Duality Theorem for Inductive Limit Group of Direct Product Type

Nobuhiko TATSUUMA

Let G be the inductive limit group of countable direct product groups $G(j) = \prod_{k \le j} G_k$, where G_k are non trivial type I locally compact groups.

In the previous paper [T], we proved a duality theorem for locally compact groups. That is, any locally compact group is isomorph to the group of so-called bi-representations on its dual space which is the set of all (equivalence classes of) unitary representations of the initial group.

Obviously, our G is not locally compact in general. But in this paper, we show that for the above G, analogous duality theorem holds too.

§ 1. Preliminary

We quote [TSH] for the definition of inductive limit group. At first we show a property of general inductive limit groups.

Lemma 1-1 Consider a set $\{Kj\}$ of countable locally compact groups $\{Kj\}$ such that $\forall j$, $Kj \subseteq Kj+1$ as a topological subgroup.

Let K be the inductive limit of {Kj}, and C be any compact set in K.

Then there exists n such that $C \subseteq Kn$.

Proof. Step 1. If there exists n such that Kn is open in \forall Km (m > n), the assertion is obvious. Therefore we can assume that for \forall n, \exists m > n, Kn is not open in Km. Let the assertion fail, then we can take m as $C \cap (Km - Kn) \neq \phi$.

If necessary, changing the numbering of groups, we can assume \forall n, C \cap (Kn - Kn-1) $\neq \phi$, and take a sequence $\{g_n\}$ as $g_n \in C \cap (K_n - K_{n-1})$.

- Step 2. By induction on j, we construct a family {Wj}, where Wj is a neighborhood of e in Kj, satisfying
 - (1) $\forall k \leq j$, $g_i (g_k)^{-1} \notin W_1W_2 \cdots W_{j-1}(W_j)^2$
 - (2) $(W_j)^2 \cap K_{j-1} \subset W_{j-1}$

Since a locally compact subgroup of a topological group is closed, Kj-1 is closed in Kj

Received October 12, 2006. Revised November 16, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 22D35.

This paper is in final form and no version of it will be published elsewhere.

^{© 2008} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

and $g_i(g_k)^{-1}$ dose not belong to Kj_{-1} , we can select a neighborhood U of e in Kj as $\forall k < j$, $g_i(g_k)^{-1} \notin Kj_{-1}U$ ($\supset W_1W_2\cdots W_{j-1}U$).

Next we take neighborhood Wj of e in Kj satisfying (2) and (Wj)² ⊂ U.

Step 3. We put $W \equiv \bigcup_{j=1}^{\infty} W_1 W_2 \cdots W_j$.

We have shown that this set gives a neighborhood of e in K named Bamboo Shoot neighborhood .[TSH, Lemma 2.2.]

Here we remark that for any j, if m < j, obviously. $W_1 W_2 \cdots W_m \subset K_m$ can not contain $g_j(g_k)^{-1}$ ($\forall k < j$), and when $m \ge j$, $g_m(g_k)^{-1}$ ($\forall k < j$) is not in $W_1 W_2 \cdots W_m$ from (1).

Step 4. Next we consider $W_1 W_2 \cdots W_m \cap K_j$ for the case $j \leq m$. The condition (2) shows $W_1 W_2 \cdots W_m \cap K_j = W_1 W_2 \cdots W_m \cap K_{m-1} \cap K_j \subset$

$$\begin{array}{l} W_1 \ W_2 \cdots W_{m-2} \ (W_{m-1})^2 \cap K_{m-1} \cap Kj = W_1 \ W_2 \cdots W_{m-2} \ (W_{m-1})^2 \cap K_{m-3} \cap Kj \subseteq \\ W_1 \ W_2 \cdots W_{m-3} \ (W_{m-2})^2 \cap K_{m-2} \cap Kj = W_1 \ W_2 \cdots W_{m-3} \ (W_{m-2})^2 \cap K_{m-3} \cap Kj \\ \subseteq \cdots \cdots \subseteq W_1 \ W_2 \cdots W_{j-1} \ (Wj)^2 \end{array}$$

The condition (1) leads us to

Joining the results of Step 3 and Step 4, we get $\forall j$, $\forall k \leq j$, $g_i(g_k)^{-1} \notin W$. But j and k are free. So $g_i(g_k)^{-1} \notin W$ for $\forall k \neq j$.

- Step 5. After the result [TSH, Proposition 2.3], K is a topological group, so we have a symmetric open neighborhood V of e in K such that $V^2 \subset W$. And obtain $\forall k \neq j$, $g_i (g_k)^{-1} \notin V^2$. And from the symmetry of V this is the same as $Vg_i \cap Vg_k = \emptyset$.
- **Step 6.** Now take an open covering $C \subset \bigcup g \in c \ Vg$. Since C is compact, there exists a finite sub-covering as $C \subset \bigcup^{N_n} Vg'_n$ But all g_i 's are belonging to C. So there exists a pair (gp, gq) contained in the same Vg'_n . That is,

$$\begin{split} g_p &\in Vg'_n, \ g_q \in Vg'_n, \ i.e. \quad g'_n \in Vg_p \cap Vg_q, \qquad \text{so} \quad Vg_p \cap Vg_q \neq \varnothing. \\ \text{This contradicts} \ \ \text{the conclusion of Step 5.} & q.e.d. \end{split}$$

We consider a countable family $\{G_k\}$ (k=1,2,.....) of non-trivial locally compact groups G_k . For finite number j, write $G(j) \equiv \prod_k \leq j \ G_k$. G(j) is imbeded into G(j+1) as a subgroup $\prod_k \leq j \ G_k \times \{e\}$.

By definition, the inductive limit group G of G(j)'s is equal to $\bigcup j G(j) = \Pi' k G_k$ (restricted direct product) as a set. And the topology of G is given by the following.

(*) A set E in G is open if and only if ∀ j, E ∩ G(j) is open in G(j).
As in [TSH, Proposition 2.3.], by this topology, G becomes a topological group. So we can consider unitary representations of such a group.

Apply the analogous argument to the family $\{G_k\}$ (k = j + 1, j + 2,...) and get the

inductive limit group G[j] v in the same way. Then the following is easily shown.

Lemma 1-2 $G = G(j) \times G[j]^{\vee}$ as a topological group.

Proof. Omitted.

Definition 1-1. (Infinite tensor product of Hilbert spaces) For a given set of Hilbert spaces $\{H(\alpha)\}$, we consider a familly of vectors $\{v(\alpha) \mid \in H(\alpha), \parallel v(\alpha) \parallel \alpha = 1\}$ (we call $v \equiv \otimes \alpha \ v(\alpha)$, the reference vector). And we define an infinite product Hilbert space $H(v) \equiv \{\otimes \alpha \ H(\alpha), v\}$, which is the completion of the space of linear combinations of symbols $u \equiv \otimes \alpha \ u(\alpha)$ such that

For properties of this tensor product, we quote [G], p.148.

Notations. Denote by Ω , the set of all unitary representations of G. The element of Ω , we use the notation as $\omega \equiv \{H(\omega), Tg(\omega)\}$, where $H(\omega)$ is the representation space of ω and $Tg(\omega)$ ($g \in G$) the representation operators. For two representations ω_1 , ω_2 , $\omega_1 \sim_A \omega_2$ means ω_1 is unitary equivalent to ω_2 with the intertwining operator A. A representation $\omega \equiv \{H(\omega), Tg(\omega)\}$ is called **cyclic**, if there exists a non-zero vector \mathbf{v} in $H(\omega)$, such that the space of linear combinations of the set $\{Tg(\omega)\mathbf{v}; g \in G\}$ is dense in $H(\omega)$.

It is easily shown that an irreducible representation of G is cyclic.

For a given cyclic representation $\omega \equiv \{H(\omega), Tg(\omega)\}$, and any non-zero vector v, the function $\phi(g) \equiv \langle Tg(\omega)v(\omega), v(\omega) \rangle$ is continuous and satisfies the axiom of **positive definite property**,

(*) For any finite pairs
$$\{(g_i,c_i), g_i \in G, c_i \in \mathbb{C} \mid j=1,2,3, \cdot \cdot, n\},$$

$$\sum_{i,j,k} \overline{c_i} c_k \phi(g_i^{-1}g_k) \geq 0.$$

We call this positive definite function as associated to ω .

Conversely, for any continuous positive definite function ϕ , we can construct a cyclic unitary representation ω which associates to ϕ .

If $\varphi(e) (= \| v \|^2) = 1$, this positive definite function φ is called **normalized.**

Of course a cyclic representation can have many positive definite functions associated to it.

Definition 1-2. (Fell-topology on the space of positive definite functions) Let Ω p be the set of all normalized continuous positive definite functions on G. For any compact subset C in G, we consider semi-metrics $m_C(\phi_1,\phi_2) \equiv \sup_{g \in C} (|\phi_1(g) - \phi_2(g)|)$ and topology on Ω p defined by these metrics.

Make running compact sets C, we obtain the topology τ on Ω p generated by all mc. In this paper, we call this topology on Ω p simply, as Fell-topology.

For the case where G is locally compact, this topology induces some important topology on the dual space of G. In our case, given G is not locally compact in general, but we can say the following.

Lemma 1-3 For our group G, Ω p is compact convex in Fell-topology.

Proof. The convexity is trivial.

For any compact subset C, by Lemma 1-1 there exists an n such that $C \subset G(n)$. Now we consider the restriction ϕn of a given $\phi \in \Omega$ p onto G(n), and obtain a continuous positive definite function on locally compact group G(n). We denote the space of all normalized continuous positive definite functions on G(n) by Ω p^n .

General representation theory of locally compact groups taught us that Ω p^n is compact under Fell-topology. If n < m, the restriction map κ mm: Ω $p^m \ni \phi$ $m \to \phi$ $n \equiv \phi$ $m \nmid G$ $(n) \in \Omega$ p^n , is continuous and surjective for our group.

Take the compact convex set $\Omega^{\wedge} \equiv \prod_{n} \Omega_{p^{n}}$, then Ω_{p} is imbedded in Ω^{\wedge} by the continuous map $\kappa: \Omega_{p} \Rightarrow \varphi \rightarrow (\varphi_{n}(\equiv \kappa_{n}(\varphi) \equiv (\varphi|_{G(n)})))_{n} \in \Omega^{\wedge}$. By the definition of topology of Ω_{p} and Ω^{\wedge} , this map must be open, that is, isomorphic.

Now we show that the image $\kappa(\Omega p)$ is closed,

For this, it is enough to see that a ultra filter $\{\phi \ \alpha\}$ in Ω p converges to an element of Ω p. On G(n), $\forall n, \phi \alpha \mid_{G(n)} \in \Omega$ pⁿ converges to some ϕ_n , and $\kappa mn(\phi_m) = \phi_n$. So there exists a ϕ satisfying $\kappa n(\phi) = \phi_n$ as the compact uniform limit of $\phi \alpha$'s. It is easy to see that ϕ is positive definite.

We must show that φ is continuous. Now put

$$E(a,b) \equiv \{g \in G, Re(\phi(g)) > a, Im(\phi(g)) > b\} \qquad (a,b \in \mathbb{R})$$

Since for any n, $E(a, b) \cap G(n) = \{ g \in G(n), Re(\phi_n(g)) > a, Im(\phi_n(g)) > b \}$ is open in G(n), so E(a, b) are open for any real a, b. This shows that ϕ is continuous. q.e.d.

Now we quote the following famous theorem by M.G.Krein and D.Mil'man.

Proposition 1-1 (External Point Theorem) Non-void convex subset in a locally convex space coincides with the closed convex envelope of the set of all its terminal points.

As a result of Lemma 1-3 and Proposition 1-1, we can confirm the following.

Proposition 1-2 (Extended I.M.Gel'fand-D.A.Raikov's Theorem) Any continuous positive definite function φ of G can be approached uniformally on any compact set by linear combinations with positive coefficients of normalized positive definite functions associated to irreducible representations.

In Ω , there exist three relations, 1) unitary equivaence, 2) direct sum, 3) tensor product. Using these relations we define the following.

Definition 1-3. (Birepresentation) An operator field $U \equiv \{U(\omega)\}$ over Ω , where $U(\omega)$ is a bounded operator in $H(\omega)$, is called a birepresentation when

- (1) $\forall \omega_1, \omega_2 \in \Omega$, if $\omega_1 \sim A \omega_2$ then $U(\omega_1) = A^{-1}U(\omega_2)A$,
- (2) $\forall \omega_1, \omega_2 \in \Omega, U(\omega_1 \oplus \omega_2) = U(\omega_1) \oplus U(\omega_2),$
- (3) $\forall \omega_1, \omega_2 \in \Omega$, $U(\omega_1 \otimes \omega_2) = U(\omega_1) \otimes U(\omega_2)$,
- (4) $\forall \omega \in \Omega$, $U(\omega) \neq 0$.

In [T], to prove duality theorem for locally compact groups, in the definition of birepresentation, conditions (1)-(4) were enough, but in this paper we must add the following condition:

(5) $U(\omega)$ is weak continuous (w-continuous) on Ω p with respect to Fell-topology.

This means that if $\Omega p \ni \varphi$ is given as $\varphi(g) \equiv \langle Tg(\omega)v(\omega), v(\omega) \rangle$, then $\forall go \in G$, the function $\varphi \to U(\varphi)(go) \equiv \langle Tgo(\omega)U(\omega)v(\omega), v(\omega) \rangle$ is continuous on Ωp .

For any $g \in G$, operator field $Tg \equiv \{Tg(\omega)\}\$ over Ω gives a birepresentation.

§ 2. Unitary representations

Let $\omega_k \equiv \{H^k, T^kg\}$ be a unitary representation of group Gk for each k. We consider the Hilbert space $H = \{ \otimes_k H^k, v \equiv \otimes_k v_k \}$, where $v_k \in H^k$ $(\forall k, \| v_k \| = 1)$ and v is a reference vector in H.

For any element $g = \{g_k\}$ in G, $g_k = e$ except finite k's, so the operator $Tg \equiv \bigotimes_k T^k g$ can be defined as a unitary operator on H and $\omega \equiv \{H, Tg\}$ is an algebraic representation of G. It is easy to see that $G \ni g \to Tg$ is weak continuous. So ω gives

a unitary representation of G.

Definition 2-1 We call the above $\omega \equiv \{H, Tg\}$, a direct product type representation (DPR). And denote it as $\omega (\equiv \omega (v)) = \{\bigotimes_k \omega_k, v \equiv \bigotimes_k V_k\}$, where $\bigotimes_k = \max$ multiple of outer tensor products operation. (The notation $\bigotimes_k = \min$ shows outer tensor product.) And we denote the set of direct sums of DPR's of G by Ω D.

Definition 2-2 For a (DPR) $\omega(v) = \{ \bigotimes_k \omega_k, v \equiv \bigotimes_k V_k \}$, if ω_k are the trivial representation of Gk except finite k's, that is, there is a finite subset S in N such that $\omega_k = I_k$ (the trivial representation) for $k \notin S$, we call this direct product type representation of finite type (FT).

Especially if $S = \{k\}$ is a one point set, this $\omega(v)$ is called **single type of index** k. And we show the set of all index k single type representations by $\Omega(k)$.

Easy to see that for FT-representation, every reference vector gives the same Hilbert space. Therefore hereafter, we use the notation for FT-representation without reference vector.

An index k single type representation is of the following form:

$$\omega = (\otimes \hat{I}) \otimes \hat{\omega}(k) \otimes \hat{\omega}(k) \otimes \hat{\omega}(k) = \{H(k), T(k)g\} \in \Omega(Gk)$$
.

It is easy to see that by the correspondence $\omega(v) \to \omega(k)$, we can see the set of all index k single type representations as the set of all representations of Gk. So we can identify $\Omega(k)$ to the weak dual $\Omega(Gk)$ of Gk.

Now we consider a DPR ω (v) = { \bigotimes ^k ω k, v $\equiv \bigotimes_k V_k$ }, FT-representation ω = (\bigotimes ^l) \bigotimes ^w (k) \bigotimes ^c (\bigotimes ^l) and thier innner tensor product $\omega \bigotimes \omega$ (v). Take any normalized vector u in H(k), then we get $\omega \bigotimes \omega$ (v) = { \bigotimes ^j $\langle k \omega j \bigotimes$ ^c ($\omega (k) \bigotimes \omega_k$) \bigotimes ^j $\langle k \omega j, \bigotimes j \langle k V j \bigotimes (u \bigotimes V_k) \bigotimes j \rangle_k V j$ }

Corresponding to arbitrarily given DPR $\omega(v) = \{ \bigotimes_k \omega_k, v \equiv \bigotimes_k v_k \}$ and finite subset S in N, we can consider a finite type DPR

$$\omega (v)_S \equiv \{ (\otimes \hat{k} \omega_k (k \in S)) \otimes \hat{k} (k \notin S), (\otimes_k V_k (k \in S)) \otimes (\otimes I)) \},$$
 and the representation

$$(\omega_{(v)s})^{\wedge} \equiv \{ (\otimes_{k}^{\wedge} I_{k}(k \in S)) \otimes (\otimes_{k}^{\wedge} \omega_{k}(k \notin S)), (\otimes_{k}^{\wedge} 1) \otimes (\otimes_{k}^{\vee} V_{k}(k \notin S)) \}.$$
Then $\omega_{(v)} = \omega_{(v)s} \otimes (\omega_{(v)s})^{\wedge}$. (\otimes shows inner tensor product).

Definition 2-3 The case that for any k, $\omega_k = \Re_k$ (the right regular representation of Gk), we call such $\omega(v)$ the full regular representation of G, and denote it by $\Re(v)$.

As well known, for a locally compact group its regular representation is unique up to unitary equivalence, but in our present case there exist many $\Re(v)$'s depending on the reference vectors $\mathbf{v} \equiv \bigotimes_k \mathbf{v}_k$, and in general they are not equivalent mutually.

Example 2-1. Consider the case where all Gk are compact. \mathfrak{R}_k has trivial component I_k with multiplicity 1. Denote the normalized vector in the component I_k as 1_k . Take another irreducible component ω_k , and a normalized vector v_k in $H(\omega_k)$.

 $\forall k, \ l_k \perp v_k$, so the reference vectors $1 \equiv \bigotimes_k l_k$ and $v \equiv \bigotimes_k v_k$ can not be in the same representation space. $\Re(1)$ contains trivial representation on 1, but $\Re(v)$ can not contain 1, and it has no trivial component. That is, $\Re(1)$ and $\Re(v)$ are not mutually equivalent.

Definition 2-4 If a unitary representation $\omega \equiv \{H, Tg\}$ satisfies the following, we call this representation of quasi-direct product type

(*) For any j, $\omega = (\bigotimes \hat{k} \leq j \omega_k) \otimes \hat{\omega}[j]$. Here ω_k is a representation of Gk and $\omega[j]$ is of $G[j]^\vee$

Of course DPR is quasi-direct type representation. But I don't know conditions under which a quasi-direct type representation is DPR.

Lemma 2-1 For two topological groups H_1 , H_2 , and a unitary representation $\omega \equiv \{H(\omega), Tg\}$ of $H \equiv H_1 \times H_2$, if the restriction of ω to H_1 contains some irreducible representation $D \equiv \{H(D), Tg(D)\}$ as a discrete component, then ω contains subrepresentation $D \otimes \hat{D}[2]$, where D[2] is a representation of H_2 .

Proof. Take the maximal subspace $H(D)^{\vee}$ of $H(\omega)$ on which multiple of D acts. Then $H(D)^{\vee}$ is invariant under $\{Tg \mid g \in H\}$, and any $\{Tg \mid g \in H_2\}$ commmutes with operators of $\Sigma^{\oplus}D$. Since D is irreducible, so the space $H(D)^{\vee}$ is of the form $H(D) \otimes H(2)$, and the restriction of ω to H_2 on $H(D)^{\vee} = H(D) \otimes H(2)$ is of the form $I \otimes \hat{D}[2]$.

Analogous result is proved.

Lemma 2-2 For two topological groups H_1 , H_2 , let $\omega \equiv \{H(\omega), Tg\}$ be an

irreducible unitary representation of $H \equiv H_1 \times H_2$, then the restriction $\omega \mid H_1$ of ω to H_1 is a factor representation of H_1 .

Moreover if H_1 is type I group, then ω is the outer tensor product of irreducible unitary representations ω j of H_j (j=1,2), that is, $\omega=\omega_1\otimes^{\hat{}}\omega_2$.

Proof. If $\omega \mid H_1$ is not a factor representation, there exists a non-trivial projection P belonging to the double commutant $(\omega \mid H_1)$ ". $PH(\omega)$ and $(I-P)H(\omega)$ are both non-trivial $H_1 \times H_2$ invariant subspaces. This contradicts the assumption of irreducibility.

Next, if H_1 is of Type 1, there exists an irreducible representation ω_1 of H_1 and $\omega_1 \mid H_1$ is a multiple of ω_1 and the space is written as $H(\omega_1) = H(\omega_1) \otimes H(\omega_2)$, the tensor product of the space of ω_1 with some space $H(\omega_2)$ on which operators in $(\omega_1 \mid H_1)'$ act, surely some representation ω_2 of H_2 . Again the irreducibility assumption of $\omega_1 = \omega_1 \otimes \omega_2$ leads us to the irreducibility of ω_2 .

Corollary In our group G, if all Gk are type 1 groups, then any irreducible unitary representation ω of G is of quasi-direct product type.

Proof. For $G(j) \equiv \prod_k \leq jGk$, we use Lemma 2-2 repeatedly, And we conclude that every irreducible representation of G(j) is of the form $\omega(j) = \bigotimes \hat{\omega}_k \ (1 \leq k \leq j)$, where $\omega_k \equiv \{H_k, T^kg\}$ is an irreducible representation of G(k).

Again we apply Lemma 2-2 to the case of $H = G(j) \times G[j]^{\vee}$, where $H_1 = G(j)$, $H_2 = G[j]^{\vee}$. We get that any irreducible representation of G is of the form ω $(j) \otimes \hat{\ } \omega$ [j], where ω [j] is an irreducible representation of $G[j]^{\vee}$. In other words, for arbitrary given irreducible representation $\omega \equiv \{H, Tg\}$ of G, there exist irreducible representations ω $k \in [j]$ and $k \in [j]$ and $k \in [j]$ is written in the form

$$\omega = (\bigotimes \hat{k} \leq j \omega_k) \bigotimes \hat{\omega} [j] . \qquad q.e.d.$$

[Remark] If the assumption, " all Gk are Type I", is omitted, then we have the following example for which the assertion of Colloraly 1 fails.

Example 2-2 Consider H the free group with two generators (Yoshizawa Group). On $L^2(H)$, we have two groups of operators, $KL = \{Lh; h \in H\}$ (left translations) and $KR = \{Rh; h \in H\}$ (right translations). It is well known that both of the regular representations $\{L^2(H), Lh\}$ and $\{L^2(H), Rh\}$ of H are type II factors and so H is not type I group.

We take in our Corollary, Gk = H (k=1,2,3, · · · ...) and consider the representation ω of G on the space $H = \otimes \hat{H}k$ (Here $\forall k$, $Hk = L^2(H)$) with any reference vector

 $f = \bigotimes_k f_k \quad (\forall k, f_k \in H_k, ||f_k|| = 1)$ and the representation operators are

$$G \ni g = (g_1, g_2, g_3,....) \rightarrow Tg = Lg_1 Rg_2 \otimes Lg_2 Rg_3 \otimes Lg_3 Rg_4 \otimes \cdot \cdot \cdot \cdot$$

But the representation ω (1,2) of $H_1 \times H_2$ ($H_1 = H_2 = H$) on $L^2(H)$ given by $H_1 \times H_2 \ni (h_1,h_2) \rightarrow L_{h_1} R_{h_2}$ is irreducible. Apply this to the case of $G_j = H_1$ and $G_{j+1} = H_2$, then we can assert that the representation

$$\omega$$
 $(j, j+1)$: $G_j \times G_{j+1} \ni (g_j, g_{j+1}) \rightarrow Lg_jRg_{j+1}$ is irreducible

Extend this representation to G, as $\omega(j) \vee \equiv \otimes \hat{I} \otimes \hat{\omega}(j, j+1) \otimes \hat{\omega}(j, j+1)$, then this representation is irreducible.

Finally as the inner tensor product of representations, $\omega = \{ \otimes_j \omega(j)^{\vee}, f \}$ of G is irreducible. And this irreducible representation is not of the above form.

Proposition 2-1 For our group G, any positive definite function associated to an irreducible unitary representation is a limit of a sequence of ones associated to elements in Ω D with Fell-topology.

Proof. By Lemma 1-1, any compact set C is contained in some Gj.

In other hand, by Lemma 2-2 and Corollary, any irreducible representation ω of G is quasi-direct product type as $\forall m$, $\omega = (\bigotimes \hat{k} \leq m \omega_k) \otimes \hat{\omega}[m]$. So, for a matrix element $f(g) \equiv \langle Tgv, v \rangle$ ($v = \bigotimes k \leq m v_k \otimes v(m)$) associated to ω , consider the DRP

$$f(g) \equiv \langle Tgv, v \rangle \quad (v = \bigotimes k \le m \ v_k \bigotimes v(m))$$
 associated to ω , consider the DRI $(\bigotimes \hat{k}^{\infty} \omega_k, v_0)$, where $v_0 = \bigotimes k \ v_k$. Then

$$\forall g \in C$$
, $f(g) \equiv \langle Tgv, v \rangle = \prod_{k \leq j} \langle Tg_k v_k, v_k \rangle \times 1 = \langle Tgv_0, v_0 \rangle$

This shows that f coincides with a matrix element $f_0 = \langle Tgv_0, v_0 \rangle$ on C. q.e.d.

§ 3 Duality theorem

In this section, we treat our group G, that is, an inductive limit group of countable direct product groups for which all component groups are type I locally compact groups.

We show a duality theorem for G.

As in § 1, we put $\Omega \equiv \{\omega\}$ all unitary representations of G, and $U \equiv \{U(\omega)\}$ a given birepresentation on Ω .

By definition, each $U(\omega)$ is a bounded operator on the representation space of ω , and $\{U(\omega)\}$ satisfies the following

- (1) $\omega_1, \omega_2 \in \Omega$, if $\omega_1 \sim A \omega_2$, then $U(\omega_1) = A^{-1}U(\omega_2)A$,
- (2) $\forall \omega_1, \omega_2 \in \Omega, U(\omega_1 \oplus \omega_2) = U(\omega_1) \oplus U(\omega_2),$
- (3) $\forall \omega_1, \omega_2 \in \Omega, U(\omega_1 \otimes \omega_2) = U(\omega_1) \otimes U(\omega_2),$
- (4) $\forall \omega \in \Omega$, $U(\omega) \neq 0$.
- (5) $U(\omega)$ is weakly continuous with respect to Fell-topology.

Lemma 3-1 For a given birepresentation $U \equiv \{U(\omega)\}$, there exist a unique element $g_U \in G$ such that $U(\omega) = Tg_U(\omega)$ for any DPR ω .

Proof. Step 1. At first, for any k, we consider the set $\Omega(k)$ of index k single type representations. As we remarked, $\Omega(k)$ is identified with the weak dual $\Omega(Gk)$ of Gk.

By restricting our birepresentation $\{U(\omega)\}$ to $\Omega(k)$, we obtain a birepresentation on the weak dual $\Omega(Gk)$ of locally compact group Gk.

We can use the duality theorem for this restriction, and get unique element $g_k \in G_k$, such that for any ω_k in $\Omega(k)$, $U(\omega_k) = Tg_k(\omega_k)$.

Step 2. Next we treat FT-representation $\omega[j]$.

Let $\omega[j] = (\bigotimes \hat{k} \leq j \omega_k) \bigotimes \hat{I}(G[j]^{\vee}) = \bigotimes k \leq j \omega(k) \bigotimes I(G)$, where $I(G) \equiv \bigotimes \hat{I}_k$ shows the trivial representation of G.

From (3) of the definition of birepresentation, $U(\omega[j]) = \bigotimes k \leq j \ Tg_k(\omega_k) = \bigotimes k \leq j \ Tg(\omega[j])$ ($g = (g_1, g_2, \cdots g_j, e, e, e, \cdots)$)

It is remarkable that the above gk depend only on the given birepresentation U and not on j.

Step 3. In the case where the representation $\omega \equiv \omega$ (v)={ \bigotimes $^{\hat{}}_{k} \omega_{k}$, $v \equiv \bigotimes_{k} v_{k}$ } is DPR, for any j, we can write ω (v) = ω [j] \otimes (ω [j]) \wedge (v[j]), where

$$(\omega[j]) \wedge (v[j]) = I(G(j)) \otimes \wedge (\otimes \wedge_{k>j} \omega_k) \text{ and } v[j] = (\otimes 1) \otimes (\otimes_{k>j} v_k).$$

Thus
$$U(\omega(v)) = U(\omega[j]) \otimes^{\hat{}} U((\omega[j])^{\hat{}}(v[j]))$$

= $(\bigotimes k \leq j Tg_k(\omega_k)) \otimes^{\hat{}} U((\omega[j])^{\hat{}}(v[j]))$

This means that birepresentation operator $U(\omega(v))$ operates on the reference vector $v \equiv \bigotimes_k v_k$ as follows.

(*) The k-th component vector v_k changes to $Tg_k(\omega_k)v_k$.

Step 4. We consider a full regular representation $\Re(f) \equiv \{ \bigotimes \hat{f}_k \Re_k, f \equiv \bigotimes_k f_k \}$. The above result means $U(\Re(f))$ must transfer the reference vector $f \equiv \bigotimes_k f_k$ to $\bigotimes_k Rg_k f_k$.

If for any j, $U(\Re_j(f_j)) \neq 0$, then $U(\Re(f))f = \bigotimes_k Rg_k f_k$.

Now we assume that there exists an infinite set $K = \{k\}$ such that for $\forall k \in K$, $g_k \neq e$. In regular representation \Re_k of locally compact group Gk, for non-unit element g_k , there exists a normalized L^2 -function f_k such that $[f_k] \cap [Rg_k f_k] = \emptyset$, that is, $\|f_k - Rg_k f_k\| = 2$. Therefore the vector $U(\Re(f))f = \bigotimes_k Rg_k f_k$ can not belong to the space of $\Re(f)$.

This contradicts the assumption that for birepresentation, its component $U(\omega)$ for any ω is a bounded operator on the representation space of ω .

Step 5. After the result in Step 4, for any given birepresentation U, the element of corresponding sequence $\{g_k\}$ $(g_k \in G_k)$ must be unit e except only a finite number of k, in other words, $\{g_k\}$ is of the form $(g_1, g_2, g_3, ..., g_j, e, e, \cdot \cdot \cdot \cdot)$. Therefore there exists an element $g_0 = g_1 \times g_2 \times g_3 \times ... \times g_j \times e \times e \times \cdots$ in G and

$$U(\omega) = \bigotimes \hat{}_{k} \leq j \operatorname{Tg}_{k}(\omega_{k}) \bigotimes \hat{}_{k} (\bigotimes \hat{}_{l}) = \operatorname{Tg}(\omega(j) \bigotimes \hat{}_{l} (\bigotimes \hat{}_{l})) = \operatorname{Tg}_{U}(\omega). \quad \text{q.e.d.}$$

Corollary For our group G, $U(\omega) = Tg_{\upsilon}(\omega)$ for any irreducible unitary representation ω .

Proof. By Proposition 2-1, any positive definite function associated to an irreducible unitary representation of G is a limit of ones associated to an element in Ω D. And by definition, birepresentation $\{U(\omega)\}$ is w-continuous with respect to Fell-topology.

From Lemma 3-1, on Ω D, $\langle Tg(\omega)U(\omega)v, v \rangle = \langle Tg(\omega)Tg_U(\omega)v, v \rangle$, $(\forall v \in H(\omega), \forall g \in G)$. Take the limit, and we get this for any irreducible ω too. That is, $U(\omega) = Tg_U(\omega)$, for any irreducible representation $\omega \in \Omega$. q.e.d.

Theorem Consider the inductive limit group G of countable direct product type of type I locally compact groups Gk, k = 1.2.3.

Then any birepresentation $U \equiv \{U(\omega)\}$ coincides with $Tg = \{Tg(\omega)\}$ for some $g \in G$. That is, the set of all birepresentations corresponds to G one to one way as a group.

Proof Use the notations in Lemma 3-1.

By the results of and Corollary of Lemma 3-1, $U(\omega) = Tg_{\sigma}(\omega)$ for any irreducible ω . Now we show that $U(\omega) = Tg_{\sigma}(\omega)$ $(\forall \omega \in \Omega)$, then the proof is completed.

For any normalized positive definite function $\varphi(g) \equiv \langle \operatorname{Tg}(\omega) v(\omega), v(\omega) \rangle$ associated to ω , take the function $U(\varphi)(g) \equiv \langle \operatorname{Tg}(\omega) U(\omega) v(\omega), v(\omega) \rangle$.

If ω is irreducible, $\forall g \in G$, $U(\phi)(g) = Tg_{\upsilon}(\phi)(g)$. Since the function $\Omega p \ni \phi \to U(\phi)(g)$ ($\forall g \in G$) is continuous, using the result of Proposition 1-2, we obtain $\forall \phi \in \Omega p$, $\forall g \in G$, $U(\phi)(g) = Tg_{\upsilon}(\phi)(g)$. That is,

 $\forall \omega \in \Omega$, $\forall v \in H(\omega)$, $\forall g \in G$, $\langle Tg(\omega)U(\omega)v, v \rangle = \langle Tg(\omega)Tg_U(\omega)v, v \rangle$. So $U(\omega)v = Tg_U(\omega)v \quad (\forall v \in H(\omega))$, i.e. $U(\omega) = Tg_U(\omega) \quad (\forall \omega \in \Omega)$. q.e.d.

REFERENCES

[TSH] N.Tatsuuma, H.Shimomura and T.Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ., 38-3 (1998), pp.551-578.

- [T] N.Tatsuuma, A duality theorem for locally compact groups. J. Math .Kyoto Univ., 6 (1967), pp.187-293.
 - [G] A.Guichardet, Lecture Notes in Math. #261, Springer-Verlage.

Address:

Matsuoi-chou 10-8, Nishinomiya 662-0076, Japan

