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Singular homologies of non-archimedean analytic
spaces and integrals along cycles: a research
announcement

By

Tomoki MIHARA*

Abstract

This article is an announcement of the author’s results in [Mih]. We construct a new
homology, which admits a canonical action of the absolute Galois group G of the base field
k, for Berkovich’s non-Archimedean analytic space. We also define a new integration of an
overconvergent differential form along a cycle. The integration takes its value in Fontaine’s
p-adic period ring, and it induces a Galois equivariant pairing of the homology and the space
of overconvergent differential forms. Moreover, we verify the homology and the integration
satisfy many appropriate properties for homology and integration theories. We compute the
homology of certain analytic spaces.

§0. Introduction

One of the aims of the author’s paper [Mih] is to construct a new homology of
Berkovich’s non-Archimedean analytic space. The other one is to give an explicit defini-
tion of a new integration of an overconvergent differential form along a cycle in the sense
of our homology. As results, we obtained a homology theory with Functoriality, Homo-
topy invariance, Long exact sequence for a space pair, Dimension axiom, Mayer—Vietoris
exact sequence, Excision axiom, and Universal coefficient theorem (Theorem 1.13 (i)-
(vii)), and an integration with Fundamental theorem of calculus (Proposition 2.17),
Stokes’ theorem (Theorem 2.19), Cauchy’s integral theorem (Example 2.21), Residue
theorem (Example 2.22), Cauchy’s integral formula, and Cauchy—Goursat theorem (Ex-
ample 2.23).
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An integration is deeply related with p-adic Hodge theory in Number Theory. To
begin with, we recall the classical Hodge theory. In the complex geometry, the Abel-
Jacobi map AJo: C — J(C) of a complex non-singular projective curve C' with a base
point zg € C is given in the following way: Let g be the genus of C. Take a basis
wi,...,wy of holomorphic 1-forms H°(C,Q¢). Denote by A € C9 = R29 the lattice

generated by vectors of the form
g
( / wi> e CY
¥ i=1

for a cycle v € Hy(C,Z) = Z29. The non-canonical description of the Jacobian variety
of C is given by the complex torus J(C) := C9/A = R?9/7?9. For a point x € C, the
integral

AJo(z) = ( L wi>j_1 modulo A € J(C)

for a path 7: [0,1] < C connecting z¢ and x is independent of 7, and hence induces a
well-defined map

AJ(;': C— J(C)
l’l—)AJc(x').

The Abel-Jacobi map AJo: C — J(C) possesses ample information of the analytic
structure of C'. Indeed C' can be reconstituted from J(C') endowed with the polarization
by the classical Torelli theorem originally verified in [Tor|. The integration identifies
H°(C, Q¢) with FTH'(C, C) c H'(C, C) for the Hodge filtration F, and the lattice data
A = H,(C,Z) corresponds to the integral structure H'(C,Z) ¢ H'(C,C). The Hodge
filtration associates a flag (F*H'(C,C),H!(C, C)) called the period P(C) of C. There are
extensions of Torelli theorem formulated using the notion of periods for several classes.
Namely, consider a moduli of complex manifolds in certain good classes such as Abelian
varieties and K3 surfaces. A period map from such a good moduli is injective. Thus
a period reflects various analytic informations of complex manifolds. For more details,
see [Gri] §7. A period of a variety is also important in Number Theory. The p-adic
Hodge theory gives enormous contribution to the study of the Galois representation
associated with the étale cohomology of a variety, and a period possesses non-trivial
informations of the Galois representation itself and the geometry of the variety. Now as
we explained through the example of the classical Abel-Jacobi map, an integration is
one of the most simple ways to extract a period from an analytic variety. Therefore we
expected a construction of a new integration might provide us a new method to extract

an information of a period.
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We use Berkovich’s analytic space rather than an algebraic variety. Analytic Ge-
ometry often appears in modern Number Theory. One of the reasons why one needs
the analysis is because several objects can be glued only on the rigid analytic topol-
ogy even if they naturally arise in Algebraic Geometry. There are several notions of
non-Archimedean analytic spaces nowadays, and they have distinct merits respectively.
Berkovich’s analytic space is easy to describe and study, and hence is used widely. For
example, it appears in the proof of the local Langlands conjecture for GL,, (k) over a lo-
cal field k/Q,, by Michael Harris and Richard Taylor in [HT]; in the study of Bruhat-Tits
buildings by Berkovich in [Berl] and by Bertrand Rémy, Amaury Thuillier, and Annette
Werner in [RTW]; in the formulation of the relative p-adic Hodge theory comparing a
relative (¢, I')-module and a local system by Kiran Sridhara Kedlaya and Ruochuan Liu
in [KL1] and [KL2]; and so on.

The notion of an overconvergent structure of a rigid analytic geometry is introduced
by Elmar Grosse-Klonne in [Klo]. An overconvergent analytic function is “an analytic
function which converges on a wider subset”. The overconvergence is an important
property when we consider an integration. For example, observe the simplest case. Let
D be the affinoid space associated with the Tate algebra

1—>00

Then D is the closed unit disc. Although the differential d/dT: T® — iT" ! is a
contraction on k{T'}, the integration [dT: T" — (i + 1)"'T"*! is not bounded or
even not everywhere-defined on k{7'}. An analytic function on the closed unit disc

K{T} = { f= f: fiT" € K[[TY)

1=0

admits an antiderivative if and only if it extends to an open neighborhood of it, and the
integration [ dT is defined on the corresponding dense subalgebra

k{T} = { f= f: fiT* € K[[T1]

1=0

Ir € (1,00), lim |fi]r' =0 }
1— 00

This is the ring of overconvergent analytic functions on the closed disc. Thus the notion
of an overconvergence naturally arises when one considers an integration.

In §1, we give the definition of a new homology of Berkovich’s non-Archimedean
analytic space. We call it the analytic singular homology. The analytic singular ho-
mology is constructed in the same way as the singular homology of a topological space.
The singular homology of a topological space is associated with the canonical functor
from the simplicial category A to the category Top of topological spaces. In general, a
functor from A to a category C' associates a homological functor on C. In order to con-
struct the analytic homology, we introduce a wide category C containing the category
Any of Berkovich’s non-Archimedean analytic spaces as a full subcategory, and equip
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it with a functor A — C induced by A — Top. The analytic singular homology is the
restriction H, of the homological functor associated with A — C' on Ang. We verify
appropriate properties of H,. The absolute Galois group Gy of the base field acts on
A — (' as natural equivalences, and it induces the action of G on H,. The reason why
we introduce such a wide category C' is because Anj seems not to admit a canonical
non-trivial functor from A equipped with a canonical non-trivial action of Gy.

In §2, we define an integration of an overconvergent differential form along a cycle in
the sense of the analytic singular homology. We first recall the notion of overconvergence.
An analytic space endowed with an overconvergent structure is called a dagger space.
We construct an analytic singular homology of a dagger space in the same way as that
of an analytic space. After then, we define an integral of a differential form, and verify
the integrability of an overconvergent differential form. The basic properties of the
integration follows immediately, and they imply that it is a non-Archimedean analogue
of the Cauchy integral in the complex analysis.

§1. Analytic Singular Homology

In this section, we give an idea for the new homology of Berkovich’s non-Archimedean
analytic space over a complete valuation field of rank 1 with mixed characteristic (0, p),
and explain its basic properties. For the full descriptions of the proofs, see [Mih]. The
new homology is an analogue of the singular homology of a topological space. First we
recall the categorical construction of the singular homology. Secondly we apply it to a
wide category containing the category of Berkovich’s non-Archimedean analytic spaces.
Finally we show several examples and properties.

§1.1. Homology associated with a simplicial functor

The singular homology is defined as a homology group of the singular chain com-
plex, which is a chain complex defined by formal finite sums of singular simplices. A
singular simplex on a topological space X is a continuous map from a standard simplex
to X. This construction is purely topological, and it has a category-theoretical inter-
pretation as follows: Denote by Top the category of topological spaces and continuous
maps. A singular simplex on an object X € ob(Top) is a morphism from a standard
simplex to X, and a standard simplex is an object in the essential image of the canonical
functor from the simplicial category A to Top. Here the simplicial category A is the
category of sets of the form {0,...,n} C N for n € N and order-preserving maps with
respect to the total order of natural numbers. In general, for a category C and a functor

S:A—=C
{0’,_‘,n}wAn :ZS({O,...,R}),
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one can define the homology Hf (X, Z) of an object X of C to be the homology group of
the chain complex Cf (X)) whose degree n component is the Abelian group freely gen-
erated by the set Home(A™, X). This construction of a homology is the generalization
of that of the singular homology on Top; we obtain the singular homology on Top by
applying the above general construction to Top and the canonical functor A — Top.
Furthermore, if a group G acts on the functor S: A — C| i.e. if a group homomorphism

p: G— Aut(S)
g—(p(g): S = 9)

from G to the group Aut(S) of automorphisms of S is given, then the homology HY (X, Z)
admits a functorial G-action in the following way:

Definition 1.1. Let C be a small category, S: A — C a functor, G a group,
and p: G — Aut(S) a group homomorphism. For an object X € ob(C) and n € N,
define p’y , : GP = Autgeis(Hom (A", X)) as the group homomorphism

Px . GOP = Autges(Hom(A™, X))
9= (Px.n(9): 7= v0p(9){0,...,n})),

where G°P is the group whose underlying set is that of G and whose multiplication
x: GP X G°P — G°P is given by setting g x h := hg for each g,h € G°P. It induces
an automorphism of the chain complex Cf (X)) functorial on X, and thus it yields a
functorial right group action px: G° — Auta,(HY (X, Z)).

§1.2. Wide category

We would like to apply the construction above to Berkovich’s non-Archimedean
analytic spaces over k and the absolute Galois group Gy of k. See [Berl] and [Ber2]
for the definition and basic properties of Berkovich’s non-Archimedean analytic spaces.
We call Berkovich’s analytic space an analytic space for short. We construct a functor
from A to a wide category C' containing the category of analytic spaces.

Definition 1.2. A commutative Banach k-algebra is a commutative k-algebra
A endowed with a map || - ||: A — [0, 00) satisfying the following:

(i
(i

(ii

) |la]| = 0 if and only if a = 0 for any a € A.
) lla—b]) < max{ljall 5]} for any a,b € A.
) lladl] < [all[|b]| for any a,b € A.

)

(iv) ||cal| = |¢|||a]| for any a € A and ¢ € k.
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(v) The map
AxA—10,00)
(@,b) = [la = bll,

which is an ultrametric by the conditions (i) and (ii), is a complete metric.

Regard A as a topological k-algebra endowed with the complete ultrametric in the
condition (v). A k-algebra homomorphism ¢: A — B between the underlying k-algebras
of Banach k-algebras A and B is said to be bounded if there exists D > 0 such that
llo(a)]| < Dllal]| for any a € A. A morphism between Banach k-algebras is a bounded
k-algebra homomorphism between their underlying k-algebras.

Lemma 1.3.  There is a category C equipped with fully faithful functors ti: Ang —
C from the category Any, of analytic spaces over k and and to: Banach]? — C' from the
opposite category Banach,” of commutative Banach k-algebras such that the following
hold:

(i) The restrictions of the two functors on the opposite full subcategory Aff;. of k-affinoid
algebras are naturally equivalent with each other.

(ii) The category C is universal in the categories equipped with functors from Any and
Banach,” satisfying the condition (i). Namely, for a category C' and two functors
Ui An — C' and ty: Banach” — C’ satisfying the condition (i), there exists a
functor w: C — C' unique up to a natural equivalence such that the composition
7o, is naturally equivalent to i for each i =1,2.

The functor S: A — C will be constructed in three steps: The first step is to con-
struct the category Pol of polytopes in Euclidean spaces. Here by a technical reason, we
only consider “rational” polytopes with “rational” affine maps in the sense of Definition
1.4. We do not use general polytopes and general affine maps, and hence we omit the
adjective “rational”. The second step is to define a canonical functor R: A — Pol. The
third step is to give a canonical functor Pol — Banach,”. Composing them, we will
obtain the functor S: A — Pol — Banach;” — C.

Definition 1.4. For n € N, a non-empty subset P C R" is said to be a polytope
if there is a finite subset L C Q"™ such that P coincides with {(ai,...,a,) € R" |
lo+lay + - +lpan >0,(o,...,1,) € L}. For polytopes P; C R" and P, C R"2, a
map ¢: Py — P is said to be affine if there are a matrix (£ ;)i; € Mp, n, (Q) and a
vector (by,...,by,) € Q" such that the map

®: R™ — R

ni ni
(al,...,anl)'—> b1+ZFl,jaj7"'7bn2 +ZFn2,jaj
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satisfies ®(P;) C P, and ®|p, = ¢. Denote by Pol the category of polytopes and affine
maps.

Remark.  Every affine map between polytopes is continuous, and therefore there
is a canonical faithful functor Pol < Top which identifies Pol as a faithful subcategory
of Top. Moreover, the canonical functor A — Top associating the singular homology of
topological spaces uniquely factors through Pol — Top.

Denote by R: A — Pol the induced functor. A complete valuation field £ is said
to be a local field if k is a discrete valuation field and if its residue field is a finite field.
By a technical reason, if k is a local field, we compose R with the multiplication

qx — 1: Pol — Pol
P ~ (@ — )P

¢ Pr— Py (g —D)o: (g — 1) P — (g — 1) P
t = p(t) t = (qe — 1)@((qr — 1)7't)

by qx — 1, where g, is the cardinality of the finite residue field of k, and denote by R the
composition. Otherwise, set Ry := R. For n € N, set A" := Ry ({0,...,n}) € ob(Pol).

Definition 1.5. For n € N, a polytope P C R" is said to be thick if there is no
R-linear proper subspace V C R™ containing P.

Remark.  Every polytope is isomorphic to a thick polytope.

Let us fix an algebraic closure k8 of k. Set

QY := { = € Homup(Q, k&™) | 2(1) € k },

where Ab denotes the category of Abelian groups. For n € N and a thick polytope
P C R™, consider a map

|- llpo: QY™ — (0,00)
r=(21,...,2,) = ||z||po :=sup{ |x1(t1) - - zn(tn)| | (t1,...,tn) € PNQ" }.
Then the map
|- llp: k[QE"] = [0,00)

> far sup |fallzllpo
Q\/n

zeQ)" TE%

is a multiplicative norm of a unital k-algebra. Denote by kp the completion of the group
algebra k[Q)"] with respect to the norm || - || p. The embedding k[Q)"] < k%" induces
the natural identification

li =0
i [£lellr =0 },
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and we regard an element (f;)scqy € kp as a formal infinite sum Zme(@gn fzx. Here
the expression limg,eqyn r(z) = 0 for a map r: QY™ — [0, 00) means that for any € > 0,
there is a finite subset F, C Q)" such that r(x) < € for any x € Q)/™\F..

Remark. A character € Q) is regarded as a function like an exponential map.
For example, take a system e € Q) of roots of unity. For elements a € k and b € k*, the

formal sum a + be € k[Q)/] is analogous to the complex-valued function a + bexp(27it).

Lemma 1.6.

(i) For n € N and a thick polytope P C R™, the natural action of Gy, on Q) induces a
unitary representation Gy, — Autpanach, (kp)-

(i) If there is an isomorphism Py — Py of thick polytopes, then it naturally induces an
isometric isomorphism kp, — kp, .

(iii) The correspondence P ~ kp associating a thick polytope to a commutative Banach

k-algebra is extended to a functor k.: Pol — Banach]”: P ~ kp unique up to a
natural equivalence.

(iv) The functor k.: Pol — Banach,” admits a canonical action of Gy.

Observe the case that a polynomial is the standard simplex A™ € Top for n € N.
For convenience, we assume that the residue field of k is an infinite field, and omit the
appearance of qx. The polytope

n
A”={ (20, 7n) € R inzl,xizo,vizo,m,n}

i=0
is not thick, and one has to take an isomorphism between A™ and a thick polytope.

There is no canonical choice of such an isomorphism, but n + 1 isomorphisms are given.
Set

n
T" =4 (tr, . tn) €R™ | D ;< 1,4, 20,7 =1,...,n
j=1

For each ©+ = 0,...,n, the projection
Di ]Rn-i-l S R"™
(xo,...,xn)r—%(xo,...,xi_l,xi+1,...,xn)

induces an isomorphism p,, : A" — T"™. Through the isomorphism, one has the isometric
isomorphism

zeQym

kan & kpn = { (fo)oeoy» € K% | lim |folllz]lzno =0 }
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depending on the choice of ¢ = 0,...,n. In particular, consider the low dimensional
cases. The thick polytopes 70, T, T? are given as
T° = {0} =R%, 7' =[0,1] C R,
T? ={ (t1,t2) ER* | 0< 1,0 < to, t1 + 12 <1},
and they associate the norms
I+ llzo.0: Qi =1 (0,00)

1—1

I NIz 00 Qi = (0,00)
x— max{1l, |z(1)[}

I+ ll72,0: Q% = (0, 00)

(21, 29) = max{1, [z1 (1)], [z2(1)[}

Thus one obtains

kno &k, kar = { (fo)zeqy € K

lim |f,| max{L, |2(1)]} = 0 }
x€Qy

bae = { Uohseops €497 |t |folmax(L, s (O] oo} =0 }.
TEk

Definition 1.7. For a polytope P and an analytic space X, put Hom(P, X) :=
Home (ea(kp), t1(X)). We sometimes write g: P — X for an element g € Hom(P, X).

Remark.  For a polytope P and an affinoid space X, there is a functorial canonical
bijective map between Hom(P, X') and Hompapach, (HO(X ,Ox),kp).

Definition 1.8. Denote by S: A — C the composition of R: A — Pol, k.: Pol —
Banachy, and ¢z : Banach,” — C.

Definition 1.9. For an analytic space X over k, define the analytic singular
homology H. (X, M) of X with coefficients in an Abelian group M as the homology
group of the chain complex

C*(X, M) — (M@Hom(AO,X) . M@Hom(Al,X) — M@HOm(Az,X) . )

associated with the functor S: A — C. The analytic singular cohomology H* (X, M) of
X with coefficients in M is the cohomology group of the cochain complex

C*(X, M) — (MHom(AO,X) N MHom(Al,X) s MHom(A2,X) .. )
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associated with the functor S: A — C. The action of G; on S induces a canonical
action of G on H.(X, M) and H*(X, M) functorial on X and M.

Remark.  Replacing C' by the amalgamated sum CT of the category Dg; of dag-
ger spaces and the opposite category WBanachy” of weakly complete k-algebras over
the opposite category DgAfly” of dagger k-algebras, one obtains the analytic singular
homology and the analytic singular cohomology of a dagger space in the same way. A
dagger space is “an analytic space equipped with an overconvergent structure”. We will
explain the precise definitions of dagger spaces and dagger algebras in the next section.

Definition 1.10. For an analytic space X over k£ and a prime number [, we
define the l-adic analytic singular homology H. (X, Q;) of X as follows:

Ho (X, Q) = lim Ho(X, ZJVT) @z, Q.
Jj—00
The compatible actions of G on H,(X,Z/l’Z) for j € N induce an l-adic representa-
tion of Gy on H. (X, Q) functorial on X.

§1.3. Examples and properties

Unfortunately there are few examples of analytic spaces whose analytic singular
homologies have been calculated. Here are some of them. The calculations are done by
similar ways as that for the singular homology of the closed unit disc { a € C | |a| < 1}
and the unit circle { a € C | |a| = 1 }. For example, in order to verify that a given i-cycle
is trivial, one has to construct an (i + 1)-st morphism corresponding to a homotopy
deformation in the calculation of a singular homology. For a singular homology, the
multiplication by an additional parameter ¢ € [0, 1] is useful to construct a homotopy
deformation. Similarly, we used the multiplication by p(t) for a fixed system p € Q) of
a power root of p. Note that the character p behaves like a path connecting 1 = 1_9(0)

and p = p(1).

Example 1.11. Let X be the closed disc My (k{r—1T?}) of radius r € (0,00)™;
the open disc Uy s, Mi(k{s *T}) C My(k{r—'T}) of radius r; or the affine space
A} = Spec(k[Ty, ..., Tu])™ = Upe, Mi(k{r—'T}) of dimension n € N. Then for a
prime number [, there is a canonical Gg-equivariant isomorphism

Qi (i =0)

(X, Q) = {0 (i>0)"

Example 1.12. Let X be the closed unit annulus My (k{Ty,T; '}) or the alge-
braic group G, = Spec(k[Ty, T, '])*" = Uo<s; <r My, (k{r Ty, 51T 1}) correspond-
ing to the multiplicative group k*. Let [ be a prime number. If [ # p, there is a
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canonical G-equivariant isomorphism

Q (
Qi(1) (

i=0)
i=1)"

If | = p, there are a canonical Gi-equivariant isomorphism

Hz(Xa Ql) = {

HO(Xa Qp) = Qp

and a canonical exact sequence
0—Qp(1) - Hi(X,Qp) = k=0

of p-adic Galois representations. The p-adic Galois representation H;(X,Q,) is the
canonical extension of k by Q,(1) given by the surjective Qp-linear G-equivariant map

{zeqQ/| lz(1) =11 <1} ®z, Qp—>k
r® 1 logx(l),

and if £ is a local field, Hy (X, Q) is a crystalline representation. Indeed, H; (X, Q,)®q,
Beris admits the Gi-invariant basis

1 log expe log expe,,
e®—,(expel®1)— e®g ,...,(expen®1)— e®%
loge ‘——— log e — log e

where ¢ is a system of p-power roots of unity, n := dimg, k, {e1,...,en} C k is a Q-
basis consisting of elements in the convergent domain of the exponential map, expe; is
a system of p-power roots of expe; € { a € k||a —1] <1 } foreachi=1,...,n. Note
that for a system a of p-power roots of { a € k | |a — 1| < 1 }, the logarithm loga € Bar
is contained in Bg;s. We will recall the definition of the logarithm loga in Definition
2.9.

The analytic singular homology satisfies appropriate properties. They contain the
properties called the axiom of homology theory.

Theorem 1.13. Let X be an analytic space and M an Abelian group.
(i) Functoriality: The analytic singular homology H.(X, M) is functorial on X and M.

(ii) Homotopy invariance: The canonical projection X Xy A,lf — X induces a G-
equivariant isomorphism H,(X Xy Ay, M) — H (X, M).

(iii) Long exact sequence for a space pair: A space pair is a pair (X,Y) of an analytic
space X and an analytic domain Y C X. For a space pair (X,Y) and an Abelian



96

(iv)

(v)

(vi)
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group M, denote by H.(X,Y, M) the homology group of the cokernel of the homo-
morphism C.(Y, M) — C.(X, M) associated with the embedding Y — X. There is
a canonical long exact sequence

Heit(X,Y, M) = H (Y, M) — H.(X, M) — H.(X,Y, M) —
of Gi-modules functorial on (X,Y) and M.

Dimension axiom: There is a canonical Gy -equivariant isomorphism
Hi (M (k), M) = {

functorial on M.

Mayer—Vietoris exact sequence: Suppose k is algebraically closed. For Weierstrass
domains U,V C X with Int(U/X) U Int(V/X) = X, the embeddings U,V — X
induce a long exact sequence

— Ho (X, M) = H(UNV,M) = H(U,M) & H,(V,M) - H,(X,M) —

of k-vector spaces functorial on M, where Int(U/X) and Int(V/X) are the relative
interiors of the morphisms U — X and V — X. Note that in this case, Int(U/X)
and Int(V/X) coincide with the open subspaces of U and V corresponding to the
interiors of their underlying topological spaces as subsets of that of X.

Excision axiom: Suppose k is algebraically closed. For Weierstrass domains X', A C
X with Int( X'/ X)U Int(A/X) = X, the embeddings X', A — X induce an isomor-
phism

H (X', X' N A M)~ H,(X,A, M)

functorial on M.

(vii) Universal coefficient theorem: There is a canonical exact sequence

0— H,(X,Z)®z M — H,(X,M) — Tor*(H,_(X,Z),M) = 0

of G-modules functorial on X and M.

§ 2. Integration along a Cycle

Suppose that the base field k is a local field of mixed characteristic (0,p). Then

Fontaine’s p-adic period ring Bggr (k) associated with & is defined as a topological k"'~

algebra endowed with a complete discrete valuation whose residue field is the completion



NON-ARCHIMEDEAN SINGULAR HOMOLOGIES AND INTEGRALS 97

of the algebraic closure k% we fixed in the previous section, and it admits a canonical
structure as a k®8-algebra compatible with the reduction with respect to the complete
discrete valuation. In fact it is known that the structure of Bqr (k) as a k&-algebra is
independent of the base field k£/Q,. Namely, for local fields K and L over Q, there
is a canonical isomorphism Bgr(K) = Bqr(L) as a k*8-algebra. Therefore we denote
by Bgr instead of Bgr(k) for short. See [Fon] for more details. In this section, we
briefly explain the idea of definition of the integration for an overconvergent differential
form along a cycle in the sense of the analytic singular homology we defined in the
previous section. Note that the notion of the overconvergence of an analytic function
and a holomorphic differential form on an analytic space depends on the choice of its
overconvergent structure, defined in [Klo]. Remark that a non-compact Stein space and
the analytification of an algebraic variety admit the canonical overconvergent structures.
Here we followed the definition of a Stein space by Berkovich in [Berl] 5.1. Beware that
there are several similar definitions of a Stein space. A Stein space is an analytic space
X admitting an increasing sequence Wy ¢ Wi C .-+ € UW; = X by an affinoid
domains such that W; is a Weierstrass domain of W, for any ¢ € N. For example, an
affinoid space and an analytic space associated with an affine scheme is a Stein space.
Strictly speaking, an analytic space with a fixed overconvergent structure is called a
dagger space. First we briefly review dagger algebras and dagger spaces. See [MW]
and [Klo] for details. Secondly we give the definition of the analytic singular homology
of a dagger space in the same way as that of an analytic space. Thirdly we formulate
the notion of the integrability of a differential form, and verify the integrability of an
overconvergent differential form. Finally we see basic properties of the integration.

§2.1. Overconvergence

The overconvergent structure of an analytic space is given by a covering by affinoid
dagger spaces. An affinoid dagger space is a locally ringed G-topological space associated
with a normed algebra called an affinoid dagger algebra. An affinoid dagger algebra is a
dense subalgebra of an affinoid algebra consisting of “analytic functions converging on
a wider subset”.

Definition 2.1. For n € N and a parameter r = (r1,...,7,) € (0,00)", set

k{r_lT}Jr = k{rl_lTl, . r_lTn}T

::{ F=> frl T ek(Tn,... . T,)] | 6> 1,|Il|im | frlo! Tl :0}
— 00
IeNn

and call it the Monsky-Washnitzer algebra of radius r. It is obviously a dense k-
subalgebra of the Tate algebra k{r 1T}, and we endow it with the restriction of the
Gauss norm of k{r—1T7}.
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Remark.  The Monsky-Washnitzer algebra is an algebra of overconvergent power
series. Namely, the restriction maps k{s 1T} — k{r~!T} for parameters s > r induce
a k-algebra isomorphism

lim k{s 1T} = k{r 1T},
where the left hand side is the direct limit of k-algebras. Every Monsky-Washnitzer
algebra is a normed Noetherian k-algebra, and its ideal is closed with respect to the
norm topology. Therefore the quotient of a Monsky-Washnitzer algebra by a proper
ideal admits the quotient norm.

Definition 2.2. A normed k-algebra is said to be a dagger k-algebra if it admits
an isomorphism with the quotient algebra of a Monsky-Washnitzer algebra by a proper
ideal in the category of normed k-algebras. Denote by DgAff, the opposite category of
dagger k-algebras.

Remark.  The completion of a dagger algebra is an affinoid algebra.

Definition 2.3. A dagger space is defined in the same way as an analytic space
in [Ber2| replacing affinoid spaces by affinoid dagger spaces.

Remark.

(i) A dagger space is a G-locally ringed G-topological space X' = (X é, Ox+) endowed
with an equivalent class of a net 7 of G-admissible subsets of the underlying topo-
logical space | XT| in the sense of [Ber2] with a suitable property. A dagger space is
not formulated as a locally ringed G-topological space G-locally isomorphic to an
affinoid dagger space. It is because of the same reason as that for an analytic space.
The weak G-topology of an affinoid dagger space is not saturated and the collection
of affinoid domains is not closed under unions. Therefore an analytic domain of a
dagger space is not weakly G-admissible, and a morphism between analytic spaces
is not weakly G-continuous in general. This is why one has to consider another
slightly finer G-topology for a non-affinoid analytic space. See [BGR] for details of
G-topological spaces.

(ii) The completion of a dagger algebra preserves the underlying topological spaces of
the spectra. The weak G-topology of an affinoid dagger space is slightly weaker
than that of the corresponding affinoid space.

Definition 2.4. The completion functor from the category of dagger algebras
induces a functor from the category Dg; of dagger spaces to Any preserving the under-
lying topological spaces. When an analytic space X is associated to a dagger space X1,
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then we call the structure sheaf Oy of XT an overconvergent structure of X. Denote
by QE( = Qy+ the conormal sheaf of the diagonal embedding A: XT — XT x;, X, and
call it the sheaf of overconvergent differential forms.

Remark. In the situation above, the overconvergent sheaves Ox+ and Qxi are
naturally embedded in the sheaves Ox and 2x respectively restricted on the G-topology
of XT through the identification of the underlying topological spaces | X| = | XT]|.

§2.2. Homology of a dagger space

As we remarked in the construction of the analytic singular homology of an analytic
space, the same works for a dagger space. We define the overconvergent structure of a
polytope and the overconvergence of a morphism from a polytope to a dagger space.
Using them, we formalize the canonical functor from A to a wide category containing
the category of dagger spaces. It associates a homology of a dagger space.

Definition 2.5. A normed k-algebra A is said to be weakly complete if for
m € N and non-zero elements ai,...,a,, € A\{0}, the k-algebra homomorphism
k[Ty,...,Tyn] — A: T; — a; is uniquely extended to a bounded k-algebra homomor-
phism k{|la1|| = 711, ..., |lam| 1T }T — A. Denote by WBanachy, the category of weakly
complete k-algebras.

Remark.
(i) Every dagger algebra and every Banach k-algebra are weakly complete.

(ii) The forgetful functor from WBanachy to the category of normed k-algebras admits
the left adjoint, and call it the weak completion functor. The weak completion of a
normed k-algebra is a dense weakly complete k-subalgebra of the completion.

Definition 2.6. For n € N and a thick polytope P C R™, denote by k;r) C kp
the weak completion of the dense k-subalgebra k[Q)"] C kp.

Lemma 2.7.  If there is an isomorphism P, — Py between two thick polytopes,
then it naturally induces the isometric isomorphism k}% — k;@l.

Lemma 2.8.  The correspondence P ~~ k} which associates a thick polytope to
a weakly complete k-algebra is extended to a functor k. Pol — WBanachy, unique up
to a natural equivalence.

We regard the weakly complete k-algebra k;r; as “the overconvergent structure”
of a polytope P. This allows us to define the notion of an overconvergent morphism
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from a polytope to a dagger space in the following way: Replacing the categories Ang,
Banachy, and Affy by Dg,, WBanachy, and DgAff, respectively, we obtain a wide
category CT corresopondind to C. An overconvergent morphism from a polytope to a
dagger space is defined as a morphism between the images of them in Ct. The functor
Pol — WBanachy: P ~~ k;r; induces the functor ST: A — CT, and it associates the
analytic singular homology of a dagger space. The completion functor induces the
canonical faithful functor Ct — C compatible with S and ST, and hence it gives the

canonical homomorphism
H,(XT, M) - H,(X,M)

for a dagger space XT, the analytic space X associated to XT, and an Abelian group
M. We do not know whether the homomorphism is injective (surjective) or not.

§2.3. Convergence of the integral

We want to define the integral of an overconvergent differential n-form w on a
dagger space X' along an overconvergent morphism v: A” — X' by the equality

/w::/ v w.
/-Y n

Thus in order to define the integral of an overconvergent differential form w along a cycle
[v], it suffices to define the “pull-back” v*w and the integral of v*w over A™ satisfying
Stokes’ theorem. The definition of the integration for a general dimention n is a little
complicated, and hence we only deal with the case n = 1. By a technical reason, we
identify the standard simplex A! with the interval [0, g, — 1], where g is the cardinality
of the finite residue field of k.

Definition 2.9. Denote by O C k*2 the ring of integers. Define the logarithm
log: Q¢ — Bgr as the composition of the inclusion Q; < Homa,(Q, k18X the restric-
tion Homay, (Q, k*8*) — Homay,(Z[p~1], k*8*), the isomorphisms Homay, (Z[p~1], k218%)
fm Ealex =~ Frac(l'&nFrob O/p)*, and the extension log: Frac(l'&nFrob O/p)* — Bar
of the monoid homomorphism

log: I&n O/p— Bar
Frob

with respect to the multiplicative monoid structure of l'&lﬁob O/p, where [a] denotes the
Teichmiiller lift (a,0,0,...) € W(l'&lFrob O/p) C Bggr. For details of the isomorphisms
and the logarithm above, see [Fon].

[ad
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Lemma 2.10. For n € N and a thick polytope P C R", consider the formal
derivation

d: kb — Pk} @i Bagdt;
=1

f= Y fovmrdf= > Zn:fxx(glogxidti.

weQy ™ weQyn i=1
The infinite sum in the definition of the formal derivation d makes sense by the con-
dition that an element of k;r; is of the form f = > ;cym gm{l cooaxle form € N and

v
1y, Tm € QLM

For m € N, set Q% := /\Zi (D7, kbdt;) ® Bar and denote by d,,: Q7% — QpHt
the wedge product of d. Call (2%;,d.) the de Rham complex associated to P.

Lemma 2.11.  If there is an isomorphism P, — Py between two thick polytopes,
then it naturally induces an isomorphism (2%, dy) — (2, dx) of chain complexes of
2 1

free modules over the identified weakly complete k-algebras k;rgQ = k;rgl.

Lemma 2.12.  The correspondence P ~ (05, d..) which associates a thick poly-
tope P to a chain complex of a finite free k}—module is extended to a functor (%, d.): Pol —
C*(Ab) endowed with the structure of finite free kI-modules. Here C*(Ab) denotes the
category of cochain complexes in Ab, and the functor (Q%,d.) is unique up to a natural
equivalence. If one fizes a representative of the natural equivalence class of the functor
k.T, then there is a canonical representative of the natural equivalence class of the functor

(9%, d,): Pol— C*(Ab).

Example 2.13.  Recall that for n € N, the polytope A™ = Ry ({0,...,n}) is the
subset of R"*! of the form

An:{(to""’tn)ER”+1|t0+'~-—|—tn:Nk},

where N is 1 when k is not a local field and is g — 1 when k is a local field. The degree
n component of the de Rham complex associated with A™ is computed as follows:

Mo = Do kTAn ®k Bardto A -+ Adti—1 ANdtiga A Adty,
AT (g A Nty g Aty 1 A Adbn —dbg A Adbiy—1 Adbigiq A A dty)
Zki, k. ®k Bardty A --- Adt,

Lemma 2.14. For n,m € N, there is a non-trivial canonical map
Hom(A™, XT) x H(XT, Q%) — QW

(7, w) =W
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compatible with the derivations and functorial on a dagger space XT. We call it the

pull-back morphism.

Next we define the integral of an element of Q[lo gu—1]t OVer [0,q9x — 1]. Since

Q[lo 0 1] kELO 1] ®p Bardty, it is reduced to the construction of an integration
qr— ’r

Definition 2.15. For an element f = er(@% Jz® € Kjo,q, 1), We define its inte-
gral [ fdt; by
qr—1 gk — 1
dty := - 1)
| s e e DI
log z#0 log z=0

if the infinite sum in the right hand side converges in Bqr. We say that f is integrable
if the above integral is defined.

Remark.  Recall that a character z € Q) is regarded as a function like an expo-

nential map. The definition of the integral

/oqk_l x(ty)dty = g =D —-1_2lge =D —2(0) _p

log x log

is analogous to the integral

/ exp(aty)dt; = exp(ar)a— exp(0) eC
0

of the exponential map ¢ — exp(at) for a € C* and r € R.

Theorem 2.16.  Fvery element f € k[o a0
duces a Bggr-linear Gi-equivariant homomorphism

1] 1s integrable. The integration in-

qr—1 .
/0 t o.g,—1yr — Bar

qr—1

qr—1
f & bdtl l—>/ f & bdtl = b/ fdtl.
0 0

§2.4. Properties and calculations of the integral

We show that the integration satisfies appropriate properties which is desired
against a good integration. These properties imply that the integration is a non-
Archimedean analogue of the Cauchy integral in the complex analysis.



NON-ARCHIMEDEAN SINGULAR HOMOLOGIES AND INTEGRALS 103

Proposition 2.17 (Fundamental theorem of calculus).  For an element f € kErO 1]’

the equality

qr—1
/O df = f(qe —1) — (0) € k € Bug
holds.

Definition 2.18. For a dagger space X and n € N, define the pairing [ as
follows:

/: Hom(A™, XT) x HY(XT, Q%) — Bar

e fowem [ 7

By the universality of the free Abelian group Z&Hom(A".X T), it induces a Z-linear Gg-

equivariant homomorphism

/: Z8Mem(8™XD) @ H(XT, Q%) = Bar

'y®w»—>/w,
v

where G}, acts trivially on the cohomology H°(XT, O%).

Theorem 2.19 (Stokes’ theorem).  For a dagger space X, n € N, an overcon-
vergent (n—1)-form w € H(XT, Q%ﬁl), and an element vy € Z@Hom(An’XT), the equality

/dwsz
v 9y

holds, where §: Z®@Hom(A" X" _y 7&Hom(A™NXY) o yhe n th derivation of the chain
complex Cy(X1,7).

Corollary 2.20.  The pairing in the previous proposition induces a well-defined
G'.-equivariant pairing

/: H.(X',2) @z H (H'(XT,Q%+)) = Bar

7®w»—>/w.
v

If X1 is a smooth Stein space, then there is a canonical isomorphism H* (H°(XT, Vi) =k
H5(XT) through the Hodge to de Rham spectral sequence by [Kie] 2.4.2, where Hiyr(XT)
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is the hypercohomology of the overconvergent de Rham complex (2, d.). Therefore the
above pairing induces a Gy -equivariant canonical pairing

/: H,(XT,7) @z Hip(X") — Byg.
Example 2.21 (Cauchy’s integral theorem).  The integration
/dT: Hi(ALT,Z) ®7, HO(ALT,01,) = Bar

7®f’_>[,de

is zero because Hl(A,lj, Z) = 0. In particular for a system e € Q) of roots of unity, the

integration

/ dT: H'(ALT, 041 ") = Bar

€

f— | fdT
Ye
is zero, where v.: Al = [0, ¢, — 1] — ALT is the morphism associated with et/(an=1) ¢
Q) C kEro, 1" Note that since g — 1 is the cardinality of the subgroup of k* consisting
of roots of unity of order coprime with p, the character €!/(%—1) in the multiplicative
Q-vector space Homap, (Q, k*8%) is contained in Q).

Example 2.22 (Residue theorem). Let € € Q) be a system of roots of unity,
and denote by v.: At — G;rn, i, the closed morphism associated with el/(a—1) ¢ (kJr

X
0,011
For a Laurent series f = Y, fiT" € HO(GL’k, Og}m )= H° (G i, Og,, , ), the equality

1
loge/ JdT = J

€

holds. Indeed, one has

lolge /7 fdr = lolge /[O,qk_l] ! (e%#—l) d (Eﬁ)

1
1 i 1 _1 1 [T _itl
/[ ] Zfieqk—l (t1) (logeqkl_leqkl_l (t1)dt1) _ gt ZfZ/ e (t1)dt,
ank_l )

loge i€z

1 (i+1)—1 1 1-1
> e o (/A )Y = oo e > fi—+ 1

0 — 1 iez\{—1}  logem=1 OgeieZ\{—l}

=f1




NON-ARCHIMEDEAN SINGULAR HOMOLOGIES AND INTEGRALS 105

Example 2.23 (Cauchy’s integral formula, Cauchy-Goursat theorem).  In the sit-
: . . ; 0 0
uation above, for an entire function f =Y, i7" € H’(A;T, OZ\}) =H"(A4, Oyt ), the
equality

1 f d'f
—dT = .
log e [y (T — a)it! dT? (a)
holds for a € k and 7 € N.

Example 2.24. Take an element ¢ € k with 0 < |¢| < 1. Let €,q € Q) be
systems of roots of unity and ¢, and denote by v, v,: AT — G;rn, ;. the morphism asso-
- v 1/ (qe—1) t T
ciated with /(%= ¢ € (k[O,qk— f
compositions of v, and 7y, respectively with the canonical projection (Gjn’ g (Gjn’ i/ q~.

They are obviously cycles. Let w € HO(G;’k/qZ,Qg} k/qZ) = HO(Gm,k/qZ,QGm)k/qz)

1])>< respectively. Denote by 7,7, AT — Gjn,k the

be the volume form whose pull-back by the canonical projection G;rn’ B G;rn,k /q* is
dT/T € HY(G! Q(J{;m )= H(Gy s g, ,.)- Then the equality

m,k’
ffyé wy o log e
Jyyw ) \law—1)logg

holds, and thus the integration gives Fontaine’s p-adic periods of the Tate curve G, i/ q~.
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