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Duality Theorem for Inductive Limit Group of Direct Product Type

Nobuhiko TATSUUMA

Let G be the inductive limit group of countable direct product groups G(j) =ITks;Gk,
where Gk are non trivial type I locally compact groups.

In the previous paper [T], we proved a duality theorem for locally compact groups. That
is, any locally compact group is isomorph to the group of so-called bi-representations on its dual
space which is the set of all (equivalence classes of ) unitary representations of the initial group.

Obviously, our G is not locally compact in general. But in this paper, we show that for the
above G, analogous duality theorem holds too.

§1. Preliminary
We quote [TSH] for the definition of inductive limit group. At first we show a property of

general inductive limit groups.

Lemma 1-1  Consider a set {Kj} of countable locally compact groups {Kj} such that
Vi, KjCKj+l as atopological subgroup.

Let K be the inductive limit of {Kj}, and C be any compact set in K.

Then there exists n suchthat CC Kn

Proof. Step 1. If there exists n such that Kn is open in VKm (m > n), the
assertion is obvious. Therefore we can assume that for V n, 3m > n, Knis not open in Km
Let the assertion fail, then we cantake m as CN(Km— Kn)# ¢.
If necessary, changing the numbering of groups, we can assume V n, C N1 ( Kn — Kn-1)
# ¢, and take a sequence f{gn} as gn€ C N ( Kn — Kn-1).
Step 2. By induction on j , we construct a family {Wj}, where Wj is a
neighborhood of e in Kj, satisfying
n YV k<j, giflgd)? € WiW 2- - -Wj1(Wj)?
V)] (Wp?2 NKjr C Wi
Since a locally compact subgroup of a topological group is closed, Kj-1 is closed in Kj
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and g; (gc)? dose not belong to Kj-1, we canselect a neighborhood Uof e in Kj as
V k<j, gilg)" € KU ( D WIW 2+ - Wjal).
Next we take neighbothood Wj of e in Kj satisfying (2) and (Wj)? C U.
Step 3. Weput W=UC=1 W1 Wz Wj.

We have shown that this set gives a neighborhood of e in K named Bamboo Shoot
neighborhood .[TSH, Lemma 2.2.]

Here we remark that for any j, if m < j, obviously. Wi Wz----WnC Kmn can not
contain  gij(gx)? ( Vk<j), and when mZj, gul@g)? ( VKk<j) is not in
Wi1Wsz-+*Wn from (1).

Step 4. Next we consider W1 Wz+***WnN Kj for the case j = m. The condition 2
shows WiWze - WuNKj = WiWze Wl Kn-1 NKjC
WiWze s Wn-2zWn-1)2NKu-1NKj=Wi Wz Wn-2(Wn-1)" N Kan-3NKj C
WiWae s Wa-3Wn-2)2N Ka-20Kj=Wi1 Wz Wn-3(Wn-2)?> 01 Kn-30 Kj

Coeeeosssane CW!W2“"W§—I(VVj)2

The condition (1) leads us to

Vm, Vk<j, gi(@)? ¢ Wi Wz Wan-2 Wan-1 Wi} Kj

ie. gifg)! ¢ W1iWse- - Wn-—2 Wn-1 Wn.
Joining the results of Step 3 and Step 4 , weget Vj,V k<j, gi(ge)? € W. But j
and k arefree. So gi{g)?' ¢ W for V k# j.

Step 5.  After the result [TSH, Proposition 23], K is a topological group, so we have a
symmetric open neighborhood V of e in K such that VZ CW. And obtain V k # j,

gi (ge)! € V2. And from the symmetry of V this is the same as  Vg; 1 Vg = &.

Step 6. Now take an open covering C C Ugec Vg . Since C is compact, there
exists a finite sub-covering as cc U Vg'» Butall gi's are belonging to C . So there
exists a pair ( gp, gg) contained in the same Vg'a. That is,

gp € Vg'a, 28qE Vg'u, ie. g€ Vgp N Vg, so Vgp N Vgg# @.
This contradicts the conclusion of Step 5. q.ed.

We consider a countable family {G:} (k = 1,2,......) of non-trivial locally compact groups
Gr. For finite number j , writte G({) =Its=j Gu. G() is imbeded into G(j+1) as a
subgroup TIx=j Ge X f{e}.

By definition, the inductive limit group G of G()'s isequalto UjG({) = IT'kGx
(restricted direct product) as aset. And the topology of G is given by the following.
(*) A set E in G isopenifandonly if Vj, E N G() isopenin G().

Asin [TSH, Proposition 2.3.], by this topology, G becomes a topological group. So we can
consider unitary representations of such a group.

Apply the analogous argument to the family {Ge} (k =j+1,j+2,....)  and get the
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inductive limit group GIj1V in the same.way. Then the following is easily shown.
Lemma 1-2 G= G() X G[j]V as atopological group.
Proof. Omitted.

Definition 1-1.(Infinite tensor product of Hilbert spaces) For a given set of Hilbert
spaces {H(a)}, we consider a familly of vectors {v(a) | € H(a), | via) =1 }
( we call v=® o v(a), the reference vector ). And we define an infinite product Hilbert
space H()={ ® o H(a), v}, which is the completion of the space of linear combinations
of symbols 1=Qaula) such that
Selllu(a)l] ~1] <0 and Za}<ula)via) >-1] <o,
with scalar product <u,v> = Na<ula), via) >.

For properties of this tensor product , we quote [G], p.148.

Notations. Denote by £ , the set of all unitary representations of G. The element
of Q, weusethe notation as w={H(w), Tg (w)}, where H(w) is the representation
space of ® and Tg(w) (g € G) the representation operators. For two representations @ .,
@2 ®:i1~A®: means w1 is unitary equivalent to ¢ » with the intertwining operator A.

A representation = {H(w), Tg (@)} iscalled cyclic, if there exists a non-zero
vector v in H(w), such that the space of linear combinations of the st {Tg(w)v; g € G}

isdense in H(w).

It is easily shown that an irreducible representation of G is cyclic.

For a given cyclic representation «© = {H(»),Tg(w)} ,and any non-zero vector v,
the function ol = <Tglo)vie), viw)> is continuous and satisfies the
axiom of positive definite property,

(*) For any finite pairs {(g;,ci), 8 €G,¢;€C j=1,2,3,* - n},
Mk o5 o ¢ (gilg) 20
We call this positive definite function as associated to .
Conversely, for any continuous positive definite function (¢, we can construct a cyclic
unitary representation ¢« which associates to .
i o (=llvlId= 1, this positive definite function @ is called normalized.

Of course a cyclic representation can have many positive definite functions associated to it.
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Definition 1-2. (Fell-topology on the space of positive definite functions) Let Q p bethe
set of all normalized continuous positive definite functions on G. For any compact subset C in
G , we consider semi-metrics Mc{(Q.,p2) = sup g=C (i@ - @:( |) and topology
on Q p defined by these metrics.
Make running compact sets C, we obtain the topology 7 on Q p generated by all mc.
In this paper, we call this topology on Q p simply, as Fell-topology.

For the case where G is locally compact, this topology induces some important topology on
the dual space of G. In our case, given G is not locally compact in general, but we can say the

following.
Lemma 1-3 For our group G, 0 p is compact convex in Fell-topology.

Proof. The convexity is trivial.

For any compact subset C, by Lemma 1-1 there exists an n such that C € G(n). Now
we consider the restriction @n of a given @ €Q p onto G(n) , and obtain a continuous
positive definite function on locally compact group G(n). We denote the space of all normalized
continuous positive definite functions on G(n) by Q p*

General representation theory of locally compact groups taught us that Q p" is compact
under Fell-topology. If n <m , the restriction map Kmn: Qp” 3 ¢m —@n= (pm‘G(n)

€Qp" is continuous and surjective for our group.

Take the compact convex set QA= TIn Qp*, then Q p is imbedded in QA by the
continuous map K:Qp 20 — ( m(EKale Y=(@lo@)))n €QA | By the definition
of topology of Q p and QA, this map must be open , that is , isomorphic.

Now we show that the image #{(Q p) is closed,

For this, it is enough to see that a ultra filter {¢ @} in Q p converges to an element of
Qp. On Gln), Vn ¢« lcw €0 p" converges to some @n.and Kmn(Qm)= @n
So there exists a @ satisfying Kn(® )= @n as the compact uniform limit of @ a's. Tt is
easy to see that @ is positive definite.

We must show that ¢ is continuous. Now put

E(a,b) = {g €G,Relp(g) >a Imlp(g)>b} (a, b €R)

Since for any n, E(a, b)) 0 G(n) = [ g € G(n), Re(gn(g)) >a, Im(gn(g)) > b } is open

in G(n), so E(a, b) are open for any real a, b. This shows that ¢ is continuous. qe.d.

Now we quote the following famous theorem by M.G Krein and D.Mil'man.
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Proposition 1-1 (External Point Theorem) Non-void convex subset in a locally convex space
coincides with the closed convex envelope of the set of all its terminal points.
As aresult of Lemma 1-3 and Proposition 1-1, we can confirm the following.

Proposition 1-2 (Extended LM.Gel'fand-D.A Raikov's Theorem)  Any continuous positive
definite function @ of G can be approached uniformaly on any compact set by linear
combinations with positive coefficients of normalized positive definite functions associated to
irreducible representations.

In Q, there exist three relations , 1) unitary equivaence, 2) direct sum, 3) tensor product.
Using these relations we define the following .

Definition 1-3. (Birepresentation) An operator field U = {U(w)} over Q,
where U{w) isa bounded operator in H(w), is called a birepresentation when

n V o1, 02€Q, if wi1~a®2 then Ulw 1) =AU(w2)A,
@ V w1, w2€0, Ulw1® v2) = Ulw 1) U(w?2),

3 V o1, w262, U(o1® w2 = U(ew)eU(w2),

@ V o €9, U(w) # 0.

in [T], to prove duality theorem for locally compact groups, in the definition of
birepresentation, conditions (1)-(4) were enough, but in this paper we must add the following
condition:

(5) U(w) is weak continuous { w-continuous Jon Q p with respect to Fell-topology.

This means that if Q p D @ is given as @(g) =< Tg(w)v(w), v(w)> then Vgo €G,
the function @ — U(@) (go) =< Tgo(w)U(w)v(w), v(w)> is continuous on Q p.

Forany g € G, operator field Tg={Tg(w)} over Q gives a birepresentation.

§ 2. Unitary representations

Let wx = {H T} be a unitary representation of group Gk for each k.
We consider the Hilbert space H={ ®x H*, v =@« v }, wherevi€ H* (Vk, || vi l[=1)
and v is a reference vector in H.

For any element g= {gx} in G, g« = e except finite K's, so the operator Tg
= @« T¥g can be defined as a unitary operator on H and o = {H, Tg} is an algebraic
representation of G. It is easy to see that G 2 g — Tg is weak continuous. So « gives
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a unitary representation of G.

Definition 2-1 We call the above © = {H,Tg}, a direct product type representation
(DPR). And denoteitas w(Z=o®)) = {® «@« ,v =@« Vi), where ®  « means
multiple of outer tensor products operation. (The notation ® ~ shows outer tensor product.)

And we denote the set of direct sums of DPR's of G by Qb

Definition 22 Fora (DPR) o (W) = {® "vws, v E®: Vi }, if o« are the
trivial representation of Gk except finite k's, that is, there is a finite subset S in N such
that @i = Iz (the trivial representatior) for k&S, we call this direct product type
representation of finite type (FT).

Especially if S={ k } is a one point set, this @ (v) is called single type of index k.
And we show the set of all index k single type representations by Q (k).

Easy to see that for FT-representation, every reference vector gives the same Hilbert space.
Therefore hereafter, we use the notation for FT-representation without reference vector.

Anindex k single type representation is of the following form:
0= @ DNO® 0w®® ® D (o= {HK Thgl €Q(GK).
It is easy to see that by the correspondence ® (v) — w (k), we can see the set of all
index k single type representations as the set of all representations of Gk. So we can identify
Q (k) to the weak dual Q(Gk) of Gk.

Now we considera DPR o) ={®  «®x, v=®xVs} , FI-representation
w= @ D® w@®® (® I and thier innmer tensor product @ w (v).
Take any normalized vector u in H(k), then we get
0®0® = {® jkwi® (o WO®WW® " piwj BikVi® (Vi) G Vj}

Corresponding to arbitrarily given DPR o () = {® "« ®«, v =®«vi} and finite
subset S in N, we can consider a finite type DPR
0@sE{ (@ «o:keESN® (® «Tlk ¢8)), @ vilk € 8))®(@1))},
and the representation
(oWI*=E{ @ «LkeEN)® "® ok €8)), (® D@ Velk € S))} .
Then o) = o Ws®(w ®s)? . (@ shows inner tensor product ).
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Definition 2-3  The case that for any k, @ «= R« (the right regular representation of Gk),
we call such o (v) the full regular representation of G, and denote it by R (v).

As well known, for a locally compact group its regular representation is unique up to unitary
equivalence, but in our present case there exist many R (v)'s depending on the reference
vectors v = ®xve, and in general they are not equivalent mutually.

Example 2-1.  Consider the case where all Gk are compact. 9« has trivial component I«
with multiplicity 1. Denote the normalized vector in the component Ix as 1.. Take another
irreducible component @ «, and a normalized vector vi in H(w ).

Vk, 1cl vi, so the reference vectors 1= ® 1l and v= ®« v can not be in the
same representation space. R (1) contains trivial representation on 1, but R(v) can not contain
1, and it has no trivial component. That is, ®(1) and . R(v) are not mutually equivalent.

Definition 2-4 If a unitary representation © = {H, Tg} satisfies the following, we call
this representation of quasi-direct product type
(*) Foranyj, © =(® «s;w)® wljl. Here o« is a representation of
Gk and o(j] is of G[1V

Of course DPR is quasi-direct type representation. But I don't know conditions under which
a quasi-direct type representation is DPR.

Lemma 2-1 For two topological groups Hi, Hz, and a unitary representation w=
{H(w), Tg} of H = Hi X Ho, if the restriction of o to H: contains some irreducible
representation D = {H(MD), Tg(D)} as a discrete component, then « contains
subrepresentstion D ® ~ D[2], where D[2] is a representation of Ho.

Proof. Take the maximal subspace H(D)V of H(w) on which multiple of D acts.
Then H(D)V isinvariantunder {Tg | g€ H}, and any {Tg | g € H:} commmutes
with operators of X®D . Since D is irreducible, so the space H(D)V s of the form

H(D)®H(2), and the restriction of w to H: on H(D)V=H(D)®H(2) is of the

foorm 1® ~ D[2]. qed.
Analogous result is proved.

Lemma 22  For two topological groups Hi, H: ,let o = {H(w), Tg} bean
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irreducible unitary representation of H = HiX H: , then the restriction {H: of @ to
H: is a factor representation of Ha.

Moreover if Hi is type I group, then o is the outer tensor product of irreducible
unitary representations ©j of Hi (j=1,2), thatis, o = 0:1® o-.

Proof. If ® |H: is not a factor representation, there exists a non-trivial projection P
belonging to the double commmutant (o |H1)". PH(w) and (U — P)H(w) are both
non-trivial Hi X H: invariant subspaces. This contradicts the assumption of irreducibility.

Next, if Hi is of Type 1, there exists an irreducible representation @+ of H.
and © | Hi is a multiple of . and the space is written as H(w)= H(w1)}® H(w:),
the tensor product of the space of ® 1 with some space H(w2) on which operators in
(o |H1)' act, surely some representation ®: of H: . Again the irreducibility assumption
of w=wi® w2 leads us to the irreducibility of w2 . qed.

Corollary In our group G, if all Gk are type 1 groups, then any irreducible unitary
representation o of G is of quasi-direct product type.

Proof. For G()=ITk<=jGk, we use Lemma 2-2 repeatedly, And we conclude that
every irreducible representation of G(j) is of the fom 0 (P=® o A1 =k=j),
where or = { Hx, Tg} is an irreducible representation of Gk.

Again we apply Lemma 2-2 tothe case of H = G() X G[j1Y, where H:= G(),
H:= GI[j]V. We get that any irreducible representation of G is of the form & ()® ~ w[j] ,
where ®[j] is an irreducible representation of GIj1V. In other words, for arbitrary given

irreducible representation © = {H,Tg} of G, there exist irreducible representations @ «

of Gk determined forany k < j, and w is wiitten in the form
o =® k2ie)® olj]. qed.

[Remark] If the assumption, " all Gk are Type I' , is omitted, then we have the following
example for which the assertion of Colloraly 1 fails.

Example 2-2 Consider H the free group with two generators (Yoshizawa Group). On
L2(H), we have two groups of operators, KL = {Lu; h € H} (left translations) and KR =
{Re; heH} (right translations). It is well known that both of the regular representations
{L2(H),Ls} and {L?(H),Re} of H are typeII factorsand so H is not type I group.

We take in our Corollary, Gk= H (k=123, ° * * .) and consider the representation
wof Gonthespace H=® "~ Hk (Here V k, Hk =L*(H)) with any reference vector
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f=&fk (Vk fKeEHk,|l fc f =1 and the representation operators are
G>g=(gi,gz2.g,..)0 — Tg=Lg:i Rg2®Lgz Rg:®Lg:Rg®* * * .
But the representation o (1,2) of HiX H: (H:=H: = H) on L?(H) given by
Hi X H23 (hi,hz)— Lny Ruz s irreducible . Apply this to the case of G =H: and
Gj+1 = Hz, then we can assert that the representation
o §,j+1): G X G 2 (g, g=)— LgRgn is irreducible.
Extend this representationto G, a3 o (PV=EQ " 1O w(,j#1)® (@ I, then
this representation is irreducible.
Finally as the inner tensor product of representations, 0 ={ & w§)V, f} of G is
irreducible. And this irreducible representation is not of the above form.

Propesition 2-1 For our group G, any positive definite function associated to an
irreducible unitary representation is a limit of a sequence of ones associated to elements in Q D

with Fell-topology.

Proof. By Lemma 1-1, any compact set C is contained in some Gij.
In other hand, by Lemma 2-2 and Corollary, any irreducible representation w of G is quasi
-direct product typeas Vm, @ =(® " k=mow)®  o[ml. So, for a matrix element
flg) = <Tgv,v> (v=Qksmve®@v(m)) associatedto «, consider the DRP
(® " wx, vo), where vo =@k vr. Then
Vg € C, flg) =< Tgv, v>= Mk=; < Tgr vy, vi> X 1 =< Tgvo, vod
This shows that f coincides with a matrix element fo= < Tgvo, ve> on C. q.e.d.

§ 3 Duality theorem
In this section, we treat our group G, that is, an inductive limit group of countable direct
product groups for which all component groups are type I locally compact groups.
We show a duality theorem for G.
Asin §1, weput Q= {w} all unitary representations of G,and U= {U(w)}
a given birepresentation on Q.
By definition, each U(w) is a bounded operator on the representation space of ©, and
{U(w)} satisfies-the following '
1) o1, 020, if w1 ~a w2, then Ulw1)=AlU(0:2)A,
) V w1, 02€0Q, U(w:1®w:) = Ulw)®U(w:2) ,
3) V o1, 260, U w:1®w:2) = Ue)®U(w:),
4) YV o €4Q, Ulw) = 0.
(5) U(w) is weakly continuous with respect to Fell-topology.

21
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Lemma 3-1 For a given birepresentation U = {U(w)} , there exist a unique element
gu€ G such that Ule)=Tgs(w) forany DPR o.

Proof. Step1.  Atfirst, forany k, we consider theset Q (k) of index k single type
representations. As we remarked , Q (k) is identified with the weak dual Q (Gx) of Gk -
By restricting our birepresentation {U(w)} to Q (k), we obtain a birepresentation on the
weak dual Q (Gk) of locaily compact group Gk
We can use the duality theorem for this restriction, and get unique element gx € Gk, such
that forany wx in Q@®, Ulws) =Tgelws) .
Step 2. Next we treat FT-representation w [j].
Let olj]l = @ ksiod® KGHY) = ®ksiw®IG) , where 1{(¢)]
=® " Ix shows the trivial representation of G.
From (3) of the definition of birepresentation,, U(w [j]) =®k=j Tge(w) =
®k=j Tglw[j1) ( g= (gr.ge.” = “gieee =« ) )
It is remarkable that the above gx depend only on the given birepresentation U and not on j.
Step 3. In the case where the representation © = (W={® "« w0, v = ®« vil is DFR,
forany j, we canwrite © (V)= 0 [[1®(w D7 ((j]), where
(oGDAGED = HGEI® " (® " w>jwx ) and v [I=(@®1D @ (®«>; vi).
Thus U(e @) = U(e[l) @ Ul D AGED)
= (®ksij Tex(owr) @ UlloGDAGLI)
This means that birepresentation operator U(w (v)) operates on the reference vector
v = ®x v« as follows.
* The k-th component vector vr changes to  Tgx (@) ve.
Step 4. We consider a full regular representation R () ={® " x R, f = @ fi}. The
above result means U(SR(f)) must transfer the reference vector f = @« fi to ®x Rgu fi.
If foranyj, U(Rj(f))) # 0, then URDO = O« Rgx fi.
Now we assume that there exists an infinite set K = {k]} such that for Vk €K, gxF e.
In regular representation R« of locally compact group Gk, for non-unit element g, there exists a
normalized L?-function fx such that [fi] N[Rgx frl=@ , that is, || fi - Rgu fu [ = 2.
Therefore the vector U(R())f = ®x Rgx £« can not belong to the space of R(f).
This contradicts the assumption that for birepresentation, its component U(w) forany o
is a bounded operator on the representation space of ® . '
Step 5. After the result in Step 4, for any given birepresentation U, the element of
corresponding sequence {gx} (g« € Gk) must be unit e except only a finite number of k, in
other words, {g«} is of the form (g, g2, &3, .. 8. & & * * ° ). Therefore there exists an
clement gu=@ X @ X g X. . XgXeXeX s in G and
U(0)=® k=jTeu(0)®  (®" 1D =Tgle ® " (®" D}=Tge(w). gqed
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Corollary For our group G, U(w) = Tgu(®) for any irreducible unitary representation .

Proof. By Proposition 2-1, any positive definite function associated to an irreducible
unitary representation of G is a limit of ones associated to an element in QD. And by
definition , birepresentation {U(w)} is w-continuous with respect to Fell-topology. -

From Lemma 3-1, on Qp, <Tg(w)U(w)v, v> = <Tglw)Tgu(odv, v>,
(Vve H(w), Vg € G). Take the limit, and we get this for any irreducible © too.
Thatis, U(w) = Tgu(w), for any irreducible representation o € Q. ged.

Theorem Consider the inductive limit group G of countable direct product type of type I
iocally compact groups Gk, k=123, « « .
Then any birepresentation U = {U( ) } coincides with Tg = {Tg(w)} for some g€ G.
That is, the set of all birepresentations corresponds to G one to one way as a group.

Proof  Use the notations in Lemma 3-1.
By the results of and Corollary of Lemma 3-1, U(w)=Tgu(w) for any irreducible .
Now we show that U(w)=Tgu(w) (V © € Q) then the proof is completed.
For any normalized positive definite function @(g) =< Tg(w)v(w), v(w)>
associated to @, take the function U(@) (g) =< Tg(w)U(w)v(w), v(w)>.
I o is irreducible, Vg €G, U(@) (g) = Tg. (@) (g). Since the function Qp > ¢
— U(gp) (g) ( ¥Yg &G) is continuous, using the result of Proposition 1-2, we obtain
VoeQp VgeaG Ul(p) (g =Tsu(p) (g). Thatis,
VoeQ, Vve H(w), Vg €G, <Tg(w)Ul(w)v, v> = <Tglw)Tgu(w)v, v>.
So Ulw)v =Tgulw)v (Vv H(w)), ie. Ulw) =Tgw(w) (VoeEQ). qed
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