^{*}\cong_{m}Alb_{X}(k) .

Now one shows that the right square commutes (this is non‐trivial), and that the groups

C_{m}=\mathrm{H}\mathrm{o}\mathrm{m}_{GS}($\mu$_{m}, NS_{X})^{*} vanish in the colimit over m because their order is bounded

independently of m
,

so that the map C_{m}\rightarrow C_{mn} becomes multiplication by n for large
m . Hence the lower right map becomes an isomorphism in the colimit, and  H_{1}^{S}(X, \mathbb{Z})\otimes
\mathbb{Q}/\mathbb{Z}=0 . Spiess‐Szuamely [16] showed that the same argument works for smooth X
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even if X is not proper, and we showed that the same argument works for X proper

and normal (by proving a duality theorem [3] replacing the duality theorem of Suslin‐

Voevodsky). Assuming resolution of singularities, this also holds for p‐torsion, p the

characteristic of k if X is smooth, because neither side changes if we replace X by a

smooth and proper model [4]. The obvious generalization of all the above is to prove the

theorem for arbitrary normal X . However, the above argument does not work, because

it is not clear if the C_{m} are finite. To get around this, we work with (truncated)
hypercoverings.

§4.1. Hypercoverings

A proper hypercovering X. \rightarrow X is a simplicial scheme X. such that the maps

X_{n+1}\rightarrow(\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{k}_{n}X.)_{n+1} are proper and surjective. We only need truncated hypercover‐

ings (i.e. we need X_{n} only for small n). For example, a1‐truncated hypercover of X is

a diagram

X_{1}\rightarrow^{$\delta$_{1}$\delta$_{0}}X_{0}\rightarrow^{a}X
such that a$\delta$_{0}=a$\delta$_{1} ,

such that ($\delta$_{0}, $\delta$_{1}) : X_{1}\rightarrow X_{0}\times x^{X_{0}}=(\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{k}_{0}X.)_{1} is proper and

surjective, together with a section s:X_{0}\rightarrow X_{1} to $\delta$_{0} and $\delta$_{1}.

Theorem 4.1. Let X be a reduced, normal, connected variety, and a : X. \rightarrow X

be a 1‐truncated proper hypercovering of X such that X_{0}\rightarrow X is generically etale. Then

the Albanese scheme \mathcal{A}_{X} of X is the largest locally semi‐abelian scheme quotient of the

sheaf \mathcal{A}_{X_{0}}/d\mathcal{A}_{X_{1}} ,
where d=($\delta$_{0})_{*}-($\delta$_{1})_{*}.

The statement of the theorem is true even if X is only semi‐normal, but can be

wrong if X is not semi‐normal.

Consider a 2‐truncated simplicial scheme X. together with their corresponding map

of locally semi‐abelian schemes

0\rightarrow \mathcal{A}_{X_{2}}^{0}\rightarrow \mathcal{A}_{X_{2}}\rightarrow D_{X_{2}}\rightarrow 0

\downarrow d\downarrow \downarrow
(4.1)  0\rightarrow \mathcal{A}_{X_{1}}^{0}\rightarrow \mathcal{A}_{X_{1}}\rightarrow D_{X_{1}}\rightarrow 0

\downarrow d\downarrow \downarrow
 0\rightarrow \mathcal{A}_{X_{0}}^{0}\rightarrow \mathcal{A}_{X_{0}}\rightarrow D_{X_{0}}\rightarrow 0

where d is the alternating sum of the maps induced by the face maps X_{i}\rightarrow X_{i-1} . Let

\mathrm{T}\mathrm{o}\mathrm{r}_{i}(\mathcal{A}_{X}.(k), \mathbb{Q}/\mathbb{Z}) be the hyper‐Tor with \mathbb{Q}/\mathbb{Z}‐coefficients of the complex of abelian

groups \mathcal{A}_{X}.(k) . We claim that the homology H_{0}(D_{X}.) is free. Indeed, we can assume

that X is connected, choose a component x_{0}\subseteq X_{0} ,
and have to show that D_{X_{1}}=
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D_{X_{0}}\rightarrow aD_{X}\cong \mathbb{Z} is exact in the middle. But the kernel of a is generated by 1_{x}-1_{x_{0}}
for connected components x\subseteq X_{0} . By hypothesis, X_{1}\rightarrow X_{0}\times x^{X_{0}} is surjective, so we

can find a connected component x'\subseteq X_{1} which maps to x under the first projection,
and to x_{0} under the second projection.

By freeness of H_{0}(D_{X}.) ,
the exact sequence of k‐rational points

(4.2) H_{1}(D_{X}.)\rightarrow^{ $\delta$}\mathcal{A}_{X_{0}}^{0}(k)/d\mathcal{A}_{X_{1}}^{0}(k)\rightarrow \mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k)\rightarrow H_{0}(D_{X}.)\rightarrow 0

gives an isomorphism of abelian groups

tor (\mathcal{A}_{X_{0}}^{0}(k)/(d\mathcal{A}_{X_{1}}^{0}(k)+\mathrm{i}\mathrm{m} $\delta$))\cong tor (\mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k))

A hypercover is called l‐hyperenvelope, if for all points of the target of  X_{n+1}\rightarrow

(\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{k}_{n}X.)_{n+1} there is a point mapping to it such that the extension of residue fields is

finite of order prime to l if l\neq p ,
and trivial if l=p , respectively. Such l‐hyperenvelopes

exist for l\neq p using Gabber�s renement of de Jong�s theorem, and under resolution of

singularities if l=p . Using the result of Spiess‐Szamuely, we can then prove:

Proposition 4.2. Let X. be a 2‐truncated proper l ‐hyperenvelope of X which

is contained as an open subscheme in a 2‐truncated simplicial scheme \overline{X}. consisting of
smooth and projective schemes. Then we have an isomorphism

H_{1}^{S}(X, \mathbb{Q}_{l}/\mathbb{Z}_{l})\cong \mathrm{T}\mathrm{o}\mathrm{r}_{1}(\mathcal{A}_{X}.(k), \mathbb{Q}_{l}/\mathbb{Z}_{l})

if either l\neq p or if resolution of singularities exists.

Proposition 4.2 gives for any reduced semi‐normal scheme a map of short exact

sequences

H_{1}^{S}(X, \mathbb{Z})\otimes \mathbb{Q}/\mathbb{Z} \rightarrow H_{1}^{S}(X, \mathbb{Q}/\mathbb{Z}) \rightarrow {}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(X, \mathbb{Z})

(4.3) \downarrow \Vert \downarrow
 H_{1}(\mathcal{A}_{X}.(k))\otimes \mathbb{Q}/\mathbb{Z}\rightarrow \mathrm{T}\mathrm{o}\mathrm{r}_{1} ( \mathcal{A}_{X}.(k) , QZ) \rightarrow \mathrm{t}\mathrm{o}\mathrm{r}(\mathcal{A}_{x_{0}}(k)/d\mathcal{A}_{X_{1}}(k)) .

Proof of Theorem 1.1: Using hypercohomological descent for Suslin homol‐

ogy [6], one can show that H_{1}(D_{X}., \mathbb{Z}) is finite for normal X
,

and this implies that

H_{1}(\mathcal{A}_{X}.(k))\otimes \mathbb{Q}/\mathbb{Z}=0 for normal X . Hence we obtain an isomorphism

{}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(X, \mathbb{Z})\cong_{\mathrm{t}\mathrm{o}\mathrm{r}}(\mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k)) .

Recall the short exact sequence (4.2)

0\rightarrow \mathrm{i}\mathrm{m} $\delta$\rightarrow \mathcal{A}_{X_{0}}^{0}/d\mathcal{A}_{X_{1}}^{0}(k)\rightarrow \mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k)\rightarrow H_{0}(D_{X}.)\rightarrow 0.
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The finiteness of H_{1} (D_{X}.; \mathbb{Z}) implies that im  $\delta$ is finite, so since  H_{0}(D_{X}.) is torsion free,
we obtain that \mathrm{t}\mathrm{o}\mathrm{r}(\mathcal{A}x_{0}(k)/d\mathcal{A}_{X_{1}}(k)) is isomorphic to \mathrm{t}\mathrm{o}\mathrm{r}(\mathcal{A}_{X_{0}}^{0}/d\mathcal{A}_{X_{1}}^{0}+\mathrm{i}\mathrm{m} $\delta$)(k) because

taking k‐valued points is exact. But \mathcal{A}_{X_{0}}^{0}/d\mathcal{A}_{X_{1}}^{0}+\mathrm{i}\mathrm{m} $\delta$ is the connected component of

the largest locally semi‐abelian scheme quotient of \mathcal{A}_{X_{0}}/d\mathcal{A}_{X_{1}} which by Proposition 4.1

is the Albanese scheme of X.

Question: We saw that the Albanese variety is related to Suslin homology. Is

there a similar motivic description for the maximal torus of X ?

§5. Curves

Let E be an elliptic curve and p be a closed point of E . Let N be the variety
obtained by glueing the points 0 and p of E. A2‐truncated hypercovering of N is given

by

E\times NE\times NE\rightarrow E\times E^{$\delta$_{0}, $\delta$}E\rightarrow N.
The middle term is isomorphic to E\cup x\cup y where x and y correspond to the points (0,p)
and (p, 0) in the product, respectively. Similarly, the term on the left is isomorphic to

E and 6 points corresponding to triples (x, y, z) with x, y, z\in\{0, p\} and not all equal.
The Albanese schemes are

0\rightarrow E\rightarrow \mathcal{A}_{2}\rightarrow \mathbb{Z}^{7}\rightarrow 0

\Vert \downarrow \downarrow
 0\rightarrow E\rightarrow \mathcal{A}_{1}\rightarrow \mathbb{Z}^{3}\rightarrow 0

 0\downarrow $\delta$_{1}\downarrow$\delta$_{0} \downarrow
 0\rightarrow E\rightarrow \mathcal{A}_{0}\rightarrow \mathbb{Z}\rightarrow 0

A calculation shows that H_{1}(D.)=\mathbb{Z} ,
and the sequence (4.2) becomes

\mathbb{Z}\rightarrow $\delta$ E\rightarrow H_{0}(\mathcal{A}_{\bullet}(k))\rightarrow \mathbb{Z}\rightarrow 0,

with  $\delta$ sending 1 to  p-0 on E . Now assume that p is not torsion. Then the Albanese

scheme of N is isomorphic to \mathbb{Z}
,

because it is the largest locally semi‐abelian scheme

quotient of \mathcal{A}x_{0} modulo the subabelian variety generated by \langle p\rangle . In particular, its

torsion is trivial. The corank of  H_{1}^{S}(N, \mathbb{Q}/\mathbb{Z}) and of {}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(N, \mathbb{Z}) is 3, in particular

{}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(N, \mathbb{Z}) is not isomorphic to the torsion of the Albanese variety.

However, the corank of {}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}(\mathcal{A}.(k)) is also 3, and {}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(N, \mathbb{Z}) is isomorphic
to the torsion of the quotient of abelian groups  H_{0}(\mathcal{A}.(k))=\mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k)\cong

(\mathcal{A}_{X_{0}}^{0}/d\mathcal{A}_{X_{1}}^{0})(k)/\mathrm{i}\mathrm{m} $\delta$ . In other words, taking the quotient in the category of locally
semi‐abelian schemes and then taking rational points does not give the correct answer,
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but taking rational points and then the quotient in the category of abelian groups does.

More generally,

Theorem 5.1. Let  X be a reduced semi‐normal curve. Then the Albanese map

induces an isomorphism

H_{0}^{S}(X, \mathbb{Z})\cong \mathcal{A}_{X_{0}}(k)/d\mathcal{A}_{X_{1}}(k) .

The right hand group is isomorphic to \mathcal{A}_{x^{-}}(k)/ $\delta$ H_{1}(D_{X}.) ,
for \tilde{X} the normalization

of X
,

and H_{1}(D_{X}.) has the same rank as H_{\'{e} \mathrm{t}}^{1}(X, \mathbb{Z}) .

Question: Does the analog statement hold in higher dimensions, i.e. is the sur‐

jection of the right hand side of (4.3)

{}_{\mathrm{t}\mathrm{o}\mathrm{r}}H_{0}^{S}(X, \mathbb{Z})\rightarrow \mathrm{t}\mathrm{o}\mathrm{r}(\mathcal{A}x_{0}(k)/d\mathcal{A}_{X_{1}}(k))

an isomorphism for any reduced semi‐normal scheme X ?
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