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A survey on Stark’s conjectures and a result of
Dasgupta-Darmon-Pollack

By

Tomokazu KASHIO*

Abstract

This is a survey on Stark’s conjectures and some related topics. We present formulations of
Stark’s conjectures, Rubin’s integral refinement for the abelian Stark conjecture, the Brumer-
Stark conjecture, and a p-adic analogue of the rank 1 abelian Stark conjecture, which is called
the Gross-Stark conjecture. In addition, we describe the recent result [DDP] by Dasgupta-
Darmon-Pollack concerning the Gross-Stark conjecture.

Introduction.

In this paper we will survey some results on Stark’s conjecture and its p-adic ana-
logue. Since Stark’s conjecture is a generalization of the class number formula, we start
by recalling this formula. Let k be a number field. The Dedekind zeta function is
defined by

_ -1
G(s) =[] (1—Np™) (Re(s) > 1).
pCOg
Here p run over all prime ideals of k. We see that it can be extended meromorphically
to the whole complex plane C and is holomorphic at s = 0. Then the class number
formula states that

Cels) = %}f’wk—l FO(s™) (s 0).

Here i, hi, Rk, ex are the number of infinite places of k, the class number, the regulator,
and the number of roots of unity in &, respectively. In particular, we can write

the leading coefficient of (i (s) in the Taylor expansion at s =0

c Q.
the regulator Q
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Very roughly speaking, the Stark conjecture is its generalization, from Dedekind
zeta functions to Artin L functions. In §1, we provide precise statements and some
results of Stark’s conjectures, the Brumer-Stark conjecture, and Rubin’s integral refine-
ment for the rank 1 abelian Stark conjecture. We also deal with a p-adic analogue of
the Stark conjecture which is called the Gross-Stark conjecture in §2,83. In particu-
lar, we present recent results [DDP] by Dasgupta-Darmon-Pollack. They proved the
Gross-Stark conjecture assuming that Leopoldt’s conjecture holds true and that some
technical conditions are satisfied. By “cohomological interpretation”, we can reduce the
Gross-Stark conjecture to the construction of a suitable cocycle. To construct such a
cocycle, some techniques of Ribet [Ri] and Wiles [Wi] are used.

Before stating Stark’s conjectures, we recall the definition of the regulator R for
the sake of comparison to the “Stark regulator”. Let O be the ring of integers of k,
the group of roots of unity in k, and {00y, ...,00,, } the set of all infinite places of k.
Consider the logarithmic embedding of units

A OF = R™, A(2) = (log |]oc, ) 1<j<ry -

Then Dirichlet’s unit theorem states that its image is a free Z-module of rank r; — 1,
and so is O] /u,. Taking generators e; mod pp € OF /p (1 < @ < 1, — 1), we define
the regulator Ry of k by

Ry := | det(log |es]oo, )1<i j<r 1]
logle1loo,  logletloo, .- logleifoo,, 4
N loglealoo,  loglezloo, .- logleafos,, o

log |€Tk_1|001 log |€Tk_1|002 s log |€7’k—1|00rk—1

Note that the definition of Ry does not depend on the choice of €; or the numbering of
0.

8§1. Stark’s conjectures.

Unless otherwise noted, we use the following notations in this paper.

e K/k is a finite Galois extension of number fields with G := Gal(K/k).

e For a place p of Q, we denote by S, the set of all places of k£ lying above p. In
particular, S is the set of all infinite places. For any set T' of places of k, we put

Tk :={w of K | Jv € T such that w|v}.
We fix a finite set S of places of k satisfying
Sec C S.
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e For a Z-module M and an extension Z C R of rings, we put

RM = R®y; M.

§1.1. The non-abelian Stark conjecture.

For any C-valued character xy of GG, we will define the following symbols after
introducing an isomorphism f of Q[G]-modules.

e Cs(x) € C*: the leading coefficient of the Artin L-function Lg(s,x) in the Taylor
expansion at s =0 (§1.1.1).

e Rs(x, f) € C*: the Stark regulator associated to the group of S-units of K (§1.1.2).

i AS(X:f) = RS(Xaf)/CS(X) € Ccx.

Then Stark’s conjecture in the general case is formulated as follows.
Conjecture 1.1.  For any C-valued character x of G, we have

(1.1) As(x, [)T =As(X?, ) (V7 € Aut(C)).

Here we put X7 :=~vo x.

Remark.  Conjecture (1.1) implies

the leading coefficient of the Artin L-function Lg(s,x) at s =0

the Stark regulator € Q)

where Q(x) := Q(x(0) | 0 € F).

1.1.1. The leading coefficient Cg(x) of the Artin L function L(s,x) at s = 0.
Let V be the representation space of y. For each place v of k, we choose a place
w of K lying above v, and write its decomposition group, inertia group, Frobenius

automorphism as G, I,,, Frob, respectively. Then the S-truncated Artin L function
Ls(s,x) is defined by

Ls(s,x) == H det(1 — Frob, Np~*|,1, )~ (Re(s) > 1).
pEs

It can be continued meromorphically to the whole complex plane and is holomorphic
at s = 0. We denote its leading coefficient and its order of 0 at s = 0 by Cs(x), rs(x)
respectively. That is, we can write

Ls(s,x) = Cs(x)s"™ ™ + O(s"0*) (s = 0, Cs(x) #0).
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By using the functional equation for Artin L-functions, we can show the following
formula, which we will use later: When dim¢ V' = 1, we have

ST e s @) = 111 (£ 1),

1.1.2. The Stark regulator Rg(y, f). Put
Y = YS,K ‘= Quwesy Zw.

Then G acts on Y in the natural way. We denote by X = Xg g the kernel of deg: ¥ — Z

(D MW = D Ny ), e,
X :=Xgg:= {anw €Y [ nw= 0} :
w w

Then we can show that
dim¢ Homgg (V*, CX) = rs(x)

with V* the contragradient representation of V. On the other hand, we denote the
group of S-units in K by U := Uk, g. That is, we can write

U:=Uggs:={x e K*||z|lw=1, Yw¢ Sk}.
Consider the logarithmic embedding
A= Ags: U—=RX

which is defined by
AMu) == Z log |u]w.

wESK

Then Dirichlet’s unit theorem states that A induces the C|[G]-isomorphism
ide ® A: CU = CX.

In particular we see that Q[G]-modules QU,QX has the same character. Therefore
there exists a (non-canonical) Q[G]-module isomorphism

QX =QU.
It follows from, for example, [Se, Proposition 32, §12.1]. We consider the automorphism

()\ o f)v : Hom@[g] (V*, (CX) — Hom@[G] (V*, (CX),
[0} — (ide ® A) o (ide ® f) 0 ¢.
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Now we define the Stark regulator Rg(x) by
Rs(x) = Rs(x, f) :=det(Ao f)v.

1.1.3. Some results for the non-abelian Stark conjecture.

e The truth of Conjecture (1.1) does not depend on the choice of S and f. For the
proof, see [Da, §3.6 and Proposition 3.7.2].

e If Conjecture (1.1) holds true for k£ = Q, then it also holds true for any %k as well.
For the proof, see [Da, Proposition 3.7.3].

e If Conjecture (1.1) holds true for any abelian extension K /k, then it also holds true
for any Galois extension K/k as well. For the proof, see [Da, Proposition 3.7.3].

o If rg(x) =0, then Rg(x) = 1. Therefore Stark’s conjecture (1.1) with rg(x) = 0 is
equivalent to
Ls(0,x)" = Ls(0,x7) (Vv € Aut(C)),

which follows from a result of Siegel in [Si].

e When x = 1¢, Stark’s conjecture (1.1) follows from the class number formula. For
the proof, see [Da, Proposition 3.7.4].

e When Q(x) = Q then Stark’s conjecture (1.1) holds true. For the proof, see §9 in
[Da] or Yamamoto’s article (Japanese) in [SS2012].

§1.2. The rank 1 abelian Stark conjecture.

In this subsection we introduce a refinement of Conjecture (1.1) under the following
additional assumption.

1. K/k is abelian.
2. S contains all ramified places in K/k and all infinite places.

3. S contains a distinguished place v which splits completely in K/k. We fix a place
w of K lying above v.

4. 18] > 2.

Let ex be the number of roots of unity in K, and G the group of irreducible
characters of G. We define the S-truncated partial zeta function (g(s, o) associated to
o€ G by

Cs(s,0) = Z Na™s.

(a,8)=1, (a,K/k)=0



234 ToMOKAZU KASHIO

Here a runs over all integral ideals prime to any prime ideal in S whose image under
the Artin symbol (%, K/k) is equal to o. Note that we have

Cs(s,0) |G|Z o)Ls(s,x),

x€G

Ls(s,x) = > x(0)¢s(s,0).

ceG

Therefore we can show that the assumptions 3,4 implies (5(0,0) = 0 (Vo € G) by using
formulas on rg(x) in §1.1.1.

Conjecture 1.2 (St(K/k,S,v,w)).  Under the assumptions 1,2,8,4, there exists
an element ¢ = e(K/k,S,v,w) € K* satisfying

o If|S| > 2, then € is a {v}-unit.
o If|S| =2, put S =: {v,v'}. Then € is an S-unit and |e|, stays constant when
AP
w' v’
o log|e7|w = —ex(5(0,0) (Yo € Q).
o K('/°x)/k is an abelian extension.

Note that such an element € is unique up to roots of unity, if it exists. We call Conjecture
St(K/k,S,v,w) the rank 1 abelian Stark conjecture, and the element € a Stark unit.

1.2.1. Some results for the rank 1 abelian Stark conjecture.

1. If rg(x) > 1 for any x € é, then (5(0,0) = 0 for any o € G. In this case, Conjecture
St(K/k,S,v,w) is trivial with e = 1.

2. The truth of Conjecture St(K/k,S,v,w) does not depend on the choice of v, w (for
the proof, see [Da, Remark 4.3.3, Proposition 4.3.4]). So we may write Conjecture
St(K/k, S,v) or Conjecture St(K/k,S).

3. Under the assumptions 1,2,3,4, Conjecture St(K/k,S) implies Conjecture (1.1) for
all x with rg(x) = 1. For the proof, see §4 in [Da] or the author’s article (Japanese)
in [$52012].

4. Conjecture St(K/k,S) is related to Hilbert’s 12th problem. Assume that G is
cyclic and v is the only place in S which splits completely in K/k. In this case,
Conjecture St(K/k,S,v,w) implies K = k(¢). Additionally assume that v is real.
We may regard that k, K are subfields of R, that is, kK C K C K,, = R. Then the
Stark unit € is given by € = exp(—2¢%(0,id)) [Da, Remark 4.3.3].
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5. If |G| = 2 then Conjecture St(K/k, S) holds true. There is a partial result by Sands
when G has exponent 2. For detail, see §7 in [Da).

6. When k£ = Q or an imaginary quadratic field, Conjecture St(K/k,S) holds true.
For the proof, see [Tal], [St], or [SS2012, the author’s article (Japanese) in the case
of £k = Q, v = 0o, Onodera’s article (Japanese) in the case of imaginary quadratic
fields]. There is a sketch of a proof in the case of k = Q below.

7. When £k is a real quadratic field, Shintani independently formulated a conjecture
which is almost equivalent to Conjecture St(K/k,S) in [Shin].

For example let k = @, K = Q(Gn + (i) (G = exp(221), 8 = {plm} U {oc},
v := 00. Define an element o1, € G = Gal(K/Q) by

Orat Gn + Gt (o + (0t

for a € Z with 0 < a < m, (a,m) = 1. Then we can write
CS(Sa U:I:a) = C(Sa m, CI,) + C(87 m,m — CL)

by using the Hurwitz zeta function

o0

C(s,m,a) = Z(a +nm)”°.

n=0
Recall Lerch’s formula

2a—m

¢'(0,m, @) = log(T(==)(2m) ~m*5")

and Euler’s formulas

™

sin(zm) T - 2),

exp(zi) — exp(—=zi)
27 ’

sin(z) =
Then we see that

exp(—2¢5(0,04a)) = (o 4+ (" — 2 = —Ch (1 = G2

Therefore we see that St(Q(¢,n + ¢,,1)/Q, S, 00) holds true with e = (,, + ¢,;' — 2 and
that the Stark unit in this case is essentially equal to a cyclotomic unit. On the other

hand, Stark units in the case of k = Q, v = p < oo are essentially equal to (products of)
Gauss sums. For example, let K/k := Q((p—1)/Q, S := {l|p(p — 1)} U {oo} (p # 2,3).
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Then v := p splits completely in Q((,—1)/Q. Fix a prime ideal w := P of Q({,—1) lying
above p. Define an element o, € G = Gal(Q(({(,—1))/Q) by

Oq: Cp—l = Cg—l

for a € Z with 0 <a <p—1, (a,p—1) = 1. Since (5(5,04) = (1 = p~*)(s—(p1(5,04),

(1 _p_s)|s=0 = 07 %(]— _p_s)|.s=0 = 10gp7 CS—{p}(Ovaa) = <(07p - 1,(1) = % - Iﬁv we
have

1 a
(5(0,04) =logp- (5 — - 1> :

There exists a unique homomorphism x = xy: (Z/pZ)* — Z[(,—1]* satisfying
X(z) mod P = z (as an element in Z/pZ = Z[(p—1]/B)

for all z € (Z/pZ)*. We put

Gx)= >  x@¢.

2€(Z/pZL)*

Then we can show that
e:=—3=—€Q(G-1)
p 2
satisfies the condition of St(Q((p—1)/Q, S, p).

G(x)P*

§1.3. Rubin’s integral refinement for the abelian Stark conjecture.

Assume that K/k is abelian and put G to be the group of all irreducible characters
of G. For y € @, we define

e = ﬁ S X(0)o € Cld].
oceG

Note that e, is the idempotent associated to x. Then related to the statement (1.1) of
Stark’s conjecture, we have the following equivalence.

As(x. /)T = As(X?, f) (Vv € Aut(C), Vx € G)
&Y Ast. Nx(e) €Q (Vo €G)

xeé

& 57 As(x, ex € QLG

xeé
Therefore, it is natural to consider the “G-equivariant L-function”

Z LS(87 X)eY

xE@
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and study the ratio

the leading coefficient of the G-equivariant L-function at s =0

a “G-equivariant regulator”

In this subsection we present Rubin’s conjecture on such ratios, which is a refinement
of Stark’s conjecture (1.1) in the case of abelian extensions K/k, and is a generalization
of Conjecture St(K/k,S) to the higher order case.

1.3.1. Rubin’s integral refinement. Let K/k be a finite abelian extension of
number fields with G = Gal(K/k). (We can formulate Rubin’s conjecture in the case of
global function fields similarly.) We denote by G , b the group of irreducible characters
of GG, the group of roots of unity in K respectively. Different from previous sections,
we take two finite and non-empty sets S,T" of places of k.
For r =0,1,2,..., we consider the following assumption.
Definition 1.3 (Assumption (H,)).

1. S contains all infinite places of k and all ramified places in K/k.

2.TNS=0.
A{Ceux | (=1mod Tk} ={1}.

4. S contains more than or equal to r places which split completely in K/k.

w

ot

S =r+ 1.

Here we define x =1 mod Tk by =1 mod w (Yw € Tk).

Remark. — Assumption (H,)-4,5 implies rs(x) = ords—oLs(s, x) > r (Vx € G).
Definition 1.4. Let e, := ﬁ > e X(o)o € C[G]. We put

Os(s) == Y Ls(s,X)ex,

xed
Os.1(s) = | ] (1 — Frob, 'Np'~*) | ©s(s).
peT

Then ©g(s) (resp. Og r(s)) is a C[G]-valued meromorphic (resp. holomorphic) function.
Under Assumption (H,), we put

00 (0) = Tim 25 ()

s—0 g7

04 )-(0) == lim —2127

s—0 sT
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Remark.  We can write
65 r(0) = 5r65)(0)
with 07 := [],e (1 — Frob, ' Np) € Q[G]*.
As usual we denote the ring of S-integers of K by
Og:=0ks ={r e K||z|, <1 (Vw ¢ Sk)}.

We put
Us :=Uks = O g,

and
US,T = UK,S,T = {x € UK,S | z =1 mod TK}.

Note that [Ug : Ug,r] < oc.
Remark.  Assumption (H,)-3 implies Ug 7 is torsion-free.

Definition 1.5. Under Assumption (H,), we take r places vy, ..., v, € S which
split completely in K/k. Choose a place w; of K dividing v; for each i. We define the
G-equivariant regulator map

RW - HomZ[G] /\ US,T,C[G]
Z[G]

with respect to W := (wq,ws, ..., w,) by

ceG

RW (ul A A ur) = det (— Z ]Og |U§7_1 |wj0'>
1<éj<r

We put

€S,r \= E €x-

x€G, rs(x)=r
We see that eg, € Q[G] since for all v € Aut(C), we have rs(x) = rs(x?). It is clear
that Assumption (H,) implies

04)(0) € es,C[C).

Moreover we can show that Dirichlet’s unit theorem gives the C[G]-isomorphism

ide ® Ry : es,r C /\ US,T = GS,TC[G].
yAte)
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Therefore we can define

esrr = (idc ® Ry)~ ! (@(;)T(O)) cesr | C /\ Us.T
Z[G)

Remark.  We can write the relation between Stark’s regulator Rg(x, f) and Ru-
bin’s G-equivariant regulator map Ry as follows: We can take f: QXg = QUg and
i € e5,QUg so that

(ide® Rw)(e1 A+~ Aer) = > Rs(x, flex.
XE@, rs(x)=r

We note that this relation “corresponds” to

el (0) = 2 <1im M) ex

s—0 s”
x€G
= Z “the leading coefficient of Lg(s,x)” ex.
XE@, rs(x)=r

Associated to ® := (¢1,...,¢r—1) € Homye(Us,r, Z[G])"~*, we define

b c Homgg | Q /\ Ust,QUsr |
Z[G]

i(ul A Aug) = Z(—l)k det ((¢1(UJ))g¢k> U

k=1

Here (¢;(uj))j2k is a matrix of the size (r — 1) x (r — 1) where i runs over the range
1<i<r—1,jruns over therange 1 < j <r, j #k.

Definition 1.6.

AS,T,r = E€es, Q /\ US,T | &3(6) S US,T (V(I) c HomZ[G](US’T,Z[G])T_l)
Z|G]

We now state Rubin’s integral refinement for the abelian Stark conjecture.
Conjecture 1.7.  Under Assumption (H,), we have
(1.2) s € AS,T,r~

Remark.  For any abelian extension K /k of number fields, the following are equiv-

alent.
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1. Conjecture (1.1) holds true for any x with rg(x) =r.

'
2. Under Assumption (H,), we have esr, € es, | Q /\ Ust | =Q®zAs 1.
Z[G]

Therefore the above conjecture is called Rubin’s integral refinement for the abelian Stark

conjecture.

1.3.2. Some results for Rubin’s integral refinement.

1. The truth of Rubin’s conjecture (1.2) does not depend on the choice of places
W = (wy,...,w,) [BPSS, Remark 2, §2.1 in Popescu’s article].

2. When K /k is a quadratic extension of number fields, Rubin’s conjecture (1.2) holds
true [Ru, Theorem 2.5].

3. Under Assumption (H,)-1,4,5, Rubin’s conjecture (1.2) implies Stark’s conjecture
(1.1) for all x with rg(x) = r. For the proof, see [Ru] or the author’s article in
[SS2012] (Japanese).

4. When r = 0, Rubin’s conjecture (1.2) only states Og1(0) € Z[G]. It follows from a
result of Deligne-Ribet.

5. When r = 1, the following are equivalent [Ru, Proposition 2.5].

(a) Rubin’s conjecture (1.2) with » = 1 holds true for all T'.
(b) Conjecture St(K/k,S) holds true.

6. In the case of r = 1 and v; < oo, Rubin’s conjecture (1.2) is equivalent to the
Brumer-Stark conjecture and there are some partial results. We will formulate the
Brumer-Stark conjecture in the next subsection. There is a survey on this topic by
Miura in [SS2012] (Japanese).

§1.4. The Brumer-Stark conjecture.

In this subsection, we study Conjecture St(K/k,S,v,w) in the case of finite places
v,w. We write v =p, w =B. We assume that |S| > 2 and put R := S — {p}. Since p
splits completely, we see (p, K/k) = idg. Therefore we have

Cs(s,0) = Z Na™°

(Cl,S):l’ (u,K/k):o'

= Z Na % — Z Na™*°

(a,R)=1, (a,K/k)=0c (a,R)=1, pla, (a,K/k)=0
= (1 = Np *)Cr(s,0).
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So we get
¢5(0,0) = Cr(0,0) - log Np.

Hence Conjecture St(K/k, S, p,B) implies that
6 is a principal ideal (= (¢))

for

0= Z exCr(0,0)0™ "t

oeG

We note that we have ex(r(0,0) € Z with ex := |ux| by a result of Deligne-Ribet
and that the action of )~ n,0 € Z[G] is defined by (3, no0)a =[], cq(o(a))".
Moreover, we can show that the truth of Conjecture St(K/k,S,p,P) for all p, P is
equivalent to the truth of the following conjecture, which is called the Brumer-Stark

conjecture.

Conjecture 1.8.  Let the notation be as in §1.3.1. Additionally let ex = |uk|,
7 the natural map K* — QK*, and

Kgo:={re K* |n(z) € esoQK™}.

Then under Assumption (Hy)-1, for any fractional ideal I C K, there exists ay € K§,0
satisfying

6K@S(0)I = (Oé]),

K(a}/e’{)/k is abelian.

Remark.  There exists a Strong version of the Brumer-Stark conjecture. Let
Ak, s be the (S, T)-modified ideal class group. That is

{ fractional ideals a of O g | (a,Tx) =1}
{ principal ideals (z) of O s |2 =1mod Tk}

A s =
Then the Strong Brumer-Stark “conjecture” states that
Under the assumption (Hp), we have ©57(0) € (Z[G] N es,0Q[G]) - Fittyq(Ax,s.1)-
Here we denote the Fitting ideal by Fitt. Noting that
Fittza(As,r) C Anng g (As,T),

we can show that the Strong Brumer-Stark “conjecture” implies the Brumer-Stark con-
jecture. There are some partial results and some counterexamples for the Strong version.
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§2. The Gross-Stark conjecture.

In this section, we present a formulation of the Gross-Stark conjecture, which is
a p-adic analogue of the rank 1 abelian Stark conjecture. Hereafter we denote H/F
instead of K/k as in [DDP]. Without loss of generality, we may assume that

e F'is a totally real field of degree n, H is a totally complex field, and H/F is a cyclic
extension of conductor n.

e The character x: G := Gal(H/F) — Q" is injective.

Take a rational prime p and fix embeddings Q — @p — C for simplicity. Let F :=
Qp(x(0) | ¢ € G) and w the Teichmiiller character. We denote the set of primes of F'
dividing p by S, and assume that

Sy, CS.
Then the p-adic L-function Lg p(s, xw) is characterized by the following.

There exists a unique E-valued continuous function Lg ,(s, xw) satisfying
Lip(n, xw) = Ls(n, xw") (¥n < 0).

We can also show that Lg, (s, xw) is holomorphic at s = 0. Moreover Gross conjectured
([Gr, Conjecture 2.12]

ords—oLs (s, xw) = rs(x).

We consider the simplest case. Namely assume that
S =8, US,U{vn}.
Then the above conjecture states
ord,—oLsp(s,xw) = [{a € S | x(a) = 1.
Remark. Put R:=5—{q€ Sy |x(q) =1}. Then we can write

Lstsx)=| [I @—Na*)|Lalsx.
q€Sp, x(q)=1

Therefore, Ls(s, x) has a “trivial zero” of order rg(x) = |{q € S, | x(q) = 1}| at s =0.
However, it is non-trivial whether Lg (s, xw) has a zero of the same order.

The following condition is essential for the Gross-Stark conjecture: We assume that
rs(x) =1, ie.,
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there exists a unique prime ideal p € S, satisfying x(p) = 1.

In particular, we see that p splits completely in H/F and that ords—oLs (s, xw) > 1.
In this case, Dirichlet’s unit theorem states that we have

dimg U, =rs(x) =1
with
Uy = ((’);},S Ry E)X_1 ={u¢€ OE’S ®z E | ou=x"(o)u (Vo € G)}.

Take a non-zero element u, of U, and a prime ideal p of H dividing p. We define
E-linear maps ordg, Leg by
ordp: Uy = F, ¢ ® a+— a - ordgpe,
Lyp: Uy — E, e®aw a-log,(Nuy/0,8)
Then the L-invariant £(x) is defined by
_ Lip (uy)
ords (uy )
Remark.  We can show that the value £(x) € E does not depend on the choice

of u,, P. For example, write P = (7) with 7 € H, hg the class number of K. Then
we see that Uy > > . x(0) ® 77 # 0. Therefore there exists ¢ € £ satisfying

Uy ZtZX(U)@}ﬂ’G.

L(x) =

It is clear that

Ly (uy) =t ) x(0)1og,(Nuy g, 77),

ordg (uy) = thi.
Hence we get
hx ’

which does not depend on the choice of u,. By a similar argument, we can prove that

it does not depend on the choice of 3, either.
We now state the Gross-Stark conjecture.

Conjecture 2.1 ([Gr], Conjecture 3.13).  Let F' be a totally real field, H a to-
tally complex field with H/F a cyclic extension of conductor n. Assume that the char-
acter x: G = Gal(H/F) — Q" is injective, S = Sao U SpU{v|n}, and rs(x) = 1. Then
we have

5.0, xw) = LX) Lr(0,x).
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§3. A result of Dasgupta-Darmon-Pollack.

To describe the main result of [DDP], we need the following notations.

Definition 3.1.

L _LS,p(l - S, XCU)
L:an(s,X) T LR((),X) )
Ly (0, xw)
Lan =P =~ — 7" (1,%).
(x) L0 an (1, X)

Now here is the main Theorem.
Theorem 3.2 ([DDP], Theorem 2).  Assume the following.

If |Sp| > 1, assume that Leopoldt’s conjecture is true for F.
(3.1) If |Sp| =1, assume that Leopoldt’s conjecture is true for F,
and that ord,—1 (Lan (5, %) + Lan(s,x 1)) = orde—1 Lan(s, x ).

Then the Gross-Stark conjecture holds true.

§3.1. Cohomological interpretation.

We reformulate the Gross-Stark conjecture in terms of Galois cohomology in this
subsection. To do this, we will use the following notations.

e We put Gy := Gal(F/H) C Gp := Gal(F/F), G, := Gal(F,/F,) (for each place
v of F). Then we may regard G = Gal(H/F) = Gr/Gu, Gp, C Gp.

e We put pi,, := {C € F | (" =1}, €cye: Gr — Z, to be the cyclotomic character.
That is, we have

7(¢) = ¢l
for all ¢ € ppn, n € N,

e We denote by E(x~ 1), E(1), E(1)(x) the representation spaces over E of characters

X1, €cyes Xecye Tespectively. As E-vector spaces, E(x 1) = E(1) = E(1)(x) = E.

For any E-vector space V', we put V(x 1) :=V ® E(x 1), etc.
e We define elements k,, € Hom(Gp,, E), keye € Hom(Gp, E) as follows.
Kyr 18 unramified and k. (Frob,) := 1,
Keye 1= logp O€cyc-

When x|g,, =1, we use the same symbols fiy;, keye for the corresponding elements
in Hl (GF,J 5 E(X_l)) - Homconti(GFv 5 E)
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Moreover, we will use the following well-known results. For each place v of F, we
consider the perfect pairing

< ) >v: Hl(GFwE(X_l)) X Hl(GFwE(l)(X)) — E,

which is defined by “Tate’s local duality” in §3.1.1. Then the global reciprocity law of
class field theory gives the following relation.

Vi€ HY(Gp, E(x ")), Vu € H(Gp, E(1)(X)), (k,u) := Y (res,k, res,u), = 0.

v

Here we put res, f := f|ag,, . As we will see in §3.1.2, we can embed
§: Uy = H'(Gp, E(1)(x))
by using “Kummer theory”. In [DDP], the subspace
Hy oye(Gr, E(x™Y)) € HY(GF, E(x™),
which is characterized by (3.4), is constructed. This subspace “corresponds” to
3(Uy) € H'(Gr, E(1)(x))
in the following sense:
o Yo #p, resy(Hp oo (Gr, E(x71))) L res, (6(Uy)) wort. (, )y. That is,

(resyk,resyu), =0 (Vo #p, Vi € Hp Cyc(GF,E(X_l)), Vu € §(Uy)).

Moreover, it satisfies the following properties:

o resy: Hy o o(Gr, E(X™")) = E - finr @ E - Fieye. That is,

resy on Hy . (Gp, E(x™')) is injective and

resp( P, Cyc(GF7 ( ))) CE- Knr © E - Reyce-

L] dlmE pcyc(GF7 ( 1)) =1.
Therefore the Gross-Stark conjecture is equivalent to the following conjecture.

Conjecture 3.3.  There exists a non-trivial element k € H'} eye(Gr, E(x71))
satisfying the following.

Write resyk = & - Kny + Y - Keye With x,y € E. Then Lan(x) = —x/y.
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We can see the equivalence of two conjectures as follows: Put resys = T+ Knr +¥ - Keye
for 0 # k € Hy ,o(Gr, E(x™")). Then we have

0= <5(ux), K) = Z<resv(5(ux)),r88y(fi)>v

= (resy(d(uy)), resp(K))p

= {resy (8(uy)). R + y{resy (5(uy)). Reye) .

On the other hand, the reciprocity law of local class field theory states that

<(5(’U,), ﬁnr)p = —Ol‘dqg(u),
<(5(’U,), ﬁcyc)p = Lm(U)

Combining these, we get the desired result.
3.1.1. Tate’s local duality. Let v be a finite place of F'; V a finite-dimensional

representation of G, over E. We have the following perfect pairing, which is called
“Tate’s local duality.”

HY(Gp,, V) x HY(Gp,,Hom(V, E(1))) — H*(Gp,,E(1)) = E.
Putting V = E(x 1), we get the desired E-linear pairing
(. )o: H(GF,, E(x™")) x H'(Gp,, E(1)(x)) = E.
We define the unramified part of H1(Gp,,V) by
H,(Gr,,V) = Ket[H(Gp,, V) = H' (I, V)].
Here we denote the inertia group of G, by I,. Then we have

Hy(Gr,, EXTY)) = HY(Gr, /Lo, (E(x 1)),
Hy, (Gr,, E(1) (X))
={ue H'(Gr,, EQ)(X)) | (k,u)y =0 V& € Hy(Gp,, E(x ™))}

We can calculate the dimension of each space [DDP, Lemma 1.3 and §1.2]:
dimgp H'(Gr,, E(x ")) = dimg H(GF,, E(1)(X))

F, : Qp] if'U|p7X|G’FU #1,
F, Qp]+1 if’U|p,X|G'Fv =1,
if’U’prO, X|GFU =1,

1
0 otherwise.

[
[

(
\
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Hy(Gr, E(x7")) =

E-kn if xlep, =1,
{0} otherwise,

I

Op ®F if Xlap, =1,
H, (Gr,, E(1)(x)) { v :

HYGF,,E(1)(x)) otherwise.

Here we write the completed tensor product by *®FE := (lim, * ®z Z/p"7Z) ®z, £. In
particular, we have

(3-2) Hy (G, E(x™Y)) = H(Gr,, E(x™"))  ifvtp,

(3-3) H,,.(Gr,. EQ)(x)) = H'(Gr,, EQ)(x)) i Xlap, # 1.

3.1.2. Kummer Theory. The connecting homomorphism of “Kummer theory”
gives an isomorphism

H* [(H*)" 2 B Gy o).
Therefore we get H*®F = H' (G, E(1)). Moreover we have an isomorphism
6: (H*BE) = H'(Gr. E(1)(x))
by

—1

(H*BE) " = H' Gy, Q)X = H'(Gu, EQ) () = H'(Gr, EQ)(x)).
Here we used the exact sequence
HY(G,E()(x)“") = HY(Gr, E()(x) = H (G, E(1)(x))® — H*(G, B(1)(x)°")
and E(1)(x)%# = {0}. For the local field, we similarly get
Hy®FE = H'(Gn,, B(1)),

(HX®E)X " = HY(Gp,, E(1)(x))
U U
(0} BE)X " = HL(GF,, BE(1)(X)).

Therefore if we put H)(Gr, E(1)(x)) := 6(Uy), then we can write

I

H,(Gr, E(1)(x))
={ue H'(Gr, B(1)(x)) | reso(u) € Hy(GF,, E(1)(x)) (Vv ¢ S)}.

Moreover we see that by (3.3)

Hy(Gr, E(1)(x))
={ue H'(Gr, E(1)(x)) | resu(u) € Hy(Gr,, B(1)(x)) (Vv #p)}.
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(For detail, see [DDP, Proposition 1.4].) Now we put

pcyc(GF7 ( 1))

3.4
(34 1= res, YE K @ E - Kege) N ﬂres (H (Gp,,E(x™1)))

vp

Then we have

(res, (k),res, (0(u)))y =0 for v #£p, k € H}

p,cyc

(GF,E(X_I))a u € UX'
Note that by (3.2) we can write

pcyc(GFa ( 1))

3.5
(3:5) =res, (B kinr ® B - Keye) N ﬂ res,  (Hpy, (Gr,, E(x™")))

veSp—{p}
Furthermore, by using Poitou-Tate exact sequence, we can show the following properties
[DDP, Lemma 1.5]
dimgHy oo (Gr, E(X 1)) =1,
resy p cyc(GFv (X_ )) S E -k ®F- KReye-

§3.2. A very rough sketch of the proof of the main theorem.

We reduced the problem to the construction of a cocycle in the previous subsection.
Before we go into details we shall give a sketch of the construction in [DDP]. We put

ng = lem(n H q),

pséqu

= lem(n H q),

qesSy,
and denote the character modulo ng (resp. ng) associated to x by xr (resp. xs)-

1. We denote the Eisenstein series of weight k associated to characters n, ¢ by Ex(n, ).
E)(n,) is characterized by its m-th Fourier coefficients c(m Ei(n,)), that is

c(m, Ex(n,¥)) = > _ n(m/v)e
t|m
for all non-zero integral ideals m of Op. Here v runs over all integral ideals dividing
m. Consider the product of Eisenstein series

21’L
Py, = Fi(1 : Er_1(1,0'7F).
k 1( 7XR) L(2_k,w1_k) k 1( 7w )
Then we see that Py is a Hilbert modular form of weight k, level ng, character

Yl k.
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2. By well-known results for (a family of) Eisenstein series, we see that the family
{Px}r becomes a A-adic Hilbert modular form. Since we have to apply Wiles’
results on ordinary A-adic cusp forms, we shall modify the family {Py}x as in §3.3
in order to get a family of ordinary cusp forms. First we take the ordinary part e P
by Hida’s ordinary operator e. By a general theory of Hilbert modular forms, we
can uniquely write ePy as

eP, = “an ordinary cusp form” + Z ar(nj, v;)Er(n;, v;5),
jed

where J is a finite set of indices, ax(n;,v;) are constants, Ej(n;,v;) are ordinary
Eisenstein series. We can remove some of {ar(n;,¢;)Er(nj,¥;)}jes by multiplying
ePy, by T; —a; with T} a suitable Hecke operator, «; the eigenvalue for T}, Ex(n;, ;)
(for detail, see [DDP, Lemma 2.9] or Lemma 3.9 in this paper). Here each operator
T; has to satisfy a certain condition (that is, (T} — «;)Ei1(1,xs) # 0) in order
to guarantee that the weight 1 specialization of the ordinary A-adic cusp form
obtained finally is non-zero (that is, v1(F) # 0 in the next step). When we can
not remove ax(n;,v;)Ek(n;,1;) by Hecke operators for this reason, we compute
ar(nj, ;) explicitly by comparing constant terms ([DDP, Propositions 2.6, 2.7
or Proposition 3.7 in this paper) and subtract ax(n;,v;)Ex(n;,7;) from ePy. By
a combination of these methods, we get a family of ordinary cusp forms {F}x
([DDP, Corollary 2.10] or Corollary 3.10 in this paper). We see that this family
{Fk} becomes an ordinary A-adic cusp form, which is denoted by F.

3. Let A be the Iwasawa algebra, v the weight k specialization A — Og, A, the
localization of A at Kervg. Then under the assumption (3.1), we see that Fourier
coefficients of F are in A(;) and its weight 1 specialization is equal to E1(1, xs) up
to multiplication by a non-zero constant. More precisely, in Proposition 3.13, we
write F in the form of

F = “a A-adic Hecke operator” - (u€(1,x) +vE(x,1) +wP?).

Here £(1,x),E(x,1) are A-adic Eisenstein series whose Fourier coefficients are in
A, P is the ordinary A-adic Hilbert modular form with respect to {eP;}x, and
u,v,w are functions expressed in terms of L.,(s,%), Lan(s,x 1) as in Corollary
3.10. We need the additional condition of (3.1) in the case of |S,| = 1 in order
to ensure that u,v,w are elements in A(;). Moreover Leopoldt’s conjecture implies
that 14 (F) = t- E1(1,xs) with t € E*. We note that v1(F) is an eigenform,
but F itself is not. Therefore we may guess F is “approximately” an eigenform
near k = 1. In fact, by a direct computation, we see that F mod (Keru;)? is a
simultaneous eigenform of all Hecke operators whose eigen values are contained
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in Agy/(Ker v1)%2. To explain more precisely, let 7| be the [-th Hecke operator,
c(m,F) € Agy the m-th Fourier coefficient of 7. Then we will see that

c(m, Ty F) = are(m, F) mod (Ker vy)?

with o € A(yy. (Strictly speaking, Fourier coefficients of H := u& (1, x) +vE(x, 1) +
wP are computed in §3.5, instead of those of F.) Therefore we get a A-algebra
homomorphism

$14e T — Ay /(Ker v1)?, Ty~ oy mod (Kervy)?.

Here we denote by T the ordinary A-adic Hecke algebra acting on the space of
ordinary A-adic cusp forms.

Define
¢1: T — Aqy/Kervy 2 E,
$1(T) := ¢14(T) mod Ker v;.

We denote the localization of T at ¢1 by Ty, the total ring of fractions of Ty by
Fr,,- Wiles constructed a “big” Galois representation (§3.4)

P1): Grp — GL(FT(I))
which is characterized by

Tr p(1)(Froby) = the [-th Hecke operator T}

for almost all primes [. Taking a suitable basis, we write p(;) = (a 2) Then we
c

can show that ¢1.0a, ¢1,. od become characters 11,¢2: Gp — (A(1)/(Ker v1)?)X
which are defined in Definition 3.16. Therefore ¢14. o (b/d) becomes a cocycle

K: Gp — Ay /(Ker ).

. We may regard any element f € A(;y as a meromorphic function f(s) on Z, which

is analytic at s = 1. Then we can identify
Ay /(Ker v)? = E[s]/(gz) =—FE®E-¢,
f —  f(@)+ f'(De,

where Fl[e] is the polynomial ring in one variable €. After multiplication by a
constant, we may assume that

{0} £ K(Gp) C E -¢.
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Then we can define a function

k:Gp — F

by
K(o)=k(o)-e (0€Gp),

which again becomes a cocycle. In §3.6, we will check this x satisfies the desired
conditions as in Conjecture 3.3.

Remark.  Asstated in [DDP, Construction of a cusp form, p445], some techniques
in [Ri] and [Wi] are used to construct the cocycle k. For example, Wiles [Wi, proof
of Theorem 4.1, p508] suggested the following strategy: Let T be the A-adic Hecke
algebra acting on the space of ordinary A-adic cusp forms, F an ordinary A-adic cusp
form, and b an ideal of A. Assume that F is a Hecke eigenform modb, that is, there
exist elements oy € A satisfying c¢(m, T\F) = aje(m, F) mod b for all [,m. Then we get
a homomorphism nr: T — A/a given by Ty — «ay, where a:= {\ € A | A\¢(Op, F) € b}.
In [Wi], such an ordinary A-adic cusp form F’ was constructed by modifying a product of
Fisenstein series. This “strategy” and a similar modification of a product of Eisenstein

2 seems to be one of their

series are used also in [DDP]. However, taking a = (Keruvy)
new ideas, in order to relate the homomorphism 7z (= ¢11. in the above sketch) to
the first derivatives of p-adic L-function. Moreover we need an explicit formula [DDP,
(94)] ((3.13) in this paper) for Fourier coefficients in order to investigate the cocycle
k. By this formula, we easily see that H is (and hence F is also) a Hecke eigenform
mod(Kerv1)? with eigenvalues given by [DDP, Proposition 3.6] (Proposition 3.17 in
this paper), and we can write down the map ¢;. explicitly as in [DDP, Theorem 3.7]
(Theorem 3.18 in this paper). We need this expression of ¢1,. to check that the cocycle

K, which is defined by using ¢4 as in (3.15), satisfies the desired formulas.

§3.3. A-adic Hilbert modular forms.

We will use the following notations. F' is a totally real field of degree n. The
narrow ideal class group of F is denoted by CI*(F). For each class A € CI7(F), we fix
a representative ty € A. We put My(n, 1) (resp. Sk(n, 1)) to be the space of Hilbert
modular forms (resp. Hilbert cusp forms) over F', of weight k, level n, character ¢. For
f € My(n,v), we denote the normalized Fourier coefficient by ¢x(0, f) (resp. c(m, f))
at A € CIT(F) (resp. at a non-zero integral ideal m C Op). Let A = Og[[T]] be the
Iwasawa algebra equipped with the weight k specialization vy,: A — Op for k € Z,. We
denote the fraction field of A by Fj, the localization of A at Ker vy by A(;). Then vy is
extended to the homomorphism vy : Ay — E.
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Definition 3.4. A family F = {c(m,F),cx(0,F) | m, A\} of formal Fourier coef-
ficients ¢(m, F), cA(0,F) € A is called a A-adic form (resp. a A-adic cusp form) of level
n, character yx if it satisfies

for almost all k > 2, there exist fr € Mg(n', xw %) (vesp. Sk (', yw!™*)) satisfying
vi(c(m, F)) = c(m, fi), ve(ca(0,F)) = e (0, fi) (YA, m).

Here we put n’ := lcm(n,HquP q). For such an F, we write Fj, := vp(F) := fr. We
denote the space of all A-adic forms (resp. A-adic cusp forms) of level n, character y
by M(n,x) (resp. S(n,x)). Actually we also call an element in M(n,x) ®a Fa (resp.
S(n, x) ®a Fa) a A-adic form (resp. a A-adic cusp form).

We now recall some properties of the Eisenstein series Fj(n, 1), which is one of the
main tools. It is constructed explicitly and is characterized by the following property.
For details we refer to [Shiml].

Proposition 3.5 ([Shiml, Proposition 3.4]).  Let n,v¢ be characters of the nar-
row ideal class groups modulo m,, my with associated signs q,r € (Z/27)" respectively.
Assume that q +r = (k,k,..., k) mod 2Z™ with k € N. Then there exists an element

Er(n,v¢) € Mi(mumy, mp) satisfying
(3.6) c(m, By (n,4)) = Y n(m/e)(x) Ne* .

t|m

Here v runs over all integral ideals dividing m.

Proof. We only give a sketch of the construction of the desired modular form in
[Shim1, §3]. We denote the upper half plane by $ := {z € C | Imz > 0}, the set of
all embeddings F' < R by {71,...,7,}. Let a,b be fractional ideals of F', ag,by € F,
k € N, and U a subgroup of OF of finite index. We assume that U is “sufficiently
small”, that is, N(u)* =1, uag — ag € a, uby — by € b for all u € U. Then we define for
z2=(21,...,2n) €N, s€C

n
1
Eru(2,8;a0,bo; a,b) := DEN(b)(=2mi) " >~ J[(a™z +b7) FlaT 2 + b7 >,
(a,b)U i=1

Here Dp is the discriminant of F' and the element a™z; + b™ € C is well-defined since
R, $ C C. The sum over (a,b)U runs over all cosets (a,b)U € {(a,b) € Fx F—{(0,0)} |
a—ap €a, b—by € b}/U, where the action of u € U is defined by (a,b)u := (au, bu).
By assumption on U, this definition does not depend on the choice of representatives
(a,b). The series is convergent for Re(2s + k) > 2 and continued meromorphically to
the whole complex s-plane. Moreover, we can show that

Ei.u(z;a0,bo;a,b) := Ej (2,05 a0,bo; a, b)
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is a Hilbert modular form of weight k in the traditional sense (except when n = 1,
k = 2). We note that when k& > 2, we can define the function Fj 7(z;a0,bo;a,b)
without introducing another variable s and without analytic continuation. Taking a
sufficiently small U, we put

G(a,b,x,9) =T (k)" N(my) ™" > er(—th)Eru(za,t;5,0 1),
tem  to-1y=1/o-1y-1
H(y,y) = > sgn(a®)n(ax™sgn(b")y(by )N (9)' " G(a, b;rmy, ),

a€y/rmy,, bEy/ymy

K(t) = [0f: U]} ZH(Pa )

r

for fractional ideals 1,1, t, elements a € F', b € . Here 0 is the different of F', ep(z) :=
e2mitrr (@) gon (p(mivma)y .= T sgn((z7)™) (v € F, mq,...,my € Z), and t runs
over a complete set of representatives for the ideal class group of F'. Note that K (t)
does not depend on the choice of U when U is sufficiently small. Then we can show
that

: k
Ex(n,9) = (g9x)accrt () With gy = N(t\)2 K(t))

satisfies the desired properties. We note that (3.6) is equivalent to [Shiml, (3.21)] as

mentioned in [Shiml, p24, 118]. O

As commented in [DDP, Remark 2.2], the explicit formula for the constant terms
of Ex(n,1) seem to be well-known to the experts (e.g., in [Kal). Since notations differ,
these are recalculated in [DDP, Propositions 2.1, 2.3, 2.4, 2.5]. For example, we have

C) (07 Ek (777 ¢))

27y L) L(1 — Kk, v~ 1) it k> 1, my, = (1),
0 if k> 1, m, # (1),
2 () L0, if k=1, m, = (1), my £ (1),
) 2N () L0, ) if k=1, m, # (1), my = (1),
2=y (40) L0, b~ Y) + 27 L () L0, Y) i k=1, m, = (1), my = (1),
0 if k=1, my, # (1), my # (1).

Definition 3.6.  Additionally assume L(1 — k,%) # 0. Then we define the nor-
malized Eisenstein series G (1,%) by

Grll,4) = T

iEranE
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Let x be a primitive character with conductor n, as in the setting of the Gross-Stark
conjecture. We put

ng := lem n,Hq =n- H q,

q€Sp q€Sy, afn
ng:=lem | n, H gl =n- H q,
p#qESy p#AAESy, ain

and denote the character modulo ng (resp. ng) associated to x by xs (resp. xg). We
consider the following product of Eisenstein series.

P, = F1(1,xRr) - Ge_1(1,w' %) € My(ng, xw'%).

1-k 1—k)

Here we consider w (resp. yw is a character modulo [] qes, M (resp. ng) for any
k (even if k = 1). We denote by Ej(n, ) the Eisenstein series part of My (n,), which
is the C-subspace of My (n,1) spanned by Eisenstein series in My (n,1). Then we have
the following decomposition which is stable under the action of Hecke operators:

Mk(na ’JJ) - Sk(na /QD) D Ek(“vd’)'

For details we refer the reader to [Shim2, §7,§8]. Therefore we can uniquely write Py, as

P, = “A cusp form” + Z ak(n, ¥)Ex(n, )
(nap)ed

with constants ag(n, 1) € C. Here we put
J :={(n,v) | n,¢ characters of modulus m,, my, with m,my =ng, g = xw' Y.

We will remove the Eisenstein series part of Py (strictly speaking, the Eisenstein series
part of the ordinary part P of Pj) in this expression to get a family of ordinary cusp
forms F = {F} }, satisfying Fy # 0 as follows. We compute the eigenvalue « of Ey(n, 1)
with respect to a suitable Hecke operator T and multiply P, by T — « for each pair
(n,v) € J. It can be done when n # 1, [S,| > 1 or n # 1,x, |Sp| = 1 by Lemma 3.9.
When n =1, |Sp| > 1orn=1,x, |S,| =1, we have to compute a(n,) explicitly as
in Proposition 3.7 and subtract ag(n,v)Ex(n, ) from Pj.

First of all, we get the following proposition [DDP, Proposition 2.6, 2.7] by com-
paring their constant terms.

Proposition 3.7.  For k > 2, we have

ak(l, le_k) - _L:an(ka X)_l'
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If k> 2, |Sy| =1 then we have
ak(Xawl_k) = _L:an(k'ax_l)_l ' <Nn>k_l'
Here we put (z) := z/w(z) for z € Z,5 as usual.

We denote the [-th Hecke operators by Ty, Uy for prime ideals [ of Op. Then for
any pair (n,1) € J, we can easily see that

T\Er(n,¢) = (n(1) + o (ONF N Eg(n,¢)  (I1ng),

UiEx(n,v) = (n() + ¢(ONF"YEp(n,9) (1] ng)
_ Jn(DEk(n,¥) (1] my),
YONFEy(n,¢) (1] my).

Therefore we get the following Proposition and Lemma [DDP, Proposition 2.8, Lemma
2.9].

Proposition 3.8.  For simplicity, we fix an embedding QTp C C. For any subring
A of (QTP, we denote by My (ng, xw!™%; A) the space of modular forms whose Fourier
coefficients are in A. Let e be the ordinary operator defined by

r!

e := lim | | Uy
T—>00
qeSy

on My(ng, xw'=; Op) with L a finite extension of Qp. It can be extended to an operator
on My, (ng, xw!=*; L) linearly. Then we have for k > 2

Ek(n7¢) Zf (pa mn) =1,

0 otherwise.

eEk(na /QD) -

Therefore we can write

P :=eP, = “An ordinary cusp form” + Z ak(n, ) Ex(n, )
(n,y)ede

with J* = {(1,6) € 7 | (p,my) = 1}.
Lemma 3.9 ([DDP, Lemma 2.9]).  For (n,v) € J° with n # 1,x, there exists a
prime ideal | =, y 1 ng satisfying
Ty 1 Erk(n,¢) =0,

Tnv¢vkEl(17XS) # 0
with Tyy.px = Ty — (1) — P(HNFL
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Additionally assume that |S,| > 1. Then for q € S, — {p}, we have

Tx,wl_k,kEk (X7 wl_k) =0,

Tx,wl_k,kEl(la XS) 7é 0
with Ty, 1-x g = Uq — x(q).

Summarizing the above, we get the following result.

Corollary 3.10 ([DDP, Corollary 2.10]).  Put
( 1

1+ Lan(k, x) if |5p] > 1,
e Lan(ky )~ #15 = 1
\ L:an(ka X)_l + Ean(k, X_l)_1<Nn)k—1 +1 pl— ™
| 15> 1
b = Lankx ™) LNt F15,0=1
\ L:an(ka X)_l + Ean(ka X_l)_1<Nn)k—1 +1 pt— "
L:a,n(k',X) .

Zf |Sp| > 17

Wy = 1 +£an(k>X)
. -1
\ Lan(ka X)_l + Ean(k,X_l)_l<Nﬂ>k_l +1 Zf |Sp| ’

Hy == u By (1, xw' ™) + 0 B (x, w' ™) + wy PE,

(H(Wb)eJ", n#1 TWN@) Hy, if [Sp| > 1,
(H(Wﬁ)EJ", n#l.x TW/’J‘?) Hy,  if |Spl = 1.

Then Fy, € Si(ng, xw! ™).

Fk =

Hereafter in this subsection, we see the family { F }, of Hilbert cusp forms becomes
a A-adic cusp form. We can define the I-th Hecke operators Ty, U; on spaces M(n, ),
S(n, x) as usual. Then the ordinary parts of the spaces of A-adic forms is defined by

M?(n, x) == eM(n, x),
S°(n, x) = eS(n, x)

rl

with e := lim,,, (H qes, Uq) . We consider the following A-algebras of Hecke opera-
tors:

T C Endp(M°(n, X)),
T C Enda(S°(n, x))

generated by Ty, Uy over A. The following is a well-known fact.
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Proposition 3.11.  If g is totally odd, there exists a A-adic Hecke eigenform
E(n, ) € M(mymy, mb) @ Fa satisfying

v (EM,¥)) = Ex(n, g ™").

We define a “weight shifted A-adic form” as follows. For the proof, see [DDP,
Proposition 3.3].

Proposition 3.12.  We denote by M’ the space of all families of formal Fourier
coefficients F = {c(m, F),cx(0,F) | m, A} (c(m, F),cA(0,F) € A) satisfying

for almost all k > 2, there exist vy (F) € My_1(p,w' %) satisfying
vi(c(m, F)) = c(m, v (F)), vi(ex(0,F)) = ex(0,v(F)) (YA, m).

Then there exists an element G € M’ Q@p Fa satisfying
vp(G) = Gk_l(l,wl_k).
Moreover, assuming Leopoldt’s conjecture, we have

G e M @5 Ay,
l/l(g) = 1.

Summing up these, we get the following proposition [DDP, Proposition 3.4, Lemma
3.5].

Proposition 3.13. We denote the p-adic interpolations of ug, vk, Wk, Ty ¢k 0
Lemma 3.9, Corollary 3.10 by w,v,w, T, respectively. We note that the condition
ords—1(Lan(8, X) + Lan(s, X 1)) = ords—1Lan(s, x 1) in the case of |Sp| = 1 assures that
u,v,w € Ayy. Put

P = E1(17 XR)g,
P =e€P,

H = u5(1, X) + Q)g(X, 1) + wPe,
Hiwyere, e Tnﬂ#) H if |Sp| > 1,
i awyere, nzix Tn,zp) H o if|S, =1

Then under the assumption (3.1):

Fo |
(

If |Sp| > 1, assume that Leopoldt’s conjecture is true for F'.
If |Sp| =1, assume that Leopoldt’s conjecture is true for F,

and that ord,_1 (Lan (s, X) + Lan(s, X 1)) = ordy_1 Lan(s, x 1),
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we have

P e M(“) X) XA A(1)7
Poa H e MO(“) X) QA A(1)7
F e So(l‘l, X) QA A(l).

Moreover we have for all k > 2

ve(P) = Py,
v(P°) = Py,
ve(H) = Hy,
vp(F) = Fy,

and for k=1

Vl(P) Vl(PO) = El(LXR);
vi(H) = Ei(L, xs),
vi(F)=t-Ei(1,xs)

with an elementt € E*.

§3.4. Wiles’ “big Galois representation”.

To describe Wiles’ result, we use the following notations.

e Define the homomorphism associated to v1(E(1, x)) = E1(1, xs) by

¢1: T@A Ay — E,
T — 11 (c(Op, T - E(1,X)).

Then we have
(3.7)
¢1(Th) = v1(c(OF, Ti - E(1,x))) = vi(e(L,E(1,x))) = c(l, E1(1,xs)) = 1 + xs(1).

Actually, we may regard ¢; as
d1: T®AA(1) — F
since there exists F € S°(n, x) ®a A(y) satistying vy (F) =t - F1(1, xs).

e Let T(;) be the localization of T ®a A1) at Ker(¢1), and Fr,, the total ring of
fractions of T'(y). As well known, there exists a basis of S°(n, x) ®a A’ consisting
of Hecke eigenforms if A’ is large enough. Let Fi,...,F, be the elements of such
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a basis which satisfy v1(F;) = E1(1,xs). We denote the Hecke eigenvalue of F;
at T € Ty by Ap(F;), the Hecke field of F; by F(F;). Then we can embed
Ty — ]_[221 F(F) by T — (Ar(Fi))i=1,....r. Eventually, we can decompose Frg,
into a product of fields Fr, = F; x Fo x --- x F; with F; a finite extension field
of Fj. Take a factor F :=F; of Fr,,. We denote by T}, Uy their images under the
natural map T — Fr, — F. The image of T(;) under this map is denoted by R.
Then R is a local ring with E the residue field. Let m be the maximal ideal of R.
Note that m = Ker¢;: R — F.
e We define the A-adic cyclotomic character €.,.: Gp — A* by

Vk(gcyc(FrOb[)) = <N[>k_1 (V[ ¢ SP)

Note that the p-adic cyclotomic character €cyc: Grp — Z;; is characterized by
€cyc(Froby) = NIL (VI € S)).

We now introduce Wiles’ “big Galois representation” [DDP, Theorem 4.1].

Theorem 3.14.  For each F(=F;), there exists a continuous irreducible Galois
representation

p(=pi): Gr — GLy(F)
satisfying
1. If L ¢ S, then p is unramified at | and the characteristic polynomial of p(Froby) is

X? — T1X + xe..(Froby).

cyc(
2. pis odd.
3. If g € S,, then
~1
~ [ XEcycllg = *
p|GFq ( 0 nq °
Here we denote by nq the unramified character of G, characterized by

(3.8) ng(Froby) = U,.

Now we prepare some properties of the representation p.

Theorem 3.15 ([DDP, Theorem 4.2]).  Let p be as in Theorem 3.14 and fix a
complex conjugation § € Gp. Since p is odd, we may assume that

p(8) = (3 _01>
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by replacing the F-basis. We define continuous functions a,b,c,d: Gp — F by

Take a change of basis matriz of Theorem 3.14-3. That is, for q € Sy, there ewists

(é’: g:) € GLo(F) satisfying

a(o)b(o)\ (AqBq\ (A B chycn_l(a) *
(3.9) <c<a> d<a>> (0: DZ) - (C: DZ) ( 0 nq(0)> (Vo € Gr,).

Then we have the following properties.

1. For all 0 € G, we have a(0),d(c) € R*, a(c) =1, d(o) = x(0) mod m. That is,
¢1 coa = ]-7
prod=x.

2. Cy#0 (Vg €S, — {p}).

3. blgg, # 0. In particular, Ay, # 0.

Proof. By assumption on d, we see that

a(0) = 5(Tr plo) + Tr p(05))
(3.10)

A(0) = 3 (Trp(o) — Tr plov).

On the other hand, by Theorem 3.14-1, (3.7) and the Chebotarev density theorem we
have

61(Tr p(0)) = (14 X)(0).

Noting that x(0) = —1, we can write
610a(0) = 5(61(Te (o)) + 61T p(09))) = (1 +x)() + (14 X)(00)) = 1
610d(0) = 5(61(Trp(0)) — 61(Te p(06))) = (14 1)(0) — (14 X)(08)) = x(0)

as desired. Next we see the upper left-hand entries of (3.9). Then we have

(3.11) Cab(0) = Aq(XeeyeTly (o) — a(0).
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A, B
Therefore Cq = 0 implies A; = 0. Then the second statement follows from (C’q Dq> €
q g

GL2(F). Now we give a sketch of the proof of the third statement. Put

B:= Y b(0) RCF.

JEG’Fp

Actually, we see that B is a finitely generated R-module. Additionally, we put

K: GF—>B,
K(o):= %.

Since we have d(o) € R* by the first statement, Im(K) generates B over R. Put
B := B/mB. Then it is easy to check that the associated map

K: Grp — E,

K(0) := K(0) mod mB
is a cocycle € Z1(Gp,B(x 1)) by noting that a = 1, d = y mod m. Note that B is an
E = R/m vector space generated by Im(K) and that B(x™!) := B ®g E(x™!). Now

we prove b, # 0 by contradiction. We see that b = 0 on G, implies b = 0 on Gr
by the following technique, which we will use again later.

1. K|g,, satisfies the following “local triviality properties” (a),(b). In particular, by
(3.5), we have

(K] € Hy oyo(Gr,B(x ™)) = Hy oye(Gr, E(x™")) @& B.

T TTpseye
(a) For all q € S, — {p}, we have [fk;pq] =0¢€ H'(Gr,,B(x 1))
Proof. By Theorem 3.15-2 and (3.11), we can write

Ay Xeewela ! —a
K — 9. 2=yfa
ar, Cy d

By definition of €., 7nq and Theorem 3.15-1, we have

¢1 ca= 17
Od: s
(3.12) P X
¢1 Ogcyc - 17
$promg =1

Hence the assertion is clear. O
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(b) 7|GFp =0.
Proof. By our assumption b|GFp =0. O

2. The fact that the class [K] is locally trivial at p (by 1-(b)) implies that the class
[K] is globally trivial:
[K]=0€e H'(Gp,B(x")).

Proof. It follows from the injectivity of res,: H;’CyC(GF, Bx ) =B k., ®B-
Keye- O

3. The fact that [K] = 0 as a class implies that

K =0 as a function: Gp — B.

Proof. By [K| =0, we can write K =0 - (1 — x~!) with # € B. Then we get
0=0-(1—-x"16))/2=K(6)/2=>0(8)/2d(5) = 0.
Hence we get K = 0. Ll
4. Since B is generated by elements € Im(K), K = 0 implies B = 0, i.e., B = mB.
Then Nakayama’s Lemma states that B = 0.
Therefore b = 0 if b|g,, = 0. But it contradicts the irreducibility of p. The fact that

Ay # 0 follows from (3.11), blg, # 0 and (gp gtﬂ) € GLo(F). O
p=p

8§ 3.5. The weight “1 + &” specialization.
The weight 1 specialization v1: A1y — E induces the weight 1 + € specialization
Vite: Ay = Aqy/(Kervy)? 2 E[e]/(€2).

More explicitly, considering any element f € A(;y as a meromorphic function f(s) on
Z,,, we define

vive(f) == f(1) + f'(1)e € E[e]/(¢*) = E @ Ee.
Definition 3.16. We define two characters

U1,02: Gp — Elg]/(€%)"

1 =14 v(1)Keye - €,
Yo =X (L +u(1)Keye - €).

Note that these characters are lifts of 1, y: Ggp — E*, respectively. Then we have
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e ; is unramified outside of S, and satisfies
1 (Froby) = 1 4 v(1)Keye(Froby)e (VI € S)).
e )5 is unramified outside of S and satisfies

o (Froby) = x(I) (1 + u(1)keye(Froby)e) (VI € S).

As usual, we consider 11,1 as multiplicative functions on the set of ideals by the rule
of

Yi(q) =1 (Vg € Sp),
Yo (1) =0 (VL€ S).

We defined the ordinary A-adic Hilbert modular form # by modifying a product
of Eisenstein series. Therefore H is not necessarily an eigenform. Nevertheless, instead
of H, we can show that H mod (Kerv)? is an eigenform. It was shown by the explicit
calculation of Fourier coefficients. Namely, the following results are obtained in [DDP,
Proposition 3.6].

Proposition 3.17.  Let ‘H be as in Proposition 3.13. Consider the weight 1 + €
specialization Hiye = vi4e(H). (Hite is the family of formal Fourier coefficients
c(m, Hite) = vige(c(m,H)), (N, Hite) = vire(c(N\,H)).) The action of a Hecke
operator T € T is defined by

c(m, THiye) = v14e(c(m, TH)).
Then we have the following.

o Hiic is a simultaneous eigenform for the Hecke operators. Note that its eigenvalues
belong to Ele]/(g?).

o c(1,Hise) =1.
o c(LHire) =v1(l) +42(l) (VIF#Dp)
o c(p, Hire) = 1+ (1)e.

Therefore we have the A()-algebra homomorphism

$1ie: T @) Ay — Ele]/(€%),
Ty =L Hize) (1
[

(¢ S),
Ui '—>C([,H1+5) ( €9).

)
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Actually, ¢14¢ factors through the quotient
¢1+5 : T XA A(l) — E[S]/(Sz),

since we can write F = TH € S°(n, x) ®a A1)y with an element T' € T. Note that ¢y

s a lift of
¢1: T ®n A(l) — F.

Proof. For simplicity, we give the proof for the case of |S,| > 1. (In the case of
|Sp| = 1, the proof is similar but more complicated. See [DDP, Proof of Proposition
3.6]). By using that H = u&(1,x) + wP, u(l) = 1, w(l) = 0, ¥/(1) + w'(1) = 0,
vi(E(L,x)) = E1(L, xs), v1(P?) = E1(1, xRr), We get

Hite = v14e(E(L X)) + w' (D(Er (L, xr) — E1 (1, x9)-

We will write down the m-th Fourier coefficient of this. We define an integral ideal mg
and non-negative integers ordqm by m = mg ], s, q°rda™ ocd(mg, (p)) = 1. Then we
have

e(m, v42(E(L X)) = vive(e(m, £(1,0))) = D X(¥) (L + Keye(v)e)

t|mg
since v (c(m, E(1, X)) = > ijm, x(¥)(Nt) =1, By noting that yr(r) — xs(t) = 0if ptt
and that xr(v) — xs(v) = xr(v) = xr(t/p) if p|r, we can write
c(m, E1(1, xr)) — e(m, B1(1,xs)) = > (x&(r) = x5(v)) = ordym Y x(v).
t|m tlmg

Consequently, we get

(3.13) c(m, Hiqe) = Z Y1(mo/v)ha(t) | x (14w (1)e)orde ™,

t|mg

where 1, = 1 in this case. Therefore the fact that H; . is a simultaneous eigenform
can be shown similarly to the case of the usual Eisenstein series Fj(n,) whose m-th
Fourier coefficient is c(m, E(n,¢)) = qu n(m/t)(r) Nek~1. The remaining assertions
also follow from (3.13). O

We note that we have w'(1) = u(1)Lan(x) since w(k) = u(k)Lan(k, x). Then we
get the following main result in this subsection.

Theorem 3.18 ([DDP, Theorem 3.7]).  Under the assumption (3.1):

If |Sp| > 1, assume that Leopoldt’s conjecture is true for F'.
If |Sp| =1, assume that Leopoldt’s conjecture is true for F,

and that ords—1(Lan (s, X) + Lan(s, x 1) =orde—1 Lan(s, x 1),
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there exists a homomorphism
¢1+€Z T(l) — E[S]/(Sz)
satisfying

G14e(Th) = P1(D) +1p2()  (VIES),

P14 (Ur) = 1 (1) +92() (VL€ S),
{%m (Vi€ R),
e Lw(0s (1=p).

§3.6. Construction of a cocycle.

Consider the product of Galois representations p; in Theorem 3.14

P = Hpii Gr — GLQ(J_"T(I)).

Taking the basis as in Theorem 3.15, we write

a(o) b(o) | _
(c(a) do)) =P
We summarize the properties of continuous maps a,b, ¢,d: Gp — Fr,, which we have

seen:

o a(0),d(o) € T(} (Vo € Gr) (by Theorem 3.15-1).

Cq Dy

a,(O') b(O’) Aq Bq _ Aq Bq Xﬁcycnq_l(o-) * (VO’ c GF )

c(o) d(o) Cy Dy Cq Dy 0 14(0) q
Moreover we see that A, € F - (by Theorem 3.15-3), Cq € Fg | (Va € S, — {p})
(by Theorem 3.15-2).

e By Theorem 3.14-3, for each q € S, there exists (Aq BC') € GLa(Fr,,) satisfying

Therefore by putting

K(o)= 258 (<G
rgi= 21 (9 €5, - (b)),

C
B:= > A—”b(a)T(l) C Fr,
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we can write

-1
chycnq —a
Tq-————— (a€ S, —{pr})
(3.14) Klgp, = . —CClL
Zoyelly_— 8 (q=p)
¥ .

As preparation, we prove a claim in the proof of [DDP, Theorem 4.4]. Put m =
Ker¢;: Ty — E.

Lemma 3.19. We have B C m.

4 4

Proof. Put Bf := (B +m)/m, B" := Bf/mB¢, and K" Gr — B’ to be the
associated map to K: Gp — B. Then the local triviality of fﬁ implies the global
triviality of K'. This can be seen similarly as in the proof of Theorem 3.15-3. In fact,
we see the following.

1. [Kﬁ|qu] =0 (Vg € S, — {n}), Fﬁ|GFp = 0. In particular, by (3.5), we see that
(K] € H o Gr B (1) = H} ool Gr, EX 1) @6 B

Proof. It follows from (3.12),(3.14). O
2. (K|, ] = 0 implies [K*] = 0,

Proof. It is clear since res, is injective on HiCyC(GF,Eﬁ (x~h). O

3. [K*] = 0 implies K = 0.

Proof. Similarly to the proof of step 3 in the proof of Theorem 3.15-3. O

4 K=o implies B - Bf/mB! = 0. That is, B = mB*.

Now Nakayama’s Lemma states Bf = 0, so we get B +m = m. Hence the assertion is

clear. O

The fact that B C m implies ¢1 0o K = 0, 80 (¢14c 0 K)(Gr) C E-e. That is, there
exists a continuous map x: Gp — E satisfying

(3.15) K-&€=¢11c.0K.

We have

Tq € B Cm,

¢1+€ o gcyc - 1 + K‘chCg
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by definition and the above Lemma. Moreover we see that

Prie oM = 1+ u(1)Lan(X)knre
by (3.8), Theorem 3.18, and that

Piye 0a =11 =14+ v(1)Keyce,

P14e 0 d =12 = X(1 4 u(l)Kcyce)
by (3.10), Theorem 3.14-1, Theorem 3.18, Definition 3.16. Summarizing the above, we
have the following Theorem.

Theorem 3.20 ([DDP, Theorem 4.4]).  We have

[klar,] =0€ H'(Gr, . E(x™Y) (Vg€ S, —{p}),
K|GFP = u(l)(_EaH(X) * Knr + ’icyc)-

Proof. By (3.14) and x4 € m, we can write

-1
XEeycllq ~ — @ _
,<;|GFq:$:1.¢1o_cyc£ _:x/q(]__X 1)

with an element x; € E for q € S, — {p}. Then the first assertion is clear. Similarly we

can write

-1
o Eeyellg ” — @
/{/|GFp &= ¢1+€ © T

_ (14 Keye - €)(1 —u(1)Lan())Knr - €) — (1 +v(1)Keye - €)
I+ u(1)keye - €

= (_u(l)ﬁan(X)Klnr + Keye — 'U(l)/icyc) - E.

By definition of u, v in Corollary 3.10 and the assumption (3.1), we have

4

1 if |Sp| > 1,
u(l) = LR, x !
( ) (t) ( 7>Et) ) if |Sp|:1’
\ Lan (1, x) + Lan (1, x71)
(0 if [S,] > 1,
v(l) = £
( ) ) - ( ’(ié)) if |Sp| =1
 Lan (1, x) + Lan (1, x71)
with t := ords—1 Lan(s, X_l). Then the second assertion is clear. O

By (3.5) and the above Theorem, we see that x € H) . .(Gp, E(x™')) and that

Conjecture 3.3 holds true under the assumption (3.1).
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