
RIMS Kôkyûroku Bessatsu B6

(2008), 167176

A mechanical model of Markov processes

By

Shigeo KusuoKA
*

, Song Liang **

Abstract

We consider the motion of several massive particles (molecules) in an ideal gas of identical

point particles (atoms) in d‐dimensional Euclidean space \mathrm{R}^{d}
, moving according to Newton me‐

chanical laws, with certain interactions. It is widely believed that, in many cases, the motion of

the molecules converges to a Markov process when the mass m of atoms converges to 0 ,
heuris‐

tically be virtue of the central limit theorem for �independent identically distributed� atoms.

However, since not only the molecules but also the atoms are effected by the interactions, the

states (positions and velocities) of the atoms at each time are indeed not independent to each

other, nor to the history of the system.
In this study, we consider the above mentioned problem for �

plural molecules in an ideal

gas under Newton laws� without the independence assumption (which, as explained, actually
does not hold). We prove the existence of the solution of the corresponding infinite system
of ordinary differential equations, and study its limit when m converges to 0 . Details of the

proofs can be found in [6].

§1. Preliminary

It is, in general, a very interesting and important question to derive the phenomena
of statistical mechanics directly and rigorously from classical mechanics.

The simplest example would be the derivative of the Brownian motion. The Brow‐

nian motion was first observed, without knowing the reason, by Brown in 1827, as an

irregular motion of a rather big particle put into water. This phenomenon was later

explained by Einstein in the following way: since a big number of water atoms collide

with the big particle randomly, the motion of the big particle could be considered as a

result of a sum of many independent identically distributed random variables, so after

taking limit, this will give us a Brownian motion. This is also the explanation which

can be found in many physical textbooks.
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However, we have to notice that, even in the model of collisional interactions only,
there exists the possibility of re‐collision, so the states (i.e., positions and velocities)
of small particles at each time are not independent to each other, nor to the history
of the system. This becomes more evident and significant drawback when considering
the model of interactions caused by potentials. Actually, since the interactions between

molecules and atoms at each time effect not only the molecules but also the atoms, the

states of the atoms interacting with molecules at each moment could not satisfy the

i.i. d . assumption all the time. By the same reason, the states of the atoms at any

two moments could not be independent in general either. Indeed, the actual motion of

the massive particles could not be a result of the sum of i.i.d . random variables, it is

even not a Markov process. So to study this phenomenon more precisely, we need to

construct some new model, which takes the mentioned re‐interactions into account.

The mechanical model was first introduced and studied by Holley [5], for the case

of only one massive particle and with the whole system in dimension d=1
,

with

the interactions given by collisions. This was later extended by, e.g. , Dürr‐Goldstein‐

Lebowitz [2], [3], [4], Calderoni‐Dürr‐Kusuoka [1], and others, to the case of higher
dimensional spaces. But all of these are for the model of one massive particle and

collisional interactions.

The aim of this research is to extend the above problem to the case of plural massive

particles. We consider the model of several massive particles (molecules) in an ideal

gas of identical point particles (atoms) in d‐dimensional Euclidean space \mathrm{R}^{d}
, moving

according to classical mechanical laws, with interactions given by potentials between

molecules and atoms. Under certain assumptions (but do not include the independence

assumption, which, as explained, actually does not hold), we show that the solution

of the considered infinite system of ordinary differential equations exists almost surely,
and study the limit behavior of the molecules as the mass of the atoms converges to 0.

We finally make the remark that, the model of potential‐caused‐interactions, al‐

though has the advantage that is less singular when compared with collisional interac‐

tions, has its own disadvantage that the total momentum of the whole system is not

kept invariant.

§2. Introduction

Let us describe our problem in detail now. Let N\geq 1 and d\geq 1 be integers, and let

M_{1}, \cdots, M_{N}, m>0 . Here N stands for the number of massive particles (molecules), d

for the dimension of the space \mathrm{R}^{d}
,

in which the whole system is considered, M_{1}, \cdots, M_{N}

for the masses of each molecule, and m for the mass of the small particles (the envi‐

ronmental ideal gas atoms). We use U_{i}\in C_{0}^{\infty}(\mathrm{R}^{d}) , i=1, \cdots, N ,
to denote the (cut

off) potential functions, which, as the following equation shows, are assumed to be the
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potentials that depend only on the relative positions of the massive particles and the

atoms. Also, let X_{i,0}, V_{i,0}\in \mathrm{R}^{d}, i=1, \cdots, N ,
be given, which stand for the initial

positions and the initial velocities of the massive particles.
Assume that the initial condition of the environment, i.e., the positions and the

velocities of the ideal gas atoms at time 0 ,
is given by  $\omega$\in Conf(\mathrm{R}^{d}\times \mathrm{R}^{d}) ,

with the

distribution given later. Here Con f(\mathrm{R}^{d}\times \mathrm{R}^{d}) stands for the set of all non‐empty closed

subsets of \mathrm{R}^{d}\times \mathrm{R}^{d} which have no cluster points. Each  $\omega$ is a subset of \mathrm{R}^{d}\times \mathrm{R}^{d}
,

and

(x, v)\in $\omega$ means that there is a atom at position  x with velocity v at time 0.

As claimed before, we assume that as long as the initial conditions  $\omega$\in Conf(\mathrm{R}^{d}\times
\mathrm{R}^{d}) and X_{i,0}, V_{i,0}\in \mathrm{R}^{d}, i=1, \cdots, N ,

are given, the whole system evolves according to

Newton mechanical laws, with the forces given by potentials depending on the relative

positions. Also, for the sake of simplicity, we assume that there is no direct interaction

between massive particles or between small particles. Actually, adding the effect of

interactions between massive particles causes totally no mathematical difficulty, but will

make the formula more complicated only. We would rather say that one of the most

interesting point of our results in this paper is that, even for the case with no direct

interactions between massive particles, after taking limit m\rightarrow 0 ,
we get a diffusion in

which interactions between massive particles appear. (See the results, especially the

definition of the generator L in Section 3).
We use X_{i}^{(m)}(t,  $\omega$) , V_{i}^{(m)}(t,  $\omega$)\in \mathrm{R}^{d} to denote the position and the velocity of the

i‐th massive particle at time t with initial environmental condition  $\omega$
,

and for each

(x, v)\in $\omega$ ,
we use  x_{i}^{(m)}(t, x, v,  $\omega$) , v_{i}^{(m)}(t, x, v,  $\omega$)\in \mathrm{R}^{d} to denote the position and the

velocity at time t of the small particle which had state (x, v) at time 0.

In conclusion, for each initial environmental condition  $\omega$
,

we assume that the mo‐

tion of the system is described by the following infinite system of ordinary differential

equations (ODE):
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(2.1) \displaystyle \ovalbox{\tt\small REJECT}_{()}^{M_{i\frac{dtdd}{dt}V_{i_{-\int_{=(x,v),(x,v)\in $\omega$}^{(t, $\omega$)=}}}^{()^{(t, $\omega$)=V_{i}^{(m)}(t, $\omega$)}}}^{\frac {}{}X_{i}^{()}}}m\frac{d}{(mdt}v^{(m)}(t,x,v, $\omega$)=- \sum_{i=1,\mathrm{o}}^{N}\nabla U_{i}(x^{(m)}(t,xx(0,x,v, $\omega$),v^{(m)}(,x,v, $\omega$))\frac{d}{dt}x^{(m)}(t,x,v, $\omega$)=v^{(m)}(t,x,v, $\omega$)mm\mathrm{R}^{d}\times \mathrm{R}^{d}\nabla U_{i}(X_{i}^{(m)(m)_{v, $\omega$)-X_{i}^{(m)}(.t, $\omega$))}}(t, $\omega$)-x,(t,x,v,. $\omega$))$\mu$_{ $\omega$},(dx,dv)
,

Here $\mu$_{ $\omega$}() is defined as the counting measure determined by  $\omega$:$\mu$_{ $\omega$}(A)=\#( $\omega$\cap A) for

any A\in \mathcal{B}(\mathrm{R}^{d}\times \mathrm{R}^{d}) .

We will omit the superscript (m) when there is no risk of confusion. Also, since we

are only interested in the motion of the massive particles, from now on, whenever talking
about the solution of (2.1), we always mean the value of (\vec{X}^{(m)}(t,  $\omega$),\vec{V}^{(m)}(t,  $\omega$))=
((X_{1}^{(m)}(t,  $\omega$), \cdots, X_{N}^{(m)}(t,  $\omega$ (V_{1}^{(m)}(t,  $\omega$), \cdots, V_{N}^{(m)}(t,  $\omega$

Finally, let us give the distribution of the environmental initial condition  $\omega$ . Let

 $\rho$ : \mathrm{R}\rightarrow[0, \infty) be a continuous function such that  $\rho$(s)\rightarrow 0 rapidly as  s\rightarrow\infty . Let $\lambda$_{m}
be the non‐atomic Radon measure on \mathrm{R}^{d}\times \mathrm{R}^{d} given by

$\lambda$_{m}(dx, dv)=m^{\frac{d-1}{2}} $\rho$(\displaystyle \frac{m}{2}|v|^{2}+\sum_{i=1}^{N}U_{i}(x-X_{i,0}))dxdv,
and let P_{m}(d $\omega$) be the Poisson point process with the intensity measure $\lambda$_{m} . So P_{m} is a

probability measure on Conf (\mathrm{R}^{d}\times \mathrm{R}^{d}) . We assume that the distribution of  $\omega$ is given

by such  P_{m}.

We are mostly interested in the following two problems:

1. Existence and uniqueness of the solution of (2.1).

2. The limit behavior of the distribution of (\vec{X}^{(m)}(t,  $\omega$),\vec{V}^{(m)}(t,  $\omega$)) under

P_{m}(d $\omega$) as m\rightarrow 0.

§3. Results

For the problem of existence and uniqueness, we have the following result.
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Existence and Uniqueness. Assume

(3.1) d\geq 2 and \displaystyle \int_{-\infty}^{\infty}(1+|s|)^{d} $\rho$(s)ds<\infty,
then there exists a unique solution to (2.1) for P‐a.s.  $\omega$.

See [6] for the proof.

In order to answer the second question at the end of Section 2, the question of

convergence, we need to modify our assumption (3.1) a little bit. Assume that the

potential functions U_{i}\in C_{0}^{\infty}(\mathrm{R}) are even, i.e., U_{i}(-x)=U(x) for any x\in \mathrm{R}^{d},
i=1, \cdots, N . Let R_{i}>0 be constants such that U_{i}(x)=0 if |x|\geq R_{i}, i=1, \cdots, N ,

and

define constants C_{0}=(2\displaystyle \sum_{i=1}^{N}R_{i}\Vert\nabla U_{i}\Vert_{\infty})^{1/2} and e_{0}=\displaystyle \frac{1}{2}(2C_{0}+1)^{2}+\sum_{i=1}^{N}\Vert U_{i}\Vert_{\infty}.
Assume that  $\rho$ : \mathrm{R}\rightarrow[0, \infty ) is a measurable function satisfying the following.

1.  $\rho$(s)=0 if s\leq e_{0},

2. for any c>0 ,
there exists a \overline{$\rho$_{c}}:\mathrm{R}\rightarrow[0, \infty ) such that

\displaystyle \sup_{|a|\leq c} $\rho$(s+a)\leq\overline{$\rho$_{c}}(s) ,
for any s\in \mathrm{R},

and

\displaystyle \int_{\mathrm{R}^{d}}(1+|v|^{3})\overline{$\rho$_{c}}(\frac{1}{2}|v|^{2})dv<\infty.
The first condition above, combined with the expression of the intensity measure $\lambda$_{m}
of P_{m} , implies that only those atoms moving fast enough are taken into consideration

in our dynamics. This is a natural and acceptable assumption since, as the masses of

atoms are small enough, the effects of slow atoms are negligible.

Also, assume that the initial position (X_{1,0}, \cdots, X_{N,0}) of the massive particles sat‐

isfies |X_{i,0}-X_{j,0}|>R_{i}+R_{j} for any i\neq j . i.e., we assume that the massive particles
are far enough from each other at the beginning.

It is easy to check that under our present setting (instead of (3.1)), we still have the

desired existence and uniqueness of the solution of our ODE, i.e., there exists a unique
solution to (2.1) for P‐a.s.  $\omega$ . Moreover, we have the convergence results as follows.

To describe the limit process as  m\rightarrow 0 ,
let us first define some notations. For any

\vec{X}=(X_{1}, \cdots, X_{N})\in \mathrm{R}^{dN} ,
let us consider the following ODE:

(3.2) \left\{\begin{array}{l}
\frac{d}{dt}\overline{x}(t, x, v;\vec{X})=\overline{v}(t, x, v;\vec{X}) ,\\
\frac{d}{dt}\overline{v}(t, x, v;\vec{X})=-\sum_{i=1}^{N}\nabla U_{i}(\overline{x}(t, x, v;\vec{X})-X_{i}) ,\\
(\overline{x}(0, x, v;\vec{X}), \overline{v}(0, x, v;\vec{X}))=(x, v) .
\end{array}\right.
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Notice that after a proper scaling change of time, this is nothing but the second half

equations in (2.1) with the position of massive particles \vec{X}^{(m)}(t,  $\omega$) substituted by the

given \vec{X} . So the solution of this ODE, after scaling change of time, gives us an approx‐

imation of the atoms� motion by keeping the massive particles fixed.

We also introduce the so‐called ray representation  $\Psi$ . Let

 E=\{(x, v)\in \mathrm{R}^{d}\times(\mathrm{R}^{d}\backslash \{0\});x\cdot v=0\},
E_{v}=\{x\in \mathrm{R}^{d};x\cdot v=0\}, v\in \mathrm{R}^{d}\backslash \{0\},

and let v(dx, dv)=|v|\overline{v}(dx;v)dv be a measure on E
,

where \overline{v}(dx;v) is the Lebesgue
measure on E_{v} . Define

 $\Psi$ : \mathrm{R}\times E\rightarrow \mathrm{R}^{d}\times(\mathrm{R}^{d}\backslash \{0\}) , (s, (x, v))\mapsto(x-sv, v) ,

in other words, we decompose the position of each atom into two parts: one parallel to

its velocity and the other perpendicular to its velocity.
Let

$\psi$^{0}(t, x, v;\displaystyle \vec{X})=\lim_{s\rightarrow\infty}\overline{x}(t+s,  $\Psi$(s, x, v);\vec{X}) ,

which is well‐defined for any t\in \mathrm{R} and (x, v)\in E . Here (X, \overline{v}) stands for the solution

of (3.2).
Now we are ready to give the quadratic term of the diffusion generator of the limit

process: Let

a_{ik;jl}(\displaystyle \vec{X})=\frac{1}{M_{i}M_{j}}\int_{E}(\int_{-\infty}^{\infty}\nabla_{k}U_{i}($\psi$^{0}(t, x, v;\vec{X})-X_{i})dt)
\displaystyle \times(\int_{-\infty}^{\infty}\nabla_{l}U_{j}($\psi$^{0}(t, x, v;\vec{X})-X_{j})dt) $\rho$(\frac{1}{2}|v|^{2})v(dx, dv) .

We next give the definition of the drift term of the limit process. For any (x, v)\in E,
\vec{X}, \vec{V}\in \mathrm{R}^{dN} and a\in \mathrm{R} ,

let z(t;x, v,\vec{X},\vec{V}, a)\in \mathrm{R}^{d} denote the solution of

\left\{\begin{array}{l}
\frac{d^{2}}{dt^{2}}z(t)=-\sum_{i=1}^{N}\nabla^{2}U_{i}($\psi$^{0}(t, x, v,\vec{X})-X_{i})(z(t)-(t+a)V_{i}) ,\\
\lim_{t\rightarrow-\infty}z(t)=\lim_{t\rightarrow-\infty}\frac{d}{dt}z(t)=0.
\end{array}\right.
Then z(t;x, v,\vec{X},\vec{V}, a) is a linear function of \vec{V} . Let b_{ik;jl} : \mathrm{R}^{dN}\rightarrow \mathrm{R} be the C^{\infty}-

functions determined by the following:

‐ \displaystyle \frac{1}{2}\int_{E}(\int_{-\infty}^{\infty}\nabla^{2}U_{i}($\psi$^{0}(t, x, v,\vec{X})-X_{i})z(t, x, v,\vec{X},\vec{V}, -t)dt)
\displaystyle \times $\rho$(\frac{1}{2}|v|^{2})v(dx, dv)

=\displaystyle \sum_{p=1}^{d}\sum_{j=1}^{N}b_{i\cdot;jl}(\vec{X})V_{j}^{p},
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or equivalent, in the form of element expression,

‐ \displaystyle \frac{1}{2}\int_{E}(\int_{-\infty}^{\infty}\sum_{p=1}^{d}\nabla_{k}\nabla_{p}U_{i}($\psi$^{0}(t, x, v,\vec{X})-X_{i})z_{p}(t, x, v,\vec{X},\vec{V}, -t)dt)
\displaystyle \times $\rho$(\frac{1}{2}|v|^{2})v(dx, dv)

=\displaystyle \sum_{p=1}^{d}\sum_{j=1}^{N}b_{ik;j\ell}(\vec{X})V_{j}^{p}, k=1, \cdots, d,
where z_{p} means the p‐th element of the vector z for p=1, \cdots, d.

Now we are in a position to give the definition of the limiting diffusion generator
L on \mathrm{R}^{2dN} :

N d N d Nd

L= \displaystyle \sum \displaystyle \sum a_{ik,jl}(\vec{X})\frac{\partial^{2}}{\partial V_{i}^{k}\partial V_{j}^{l}}+\sum \displaystyle \sum b_{ik,jl}(\vec{X})V_{j}^{p}\frac{\partial}{\partial V_{i}^{k}}+\sum\sum V_{i}^{k}\frac{\partial}{\partial X_{i}^{k}}.i,j=1k,l=1 i,j=1k,l=1 i=1k=1

Our convergence results, formulated in three different situations, are the following.

Convergence Result 1. Assume N=1 . Then \{(X_{1}^{(m)}(t), V_{1}^{(m)}(t)), t\geq 0\}
under P_{m} converges weakly to the diffusion process in C([0, \infty);\mathrm{R}^{2d}) with generator L

as m\rightarrow 0.

Convergence Result 2. Assume N\geq 2 . Let

$\sigma$_{0}( $\omega$)=\displaystyle \inf\{t>0;\min_{i\neq j}\{|X_{i}(t)-X_{j}(t)|-(R_{i}+R_{j})\}\leq 0\},
the first time that the positions of massive particles in some pair are too close. Then

\{(\vec{X}^{(m)}(t\wedge$\sigma$_{0}),\vec{V}^{(m)}(t\wedge$\sigma$_{0})), t\geq 0\} under P_{m} converges weakly to the diffusion with

generator L stopped at $\sigma$_{0} in C([0, \infty);\mathrm{R}^{2dN}) as m\rightarrow 0.

Convergence Result 3. Let N=2 and d\geq 3 . Assume that there exist

functions h_{1}, h_{2} such that

U_{i}(x)=h_{i}(|x|) , i=1, 2 ,

and there exists a constant $\epsilon$_{0}>0 such that

(-1)^{i-1}h_{i}(s)>0, (-1)^{i-1}h_{i}''(s)>0, s\in(R_{i}-$\epsilon$_{0}, R_{i}) , i=1, 2 .

Then we have that \{(\vec{X}^{(m)}(t),\vec{V}^{(m)}(t)), t\geq 0\} under P_{m} converges weakly to a Markov

process as m\rightarrow 0.

The description of the limit Markov process in Convergence Result 3, indeed a

reflecting diffusion process, will be given in Section 4. The first half of the conditions

in Result 3 requires that, the potential functions for the two massive particles depend
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only on the distances with the atoms. Also, the second half of the assumptions above

implies that: at least when near to R_{i} ,
one massive particle has repulsive forces with

the atoms, and the other massive particle has attractive forces with the atoms.

§4. Ideas of the Proof and Basic Lemma

We emphasize again that, as mentioned in Sections 1 and 2, in our present problem,
the involved forces at any fixed time are not independent to the history. Therefore,
since both the massive particles and the small �environmental� particles are moving,
the system is very complicated. This is also one of the difficulties in this problem. One

of our main ideas for the proof of convergence results is that, although all of the involved

particles are moving all the time, since the velocities of the massive particles are very

slow compared with the small particles, when considering the scattering of the small

particles, we can use the approximation that the massive particles are not moving, with

the caused error small enough. With the help of this approximation, the ODE for the

motion of the small particles could be approximated by the one in which the massive

particles are �fixed� (recall the definition of \mathrm{X} ( ) is Section 3).
For any n>0 ,

let $\sigma$_{n}=\displaystyle \inf\{t\geq 0;\max_{i=1,\cdots,N}|V_{i}(t)|\geq n\} be the first time that

the velocity of some massive particles is greater than n . This is introduced only for

convenience, since we will let  n\rightarrow\infty
,

which implies $\sigma$_{n}\rightarrow\infty ,
at the end.

Our basic lemma is the following, which gives us a decomposition of  M_{i}V_{i}(t\wedge$\sigma$_{n})
into a martingale part, \mathrm{a} �smooth part�, a negligible part, and the term

-m^{-1/2}\displaystyle \int_{0}^{t\wedge $\sigma$}\nabla_{i}\overline{U}(\vec{X}(s))ds corresponding to a �new potential� function \overline{U} , in which

the small �environmental� particles do not appear.

Lemma 4.1. For any n>0 and i=1, \cdots, N ,
there exist an \mathrm{R}^{d} ‐valued (\mathcal{F}_{t})_{t}-

martingale H_{i}(t) ,
an \mathrm{R}^{d} ‐valued () ‐adapted C^{1} ‐class (in t) process P_{i}^{*1}(t) and an \mathrm{R}^{d}-

valued () ‐adapted process $\eta$_{i}(t) such that the following four conditions are satisfied:

1.

M_{i}(V_{i}(t\displaystyle \wedge$\sigma$_{n})-V_{i}(0))=H_{i}(t)+P_{i}^{*1}(t)+$\eta$_{i}(t)-m^{-1/2}\int_{0}^{t\wedge$\sigma$_{n}}\nabla_{i}\overline{U}(\vec{X}(s))ds
for i=1, \cdots, N,

2. there exists a constant C independent of m such that

|d\langle H_{i}^{k}, H_{j}^{\ell}\rangle_{t}|\leq Cdt , p‐a.s.

and the jumps of H_{i} satisfyy |\triangle H_{i}(t)|\leq Cm^{1/2} for any k, P=1, \cdots, d, i, j=1, \cdots, N

and m\in(0,1],
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3.

\displaystyle \sup \sup E^{P_{m}}[|\frac{d}{dt}P_{i}^{*1}(t)|^{2}]<\infty m\in(0,1]t\in[0,T]

for i=1, \cdots, N,

4.
E^{P_{7m}} [\displaystyle \sup|$\eta$_{i}(t)|]\rightarrow 0 ,

as m\rightarrow 0

t\in[0,T]

for i=1, \cdots, N.

In particular, the distribution of \{H_{i}(t)+P_{i}^{*1}(t)+$\eta$_{i}(t)\}_{t\in[0,T]} under P_{m} is tight in

\wp(D([0, T];\mathrm{R})) as m\rightarrow 0 ,
with limits as distributions of continuous processes.

See [6] for the detailed expressions of H_{i}(t) , P_{i}^{*1}(t) and $\eta$_{i}(t) .

Here \wp(D([0, T];\mathrm{R})) means the space of probabilities on the complete metric space

(D([0, T];\mathrm{R}^{d}), d^{0}) ,
where D([0, T];\mathrm{R}^{d}) is the usual Skorohod space:

D([0, T];\mathrm{R}^{d})=\{w:[0, T]\rightarrow \mathrm{R}^{d} ; w(t)=w(t+):=\displaystyle \lim_{s\downarrow t}w(s) , t\in[0, T) ,

and w(t-) :=\displaystyle \lim_{s\uparrow t}w(s) exists, t\in(0, T] \},
with the metric d^{0} given by

d^{0}(w,\displaystyle \overline{w})=\inf_{ $\lambda$\in $\Lambda$}\{\Vert $\lambda$\Vert^{0}\vee\Vert w-\mathrm{W}\circ $\lambda$\Vert_{\infty}\}
for any w, \overline{w}\in D([0, T];\mathrm{R}^{d}) ,

where

 $\Lambda$=\{ $\lambda$ : [0, T]\rightarrow[0, T] ; continuous, non‐decreasing,  $\lambda$(0)=0,  $\lambda$(T)=T\},
\displaystyle \Vert w\Vert_{\infty}=\sup_{0\leq t\leq T}|w(t)| ,

and

\displaystyle \Vert $\lambda$\Vert^{0}=\sup_{0\leq s<t\leq T}|\log\frac{ $\lambda$(t)- $\lambda$(s)}{t-s}|
for any  $\lambda$\in $\Lambda$.

The new potential function \overline{U} is by definition

\displaystyle \overline{U}(X_{1}, \cdots, X_{N})=\int_{\mathrm{R}^{2d}}\{\overline{ $\rho$}(\frac{1}{2}|v|^{2}+\sum_{i=1}^{N}U_{i}(x-X_{i}))-\overline{ $\rho$}(\frac{1}{2}|v|^{2})\}dxdv,
with \displaystyle \overline{ $\rho$}(t)=-\int_{t}^{\infty} $\rho$(s)ds, t\in \mathrm{R}.

It is easy to be checked that the integral \displaystyle \int_{0}^{t\wedge$\sigma$_{n}}\nabla_{i}\overline{U}(\vec{X}(s))ds in the last term of

the decomposition in Lemma 4.1 keeps 0 until the positions of any of the two massive

particles become too close, i.e.,

\nabla_{i}\overline{U}(\vec{X})=0 ,
if |X_{j}-X_{k}|>R_{j}+R_{k} for any j\neq k.
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This combined with Lemma 4.1 gives us the tightness of the distributions of \{V_{i}(t\wedge

$\sigma$_{n})\}_{t\in[0,T]} under P_{m} in \wp(D([0, T];\mathrm{R})) as m\rightarrow 0 ,
under the situations described in

Convergence Results 1 and 2. After converting the problem into martingale problem,
a more detailed discussion for each related terms gives us the desired convergences in

Results 1 and 2.

In the special case of two massive particles described in Result 3, since we

have the coefficient -m^{-1/2}
,

which converges to -\infty as  m\rightarrow 0 ,
the last term

-m^{-1/2}\displaystyle \int_{0}^{t\wedge$\sigma$_{n}}\nabla_{i}\overline{U}(\vec{X}(s))ds gives us the reflecting force when the two massive par‐

ticles are too close, more precisely, when |X_{1}(t)-X_{2}(t)|\geq R_{1}+R_{2} . Therefore, our

limit Markov process in Convergence Result 3 is the reflecting diffusion process with

generator L
, reflecting whenever the distance of the two massive particles is equal to

R_{1}+R_{2}.

Finally, we want to remark that, for any fixed m>0 , although V(t) is continuous

with respect to t (since it is described by the ODE (2.1)), our martingale part H(t)
in the decomposition of V(t) in Lemma 4.1 needs not be continuous. The only thing
we can say is that its jumps are dominated by some constant times m^{1/2}

, (see Lemma

4.1). This is also one of our ideas: we only intend to use the martingale theory to the

part for which it is applicable, without caring whether it is continuous or not. For the

remaining term, instead of trying to deal with it in detail, we show that the whole term

is negligible as m\rightarrow 0 from the beginning.

References

[1] Calderoni, P., Dürr, D. and Kusuoka, S., A mechanical model of Brownian motion in

half‐space, J. Statist. Phys., 55 (1989), 649693

[2] Dürr, D., Goldstein, S. and Lebowitz, J. L., A mechanical model of Brownian motion,
Comm. Math. Phys., 78 (1980/81), 507530

[3] Dürr, D., Goldstein, S. and Lebowitz, J. L., A mechanical model for the Brownian motion

of a convex body, Z. Wahrsch. ve rw. Gebiete, 62 (1983), 427448

[4] Dürr, D., Goldstein, S. and Lebowitz, J. L., Stochastic processes originating in determin‐

istic microscopic dynamics, J. Statist. Phys., 30 (1983), 519526

[5] Holley, R., The motion of a heavy particle in an infinite one dimensional gas of hard

spheres, Z. Wahrsch. ve rw. Gebiete, 17 (1971), 181219

[6] Kusuoka, S. and Liang, S., A mechanical model of diffusion process for multi‐particles,
Preprint series, Graduate School of Mathematical Sciences, the University of Tokyo,
UTMS 2006‐13


