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Hölder continuity of harmonic functions associated to

pseudo differential operators with negative definite

symbol

By

Walter HOH *

§1. Introduction

It is well‐known that the generator of a Markov process in \mathbb{R}^{d} admits a represen‐

tation as a pseudo differential operator -p(x, D) where

(1.1) p(x, D) $\varphi$(x)=\displaystyle \int_{\mathbb{R}^{d}}e^{ix\cdot $\xi$}p(x,  $\xi$)\hat{ $\varphi$}( $\xi$)d $\xi$,  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{d})
and the symbol

p:\mathbb{R}^{d}\times \mathbb{R}^{d}\rightarrow \mathbb{C}

has the property that for each x\in \mathbb{R}^{d}

7!
X, $\xi$\mapsto p(x,  $\xi$)

is a continuous, negative definite function. This is equivalent to say that for every

x\in \mathbb{R}^{d} the symbol has the Lévy‐Khinchin representation

(1.2) p(x,  $\xi$)=q(x,  $\xi$)+ib(x)\displaystyle \cdot $\xi$+\int_{\mathbb{R}^{d}\backslash \{0\}}(1-e^{iy\cdot $\xi$}+i\frac{y\cdot $\xi$}{1+|y|^{2}}) $\mu$(x, dy) ,

where q(x,  $\xi$) is a nonnegative quadratic form w.r. \mathrm{t}.  $\xi$, b(x) is a vector in \mathbb{R}^{d} and  $\mu$(x, dy)
is a kernel of Lévy measures having the standard property that

\displaystyle \int_{\mathbb{R}^{d}\backslash \{0\}}\frac{|y|^{2}}{1+|y|^{2}} $\mu$(x, dy)<\infty.
See [3] for further results on negative definite functions. We refer to [7] for a compre‐

hending presentation on pseudo differential operators generating Markov processes.
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Besides the representation (1.1) the generator has an equivalent representation as

a so‐called Lévy‐type operator

-p(x, D) $\varphi$(x)=L $\varphi$(x)+\displaystyle \int_{\mathbb{R}^{d}\backslash \{0\}}( $\varphi$(x+y)- $\varphi$(x)-\frac{y\cdot\nabla $\varphi$(x)}{1+|y|^{2}}) $\mu$(x, dy) ,

where L is a second order differential operator with coefficients given by q(x,  $\xi$) and b(x)
in (1.2), whereas the nonlocal integro‐differential part is defined in terms of the Lévy
kernel  $\mu$(x, dy) and governs the jumps of an associated process. In this article we shall

focus on this nonlocal part only and assume the local part L to be absent.

The question of Hölder‐continuity and Harnack inequality of harmonic functions

for Lévy‐type operators was first considered by Bass, Levin [2] who studied the case

of Lévy‐kernels which are comparable to the jump kernel of an  $\alpha$‐stable process. As a

simple consequence they in addition were able to prove Hölder continuity for solutions

of the equation

 $\lambda$ f-Af=h

(A being the generator) given by the probabilistic resolvent

f(x)=E^{x}[\displaystyle \int_{0}^{\infty}e^{- $\lambda$ t}h(X_{t})dt]
Regularity results of this type are of interest in particular when dealing with the question
of well‐posedness of the corresponding martingale problem.

In [10] Song and Vondraček generalized the results of [2] by precisely specifying
the assumptions that are need to make the argument of [2] work. Thereby they are

able to treat some cases of Lévy processes with more general jumping mechanism but

the  $\alpha$‐stable case. Moreover, in [1] Bass and Kassmann considered the case of  $\alpha$‐stable

processes of variable order.

Whereas [2] and [10] are based on the Lévy‐type representation of the generator, the

purpose of this article is to emphasis the representation (1.1) as a pseudo differential

operator. While in [10] conditions on the Lévy‐kernel are required, we shall try to

formulate our assumptions in terms of the symbol  p(x,  $\xi$) itself. See also [9] where the

representation (1.1) is used to derive in particular Harnack inequalities. As an outcome

this approach will allow to prove Hölder‐continuity in cases not covered by the results

in [10], see section 3 for examples.

§2. Hölder‐continuity

Throughout this paper we make the following assumptions: We consider a real‐

valued symbol

p:\mathbb{R}^{d}\times \mathbb{R}^{d}\mapsto \mathbb{R}
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such that for fixed x\in \mathbb{R}^{d} the mapping  $\xi$\mapsto p(x,  $\xi$) is a continuous negative definite

function. We assume that the corresponding pseudo differntial operator is of purely
nonlocal type, i.e. the symbol has a Lévy‐Khinchin representation

(2.1) p(x,  $\xi$)=\displaystyle \int_{\mathbb{R}^{d}\backslash \{0\}}(1-\cos(y\cdot $\xi$)) $\mu$(x, dy)
with a Lévy‐kernel  $\mu$(x, dy) . Let

 $\psi$:\mathbb{R}^{d}\mapsto \mathbb{R}

be a fixed continuous negative definite function. This function serves as a reference

function for the symbol p(x,  $\xi$) ,
i.e. we assume that there are constants c, \tilde{c}>0 such

that

(2.2) c $\psi$( $\xi$)\leq p(x,  $\xi$)\leq\tilde{c} $\psi$( $\xi$) .

This means that the Lévy‐process with characteristic exponent  $\psi$( $\xi$) should be regarded
as a reference process for the process generated by -p(x, D) in the same way as Brownian

motion is the reference process for a general diffusion process.

Furthermore, we assume that there exists a conservative strong Markov process

((X_{t})_{t\geq 0}, (P^{x})_{x\in \mathbb{R}^{d}}) associated to -p(x, D) in the sense of the martingale problem:

(X_{t})_{t\geq 0} is a càdlàg‐process such that

P^{x}(X_{0}=x)=1

and for all  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{d})

 $\varphi$(X_{t})-\displaystyle \int_{0}^{t}(-p(x, D) $\varphi$)(X_{s})ds, t\geq 0,
is a martingale under P^{x} w.r.t. the canonical filtration of (X_{t})_{t\geq 0} . See also [4], [5],
[6] for various results on the martingale problem for pseudo differential operators with

negative definite symbol. Recall that by right‐continuity of the paths it is allowed to

enlarge the filtration to the right‐continuous filtration.

A bounded measurable function h on \mathbb{R}^{d} is called harmonic in a domain D\subset \mathbb{R}^{d}

w.r.t. ((X_{t})_{t\geq 0}, (P^{x})_{x\in \mathbb{R}^{d}}) if for all open bounded sets B\subset\overline{B}\subset D

h(x)=E^{x}[h(X_{$\tau$_{B}}) 1_{$\tau$_{B}<\infty}] \forall x\in D

where $\tau$_{B} is the first exit time from B . Moreover we consider for  $\lambda$>0 and f bounded

measurable on \mathbb{R}^{d} the associated probabilistic resolvent operator

R_{ $\lambda$}f(x)=E^{x}[\displaystyle \int_{0}^{\infty}e^{- $\lambda$ t}f(X_{t})dt]
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The following result is taken from [10]. In [10] a number of assumptions are made for

the process which also guarantee a Harnack inequality for harmonic functions. Since

we are only interested in Hölder‐continuity not all of the assumptions are needed. More

precisely the proofs of Theorems 4.9 and 4.11 in [10] yield (note that the argument is

actually taken from [2]):

Theorem 2.1. Assume that the following conditions hold:

(i) There is a constant c_{1}\geq 0 and  $\alpha$>0 such that for x\in \mathbb{R}^{d} and 0<2r<s<1

(Cl) P^{x}(X_{$\tau$_{B(x,r)}}\not\in B(x, s))\leq c_{1\frac{r^{ $\alpha$}}{s^{ $\alpha$}}}.
(ii) There is a constant c_{2}>0 such that for0<r<1 and A\subset B(x, r) we have

(C2) P^{x}(T_{A}<$\tau$_{B(x,3r)})\displaystyle \geq c_{2}\frac{|A|}{|B(x,r)|}
where T_{A} denotes the first entrance time into A and |A|, |B(x, r)| are the Lebesgue
measures of A and B(x, r) respectively.

Then the following holds true:

If h is harmonic in a ball B(x_{0}, r) , r<1 ,
then h is Hölder‐continuous in B(x_{0}, r/2) .

If f is bounded and measurable on \mathbb{R}^{d}
,

then R_{ $\lambda$}f is locally Hölder‐continuous.

Our goal is to find conditions on the symbol that imply (C1) and (C2). We start

with condition (C1). The following object turns out to be an important notion. Recall

that  $\psi$ is the fixed reference function for the symbol. Let

 A_{ $\psi$}(r):=\displaystyle \sup $\psi$( $\eta$) , r>0.
| $\eta$|\displaystyle \leq\frac{1}{r}

For r\rightarrow 0 the function A(r) measures the maximal growth of  $\psi$ at infinity.

Proposition 2.1. Under the condition (2.2) we have

 P^{x}(X_{$\tau$_{B(x,r)}}\not\in B(x, s))\leq C\cdot\underline{A_{ $\psi$}(s)} 0<2r<s<1,A_{ $\psi$}( $\kappa$ r)
�

where  $\kappa$ is an intrinsic constant ( $\kappa$=\displaystyle \frac{1}{2 $\pi$} will do).

Proof. For simplicity we assume x=0 and let  $\tau$=$\tau$_{B(0,r)} . Define a cut‐off

function $\varphi$_{r,s}\in C_{0}^{\infty}(\mathbb{R}^{d}) such that 0\leq$\varphi$_{r,s}\leq 1 and

$\varphi$_{r,s}(x)=\left\{\begin{array}{ll}
1 & |x|\leq r+\frac{s}{2}\\
0 & |x|\geq s.
\end{array}\right.
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Then for all y\in B(0, r) we have 1-$\varphi$_{r,s}(y+z)=0 for |z|\displaystyle \leq\frac{s}{2} . and hence we find a

constant C independent of r and s such that

(2.3) \displaystyle \sup_{y\in B(0,r)}(1-$\varphi$_{r,s}(y+z))\leq C[1-\exp(-|\frac{z}{s}|^{2})], z\in \mathbb{R}^{d}
Since (X_{t})_{t\geq 0} solves the martingale problem

M_{t}:=$\varphi$_{r,s}(X_{t})-1-\displaystyle \int_{0}^{t}(-p(x, D)$\varphi$_{r,s})(X_{u})du, t\geq 0,
is a martingale under P^{0} with expectation E^{0}[M_{t}]=0 . Thus we find by optional

sampling, the Lévy‐type representation, (2.3), (2.1) and the upper estimate in (2.2)

P^{0}(X_{ $\tau$}\displaystyle \not\in B(0, s))\leq E^{0}(1-$\varphi$_{r,s}(X_{ $\tau$}))=E^{0}[\int_{0}^{ $\tau$}p(x, D)$\varphi$_{r,s}(X_{u})du]
\leq E^{0}[ $\tau$] \displaystyle \sup  p(x, D)$\varphi$_{r,s}(y)

y\in B(0,r)

=E^{0}[ $\tau$] \displaystyle \sup_{y\in B(0,r)}\int_{\mathbb{R}^{d}\backslash \{0\}}(1-$\varphi$_{r,s}(y+z)) $\mu$(y, dz)
\leq C\cdot E^{0}[ $\tau$] \displaystyle \sup_{y\in B(0,r)}\int_{\mathbb{R}^{d}\backslash \{0\}}[1-\exp(-|\frac{z}{s}|^{2})] $\mu$(y, dz)
=C\cdot E^{0}[ $\tau$] \displaystyle \sup_{y\in B(0,r)}\int_{\mathbb{R}^{d}\backslash \{0\}}\int_{\mathbb{R}^{d}}(1-\cos(z\cdot $\xi$))\cdot[1-\exp(-|_{\mathcal{S}}|^{2})]^{\wedge}( $\xi$)d $\xi \mu$(y, dz)
=C\cdot E^{0}[ $\tau$] \displaystyle \sup_{y\in B(0,r)}\int_{\mathbb{R}^{d}}p(y,  $\xi$)\cdot[\exp(-|_{S}|^{2})]^{\wedge}( $\xi$)d $\xi$
\displaystyle \leq C'\cdot E^{0}[ $\tau$]\cdot\int_{\mathbb{R}^{d}} $\psi$( $\xi$)\cdot s^{d}\exp(-|s $\xi$|^{2})d $\xi$
\displaystyle \leq C'\cdot E^{0}[ $\tau$]\cdot\int_{\mathbb{R}^{d}} $\psi$(\frac{ $\xi$}{s})\cdot\exp(-| $\xi$|^{2})d $\xi$.

Next note that the square root of a negative definite function is subadditive which

implies, see [3], Cor. 7.16 and its proof or [6], Theo. 2.7,

 $\psi$(\displaystyle \frac{ $\xi$}{s})\leq 2\sup $\psi$( $\eta$) (1+| $\xi$|^{2})=2\cdot A_{ $\psi$}(s) (1+| $\xi$|^{2})
| $\eta$|\displaystyle \leq\frac{1}{\mathrm{s}}

which gives

P^{0}(X_{ $\tau$}\not\in B(0, s))\leq c\cdot E^{0}[ $\tau$]\cdot A_{ $\psi$}(s)
On the other hand it is known from [8], Theo. 4.7, that

E^{0}[ $\tau$]\displaystyle \leq\frac{C}{\inf_{|y|\leq r}\sup_{| $\xi$|\leq\frac{1}{ $\kappa$ r}p(y, $\xi$)}}\leq C\cdot\frac{1}{A_{ $\psi$}( $\kappa$ r)},
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where we used the lower bound in (2.2). Combining the last two estimates gives the

result. \square 

From Proposition 2.1 it is obvious that the following is an appropriate assumption:
There is  $\alpha$>0 such that

(A1) A_{ $\psi$}(r)\sim r^{- $\alpha$} for small r.

Corollary 2.1. Condition (A1) implies condition (C1).

Remark: Condition (A1) means that for large values of R

\displaystyle \sup $\psi$\sim R^{ $\alpha$}
B(0,R)

Therefore it is sufficient that  $\psi$( $\xi$) possesses a maximal growth behaviour like | $\xi$|^{ $\alpha$} in a

single direction, whereas in other space directions different behaviour not necessarily of

power type is admissible. In this way many more general jumping mechanisms apart

from the  $\alpha$‐stable case are covered by condition (A1).

Let us now turn to condition (C2). Since here the Lebesgue measure of  A is

involved, possible singularities of the jump measure  $\mu$(x, dy) cause difficulties. Thus

we now will assume  $\mu$(x, dy) to be absolutely continuous w.r. \mathrm{t} Lebesgue measure and a

lower bound on the density. Therefore let now

 $\mu$(x, dy)=n(x, y)\cdot dy

and define

(2.4) N(r):= \displaystyle \inf n(x, y) .

x\in \mathbb{R}^{d},|y|\leq r

N(r) is again related to A_{ $\psi$} :

Lemma 2.1.

r^{d}\cdot N(4r)\leq c\cdot A_{ $\psi$}(r) .

Proof. We have

r^{d}\displaystyle \cdot N(4r)=c\int_{r}^{4r}N(4r)dy\leq c\int_{r}^{4r}n(x, y)dy
\displaystyle \leq c\int_{\mathbb{R}^{d}\backslash \{0\}}[1-\exp(-|\frac{y}{r}|^{2})]n(x, y)dy
=c\displaystyle \int_{\mathbb{R}^{d}\backslash \{0\}}\int_{\mathbb{R}^{d}}(1-\cos(y\cdot $\xi$))\cdot[1-\exp(-|_{\overline{r}}|^{2})]^{\wedge}( $\xi$)d $\xi \mu$(x, dy)
=c\displaystyle \int_{\mathbb{R}^{d}}p(x,  $\xi$)[1-\exp(-|_{\overline{r}}|^{2})]^{\wedge}( $\xi$)d $\xi$\leq\int_{\mathbb{R}^{d}} $\psi$( $\xi$)[1-\exp(-|_{\overline{r}}|^{2})]^{\wedge}( $\xi$)d $\xi$
\leq c\cdot A_{ $\psi$}(r)
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by the same argument as in the proof of Prop. 2.1. \square 

We next apply an argument taken fron [10].

Proposition 2.2. There is a constant c>0 such that for all r\in(0;1) , x\in \mathbb{R}^{d}

and A\subset B(x, r) we have

P^{x}(T_{A}<$\tau$_{B(x,3r)})\displaystyle \geq c|A| \frac{N(4r)}{A_{ $\psi$}(r)}.
Proof. We simply have to repeat the argument in the proof of [10], Lemma 3.4

step by step, but replace the function  $\Phi$(r) in there by A_{ $\psi$}(r) . Then the estimate in

the beginning of the proof follows from Lemma 2.1 and furthermore the estimate taken

from [10], Lemma 3.1 has to be replaced by

P^{x}($\tau$_{B(x,r)}\leq t)\leq c\cdot A_{ $\psi$}(t)\cdot t

which is again a consequence of [8], Lemma 4.1, and (2.2). \square 

For the validity of condition (C2) it is therefore reasonable to assume for some

c>0 :

(A2) \displaystyle \frac{N(4r)}{A_{ $\psi$}(r)}\geq\frac{c}{r^{d}}
and we immediately obtain

Proposition 2.3. The condition (A2) implies (C2).

The final results therefore reads as follows:

Theorem 2.2. Let the Lévy‐kernel  $\mu$(x, dy) have a density w.r. t . Lebesgue mea‐

sure and N(r) is given by (2.4). Assume that the conditions (A1) and (A2) are satisfied.
Then:

If h is harmonic in a ball B(x_{0}, r) , r<1 ,
then h is Hölder‐continuous in B(x_{0}, r/2) .

If f is bounded and measurable on \mathbb{R}^{d}
,

then R_{ $\lambda$}f is locally Hölder‐continuous.

§3. Example

As a starting point we can take symbols that do not depend on x
,

so they are just
continuous negative definite functions  $\psi$( $\xi$) . In this case examples satisfying (A1) and

(A2) can be found in [10], Examples 3.6, where the Lévy case is considered. Among
others these examples include the  $\alpha$‐stable case as well as fractional powers of the

relativistic Hamiltonian.
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Now assume we are given continuous negative definite functions $\psi$_{1} ,
. . .

, $\psi$_{k} all

satisfying conditions (A1) and (A2) and consider the variable coefficient case, i.e a

symbol

p(x,  $\xi$)=\displaystyle \sum_{j=1}^{k}b_{j}(x)\cdot$\psi$_{j}( $\xi$) ,

where b_{j} : \mathbb{R}^{d}\rightarrow \mathbb{R}^{+} are coefficient function which are bounded from below and above

by positive constants. Then clearly

 $\psi$( $\xi$):=$\psi$_{1}( $\xi$)+\ldots+$\psi$_{k}( $\xi$)

is a suitable reference function for p(x,  $\xi$) such that (2.2) holds. We want to verify that

also conditions (A1) and (A2) remain valid:

Condition (A1) is almost immediate, since the growth of  $\psi$ at infinity is given by
the maximal growth of the functions  $\psi$_{j}.

Concerning (A2) observe that the Lévy kernel corresponding to p(x,  $\xi$) is the sum

of the Lévy‐kernels corresponding to b_{j}(x)\cdot$\psi$_{j}( $\xi$) and therefore, since each $\psi$_{j} satisfies

(A2),

N(4r)\displaystyle \geq\frac{c}{r^{d}}\max A_{$\psi$_{j}}j(r)\geq\frac{1}{k}\frac{c}{r^{d}}\sum_{j=1}^{k}A_{$\psi$_{j}}(r)
\displaystyle \geq\frac{c}{k}\frac{1}{r^{d}}A_{ $\psi$}(r) ,

where the last inequality follows from the subadditivity of the \displaystyle \sup in the definition of

 A_{ $\psi$} . Thus also (A2) holds true.
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