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A Lefschetz trace formula for p"-torsion étale
cohomology: a resume

By

Megumi TAKATA*

This is a resume of our results ([5]) on a Lefschetz trace formula on varieties defined
over a finite field F, of characteristic p. It is a p"-torsion version of a conjecture of
Deligne which was originally formulated with ¢-adic étale cohomology (¢ # p) and has
been proved by Fujiwara in full generality ([2]).

We introduce some notations to state our results. We fix an algebraic closure k
of F,. For an object Xj (e.g. scheme, sheaf on a scheme, morphism of schemes) over
F,, X denotes the base change of A, by the injection F, — k. Let S be a scheme.
For a morphism of S-schemes b: V' — U xg U, we put by = pr; ob and by = pry o b,
where pr; (resp. pry) is the first (resp. second) projection of U xg U. The S-scheme
Fix(b) =V xpyxsv U is defined by the following cartesian diagram

Fix(b) ——U

l lAWs

V2 U xsU,

where Ay is the diagonal morphism. Remark that if U and V' are smooth over

S, dby: b1Qys — Qyyg is zero and by is étale, then Fixb is étale over S ([7, Cor.

17.13.6]). For an S-endomorpshim f: U — U, we put Fix f = Fix(f xgidy). Let Uy

and Vp be Fg-schemes and bg: Vo — Ug xp, Up an F -morphism of schemes. We put

b(™) = (Fr}? o by, by), where Fry; is the relative g-th power Frobenius morphism of U i.e.

the base change of the absolute g-th power Frobenius morphism of Uy by F, — k.
First, we state a p-torsion version of Fujiwara’s trace formula.
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Theorem 1 ([5, Corollary 3.2], [5, Theorem 6.1]).  Let Uy and Vy be separated
[F,-schemes of finite type and Fy a constructible étale Z/p-sheaf on Up.

(1) Let fo: Uy — Uy be an automorphism of finite order and m > 1 an integer. Let
Up (Fr?}o o fo)*Fo — Fo be an isomorphism of sheaves whose order is the same as
that of fo. Then we have the following equality

> (=1)'Tr(uo (Frip o /)" | HU(U,F))= > Tr(up| Fp).

i PeFix(Friof)

(2) Let bo: Vo — Uy xw, Uy be a morphism of Fy-schemes. We assume that Fy is
smooth. Further we assume that there exist proper smooth F,-schemes Xy and Y,
and an Fg4-morphism ag: Yo — Xo xp, Xo such that

a) Uy (resp. Vi) is an open F,-subscheme of X (resp. Yy ), the diagram
q

V[Qi> Un xx, Uo

ag
Yo —— Xo xr, Xo

18 cartesian,

(b) by is proper, as is étale, a is a closed immersion,

(¢) X \U is a Cartier divisor, and

(d) there exists a smooth constructible étale Z./p-sheaf Gy on X¢ such that Go|u, =
Fo-

Then, for any integer m > 1 and any ug € Hom(béT)*fo,bE‘;QfO), we have the
following equality

Y ()'Te(w | H(U,F) = Y Tr(up | Fp),

i PEFix(b(m))

where wy is the composition

(m)*

HY(U,F) ~—— HY(V, b§m>*f) X HY(V,b5F) b2, HY(U, F).

Remark that Fix(Fri; o f) is finite over k by Zink’s lemma [6, Lemma 2.3] and
Fix(b™) is finite étale over k since U and V are smooth over k, the differential of bgm)
is zero and by is étale.

Theorem 1 (1) is proved by using the Lefschetz trace formula for the Frobenius
correspondence ([8, Fonct. L mod. ¢ Théoreme 4.1]) and Deligne-Lusztig’s method ([1,
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Section 3]). We sketch the proof of Theorem 1 (2). This is a generalization of the proof
of [8, Fonct. L mod. ¢", Théoreme 4.1]. We put ¥) = 4 (Go ® Ox,), where . is the
ideal sheaf of definition of Xy~ Up. Since X \ U is a Cartier divisor, ¢’ is a locally free
Ox-module of finite rank and sits in the exact sequence

0— 3 F —9 0% q 0,

where @: 4’ — 4’ is the morphism induced by the p-th power map on Ox. Then we
can reduce the calculation of the trace of the endomorphism of the cohomology group
of F to that of ¥’. By applying the following trace formula to the trace, we obtain
Theorem 1 (2).

Theorem 2 (Woods Hole formula, [5, Theorem 4.1]).  Let S be the spectrum of
an artinian local ring, X and Y proper smooth schemes over S, and a: Y — X Xg
X a closed immersion over S. We assume that as is étale and the homomorphism
day: aj€Qdx;s — Qyys is zero. Then, for any perfect complex % of Ox-modules and
any uw € Hom(aj 2", a5 %), we have

Y Te(us | H(X, ) = Y Trgs(Tr(us | H5)),

) pemo(Fix(a))

where u, is the composition
H(X, ) "5 H(Y,at8) % H(Y, a3 ) 25 HY(X, ),

mo(Fix(a)) is the set of connected components of Fix(a), #3 (resp. ug) is the pull-back
of A (resp. u) by the immersion ig: B — Y and Trg,g is the trace map T'(B8,0p) —
(S, 0s).

Remark that Fix(a) is finite étale over S. Theorem 2 is a generalization of [9, Exp.
I1I, Corollaire 6.12], and can be proved by using the Lefschetz-Verdier trace formula ([9,
Exp. III, Théoréme. 6.10]) and properties of residue symbols in [3, Ch. III, §9].

Secondly, we state a p"-torsion version of Fujiwara’s trace formula. At present, this
requires more assumptions than Theorem 1.

For a perfect field K of characteristic p, we denote by W, (K) the ring of Witt
vectors of K of length n. We write o for the Frobenius automorphism of W,,(FF,). For
a scheme S, we write Og for the structure sheaf of S. If S is of characteristic p, denote
by @0, the p-th power map on Og.

Theorem 3 ([5, Theorem 7.1]).  Let Uy and Vi be smooth F,-schemes, by: V) —
Uo xr, Uy an F,-morphism, and Fy a locally free constructible étale Z/p" -sheaf on Up.
We assume that there exist proper smooth W, (F,)-schemes Zo and %, a Cartier divisor
Do of Zo which is flat over Wy, (F,), a Wy (F,)-morphism ao: % — Zo Xw, ¥,) 20,
and a morphism (Po% : Oz, = O, such that
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(a) when we put Xo = %20 Xw, F,) Fqr Yo =% Xw, ®,) Fq and define ag such that the
diagram
% _o, Zo Xw, ¥,) 20
]
Yo —2— Xp xg, Xo
is cartesian, then (Uy, Vi, bo, Xo, Yo, ag) satisfies the condition (a) in Theorem 1 (2),
(b) by is proper, as is étale, a is a closed immersion,

(c) Do is a lift of Xo \ Uy to W, (FFy),

(d) the diagrams

[es) D
Wi (Fq) —— Wi (Fy) Oz, Y Oz,
l l and l l
P0 P ¢OX0
Oz, — 02 Ox, — Ox,

commute,
(e) the inclusion Do, (Ao) C Ay holds, where F is the defining ideal of Py,

(f) there exists a locally free constructible étale Z/p™-sheaf Gy on Xo such that Go|y, =
Fo, and

(g) HLU,F) (resp. H(Z ,G @z pn F)) is free over Z/p™ (resp. Wy, (k)) for any i.

Then there exists an integer M such that, for any integer m > M and any homomor-
phism ug € Hom(bgf)*go, b32G0), we have the following equality

D (=1)'Tr(w | H(U,F) = Y Tr(up | Fp).
i PEFix(b(m)

We note that the integer M in Theorem 3 depends on the sheaf Fy. We need the
assumption on existence of Zq, %y, %o, ag and @ . in order to use the same argument
used in the proof of Theorem 1 (2), and the assumption (g) in order to compute the trace
in the category of Z/p"-modules, not in that of perfect complexes of Z/p”-modules. If
Xy is a curve, then the assumption (e) automatically holds ([4, Lemma 1.1.2]).

The proof of Theorem 3 is similar to that of Theorem 1 (2).
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