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THE SECONDARY SPHERICAL FUNCTIONS AND GREEN
CURRENTS ASSOCIATED WITH CERTAIN SYMMETRIC PAIRS

TAKAYUKI ODA AND MASAO TSUZUKI

ABSTRACT. We construct a Poincaré dual form and a Green current for a modular
cycle of higher codimension on an arithmetic quotient of a certain Hermitian symmetric
domain, generalizing the classical construction of the automorphic Green function for
the modular curves.

1. INTRODUCTION

Arithmetic quotients of hermitian symmetric domains are important objects to inves-
tigate. For example, the moduli spaces of abelian varieties with certain endomorphisms
and polarization types, and the moduli spaces. of K3 surfaces are realized as such. To
understand the cohomology groups and the cycle geometry of these quotients is very
interesting arithmetic problem. There is a history to investigate this theme around the
time of establishment of the Matsushima isomorphism. The construction method of cycles
by means of equivariant embeddings of locally symmetric spaces are called ‘generalized
modular symbols . (¢f. [4]).

If both the embedded and the ambient spaces are of hermitian type, there is an extensive
study by Satake [8] for possible embeddings. Sometimes they have been called modular
embeddings. Let

j:A\H/HNn K - T'\G/K
be a modular embedding with G a semisimple Lie group, K a maximal compact subgroup
of G, H a symmetric subgroup such that H N K is maximally compact in H and T, A
are compatible arithmetic subgroups of G, H respectively. Then j yields the restriction
map of cohomology

75 : Ho(T\G/ K, C) = Ho(A\H/H N K, C)

(© € {empty,c,!} a support condition of cohomology theories). Then we have the
Poincaré dual map

(jo)s : HR"*(A\H/H N K,C) - H}"*(T'\G/K, C)

with & the support condition dual to ©. We propose here a
Problem:  Construct the Poincaré dual map (jo). explicitly.

This problem seems to be quite difficult to answer generally. But at least for special
case, we have a tractable method: to use Poincaré series and derived Green currents.
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In a previous paper [5], we discuss for the case when the complex codimension of
A\H/H N K in T\G/K is one. We can extend the similar construction for higher codi-
mensional case associated with the symmetric pair U(p,q), U(p — 1,¢) x U(1) in this
article. We note that its dual symmetric pair U(p 4+ ¢ — 1,1), U(p — 1,1) x U(q), which
yields a class of higher codimensional cycles in a discrete quotient of a complex hyperball,
is already treated in [9] by a similar method.

Because this article is a short summary of the forthcoming full paper, no proof is
included.

Notation:

The number 0 is included in the set of natural numbers: N = {0,1,2,...}.

For any matrix B = (b;;) with coefficients in C, B* = (b;;) denotes its conjugate-
transpose matrix.

We follow the usual convention that the Lie algebra of a real Lie group G is denoted
by the corresponding German letter g.

2. PRELIMINARY

2.1. Unitary group and its symmetric space. Let G = {g € GL,4,(C)|g*L;,9 =
I,,} be the unitary group of the Hermitian form I,, = diag(l,,—1,) with signature
(p+,q—). We assume p > ¢ > 2 from now on.

The inner automorphism 6 : g +— I, 49, is a Cartan involution of G and its fixed
point set

K = {diag(k:, k2)| k1 € U(p), k2 € U(q)}

yields a maximal compact subgroup of G. The (—1)-eigenspace of df : g — g denoted by
p is identified with the tangent space of the G-homogeneous manifold G/ K at its origin
o = K. The adjoint action J = Ad(z,)|p by the element z, = diag(v/—11,,1,) in the
center of K yields a K-invariant complex structure on p = T,(G/K), which propagates
a G-invariant complex structure on G/K. The complexification p¢ is decomposed to its
holomorphic and anti-holomorphic subspaces: p¢c = p4 ® p— with px = {X € pc| J(X) =
++/=1X}. If we identify gc = glp4+4(C) naturally, we have

py = {ps(z) = [8’5] € gl (C) 2" € M,o(C)},
p- = {p-(z") = [ 3] € gh+4(C)| 2" € M;,,(C)}.

Let X — X be the complex conjugate in gl,4,(C) with respect to its real form g. Then
X = —L,X*I,, (VX € gc) and ps(z) = pz(z") (Vo € M,,o(C)).

The non-degenerate R-bilinear form By(X,Y) = 27'tr(XY) on g entails a positive
definite K-invariant inner product B, on p, which propagates a G-invariant metric on
G/K. The mertic on G/K is Kaehler and the associated 2-form form is given by

1) w(X,Y) = By(X,JY), X,Yep

on p = T,(G/K).
Let By be the complex bilinear extension of the inner product By« on p* dual to
B,. Then p is equipped with the hermitian inner product (¢|¢') = By (¢, £"), which is
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extended to the exterior algebra A p¢ canonically. Note the natural decomposition of
A Pe to its bidegree (a,b) part

ab a b

Ave=Api e \v:
is orthogonal. It is sometimes convenient to note that the inner product of typical elements
£ = pe(z) € pey (z € Myy(C),e = %) and 0 = pu(y) € po, (y € Mp,y(C), € = =) is
computed as (£|n) = 34, «tr(zy*).

The Hodge star operator * is defined to be the C-linear endomorphism of A p& such
that *& = ¥a and such that (a|8)vol, = aA+f. Here vol, = G;ngq is the Kahler volume
form. For a € Apg, let us define e(a) : Apg — ApPE by e(a)8 = a A B. The operator
L = e(wp) is commonly called Lefshetz operator. The adjoint of e(c) with respect to the
hermitian inner product of A pg is denoted by e*(a). In particular, the operator e*(wy),
the adjoint of the Lefshetz operator, is denoted by A

2.2. A symmetric subgroup. Let us consider the involution o of G defined by
o(g) = diag(1,-1, —1,1,) gdiag(1,-1,—1,1,).

Let H = G be the o-fixed point subgroup of G. Since 6 is commutative with o, the
restriction §|H provides H with a Cartan involution. The 6-fixed points

H’ = HN K = {diag(hy,u, hs)| b1 € U(p— 1), u € U(1), hy € U(q)}

is a maximal compact subgroup of H. The Cartan decomposition of the Lie algebra § of
Hish=(&nh)® (pNh). Since the element 2, defining the complex structure J of p
belongs to the center of H N K, J yields a H N K-invariant complex structure of the real
vector space h Np = T,(H/H N K), which propagates an H-invariant complex structure
of H-homogeneous manifold H/H N K. We put H/H N K the H-invariant metric coming
from the restriction of By, to h N p. The metric is Kahler and the associated 2-form on
pNh=T,(H/HNK) is wpy = wp|(p N h) x (pN ).

As a consequence of the constructions so far, the inclusion H/H N K — G/K is a
holomorphic map between Kahler manifolds and codime(G/K; H/HN K) = q.

2.3. Root vectors. For 1 < 1,5 < p+ ¢, let E;; = (6;40,5) denotes the matrix unit
in My44(C). The matrices E;; comprise a C-basis of the complexified Lie algebra gc =
9lo+4(C).

Let q be the (—1)-eigenspace of do : g — g. Since 6 and o are mutually commutative
involutions, g is decomposed to their joint eigenspaces: g = (¢Nh)d(pNq)d (pNh)d(ENg).
The pair (g, h) is a symmetric pair of split rank one, and a = RY, with Y = Eppi1+Epi1p
is a maximal abelian subspace of pNq. The set of a-roots in g is X(a) = {+, £2)}. Here
A € a* is the unique simple root such that A(Yp) = 1. The signature ([7]) of each root is

mt(A) m¥(2) 2(¢-1) 1
computed as (m_& m-gz,\;) = (28’,_13 0) .
Set M = Zynk(a). Then
M = {diag(zy,u,u,z3)| 2, € U(p— 1), u € U(1), z, € U(g - 1)}

coincides with Zk(a).
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Fori<i<p—landl<j<q—1,set
X3 = Er3p+l’ X3 = Epi1,ps Zg =
X!=Eppriv, X = Eprinip
2! = —Epp1ptivts 2] = Eprirrprn,
X? = Ei,p+1, X,b = Epy1,iy
Z3 = E;p, Z} = —E,;,
XY = Eipyisns X} = Bpyjnrge

This notation is consistent with the complex conjugation.

Then we have

p+Nac=(X](0<j<g—1)c
p-Ngc=(X](0<i<qg—-1)c
prNhc=(XP(1<i<p—1)ec®(X;1A<i<p-
p_Nbhe=(XP1<i<p-1))c®XE(1<i<p-
(3ﬂb)c=(Z37Z;’,Z,'?(1\J\q—l))c me,

€nac=(2}, 2] (1<i<p-1)c

Consider the one parameter subgroup

a; = exp(tYo)

of G. Then by general theory, the group G is a disjoint union of double cosets Ha; K (t>o0
and the Lie algebra g = Ad(a;) 'h+ a+¢ift > 0. We have

— di&g (]-p-la [cpsht sinht] , 1

sinht cosht

q—-l) )

\/—_I(Ep.p -

X§ = 1Yo — 1t Ad(ar)” 178 4 LLemha) 70,
X.;‘ smhtAd(at) lzb ‘;:)::::Zgb, (1 <J7<¢
X = 1oAd(e) ' XP —Smhizd (1<i<p

2.4. Invariant measures. Let dk and dko be the Haar measures of the compact groups
K and H N K with total volume 1 respectively. Then we can take a unique Haar measure
) coincides

dg (resp. dh) of G (resp. H) such that the quotient measure

with the invariant measure on the symmetric space G/K (resp. H /Ku) determmed by

the Kahler volume form.

Lemma 1. For any integrable function f on G, we have

(2.2)

| sta)da = [oan [ ar [

with dt the Lebesgue measure of R and

o(t) =

I(

2n?

9)

(sinht)®~(cosht)*1.

- 1),

1).

4 (resp.

f(hatk) o(t) dt

EP+1,P+1)’
g .7 < q-— 1))C,
(t eR)
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3. CERTAIN INVARIANT TENSORS

For a C*-manifold U, let A(U) denote the space of C*°-differential forms on U and
Ac(U) the subspace of those forms with compact support; when necessary we topologize
these spaces in the usual way.

When U has a complex structure, A**(U) denotes the space of C-differential forms

of bidegree (a,b).

3.1. Current defined by the symmetric subgroup. Let j : H/HN K < G/K be
the natural inclusion. Then a (g, g)-current dg/pnx on G/ K is defined by the integration

(OH/HAK, Q) = / J'a, a€ A(G/K).
H/HnK

Lemma 2. For o € A,(G/K), we have
(AT %85 e, #3) = / (A™4(xvolyrp)|e(h)) dh.
H

Here

1) (r-1)g,(p-1)q
voley = Gty - €\ b
is the K N H-invariant tensor corresponding to the Kdhler volume form of H{HN K.

For our purpose, it is important to understand the nature of the tensor A?~¢(*volyny)
in some detail. First we have

Lemma 3. For 0 < d < g,
Aq_d(*VOI‘" ")) = gizi—d)-!v:p

3.2. K-spectrum of certain cyclic K-module. The aim of this subsection is to obtain
an (e-eigendecomposition of the tensor A7"¢(*volynp). Here Q¢ is the Casimir element of
K corresponding to the invariant form Bj.

The coadjoint representation of K on pg is naturally extended to a unitary represen-
tation 7 : K — GL(A p¢) in such a way that 7(k)(a A B) = 7(k)a A 7(k)B holds for
a,,(i € Apt and k € K. For (a,b) € N?, 7% denotes the subrepresentation of 7 on
AN

For 1 <1< p, q¢<J< g let us define w;; € pg by wij(Eapips) = diadjp (1 < a < p, 1<
B < q), wij|p- = 0. Then w;;’s and their complex conjugates @;; comprise a C-basis of pg
dual of the basis of matrix units in pc.

For v € /\l'l pe, the r-fold wedge product y Ay A -+ A+ is denoted by 4". In order to
have a decomposition of 'ygp into eigenvectors of the Casimir operator g, we first analyze

the K-spectrum of U(fc)vs,, the cyclic U(¥c)-submodule of A% b generated by Ve
Since t¢ = gl,(C) & gl,(C), the highest weight of an irreducible representation of £ is
supposed to take the form

A= [11,12,...,1;,]@[m],mz,...,mq]

with l;,m; € Zsuchthat [, 2L > - 21, m; 2 me > -+ m,.
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Lemma 4. Let 0 < d < q and V an irreducible submodule of U (Ec)*ygp. Then the highest
weight of V is of the form [k,0,...,0,—£] ®[0,...,0] with an integer 0 < £ < d.

For 0 < & < d, let V9 be the [%,0,...,0,—&] ® [0,...,0]-isotypic part of U(tc)ys,
Then Lemma 4 implies

d
(3.1) U(kc)r,, = P V-
k=0
Note that Vo(d) is a trivial representation of K.

Corollary 5. Let 0 < d < g. Then the operator 1o (=471 + k(5 + p—1)) annihilates
the tensor 'y;fp:

d
[I-47"Q+ k(c +p—1)) 75, = 0.

k=0

For 0 <d<¢q0<k<d,set

—d) g -4 - b
0'(:,)__“_(q ) 10 Mtolatp-1) 4 e Ao

R/
d! OS;sd(a_ﬁ)(K-'.a-l-p—l) P

Proposition 6. Let 0 < d < q.

(1) For each 0 < k < d, the tensor 09 is a nonzero eigenvector of Qe with the
eigenvalue 4x(k +p — 1), i.e.,

Qe = 4k(k +p—1)09, 6@ £0.

The tensor 0 is H N K-invariant and is a U(¥c)-cyclic vector of V. The

representation V‘(d) is irreducible.
(2) We have

d
AT~ (xvolyny) = Z 6.

k=0

Moreover, the tensors 0‘(,") (0 < d < q) are primitive, i.e., AB&J) = 0; we have
ABD =08V (0 < & < d).

REMARK: The t-module V¥ with 0 < & < d is not necessarily irreducible. For example,
when p=q =2, Vo(z) = C @ C is two dimensional and contains a non trivial K-invariant
tensor orthogonal to wp.

4. POLAR DECOMPOSITION OF SEVERAL DIFFERENTIAL OPERATORS

In this subsection we have an expression of several differential operators acting on the
space of H-invariant forms A((G — HK)/K)H.
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4.1. Differential forms. For any right K-stable open subset S of G and a unitary rep-
resentation (p, W) of K, let C*(S/K;p) denotes the space of C*-function ¢ : § - W
such that

o(gk) = p(k)"'¢(g) (Vg € S, Vk € K).
For g € G, let L, : zK + gzK be the left translation on G/K by g. Its tangent
map T,(L,) at the origin 0 = K is regarded as a linear map p — T,x(G/K). Given
a € A(S/K), a function & € C*®(S/K;7) is defined by the formula

(@(9),€) = (a(gK), (N\ T(L,))E), (Vg €S, Ve € J\p).

The map a + & yields a linear bijection from the space of forms A**(S/K) onto the
space of functions C*°(5/K;7*"); we identify these two spaces by this isomorphism.

Since G — HK is left H-stable and right K-stable open subset of G, both A**((G —
HK)/K) and C°((G— HK)/K; ") have natural left actions by H, and the isomorphism
A*((G - HK)/K) = C>((G — HK)/K; ") preserves the H-actions.

Lemma 7. Letp € C®((G—HK)/K; 7). Then for eacht > 0, the value @(a;) belongs to
the M -invariant part (/\ pg)™. Conversely, given a C*®-function ¢ : (0, +00) = (A pa)™,
there exists a unigue function ¢ € C°((G — HK)/K; ) such that p(a;) = ¢(t) (V¢ > 0).

4.2. Laplacian. Let Qn, Q¢, Qe and 2, be Casimir element of M, K, HN K and G
respectively, corresponding to the invariant form By. Then

q-1

Qeny = O — (Z8)% - 2 Z(z;?z;? +202Y),
Jj=1
g-1

-1
Q== () 23220 + 7)) - 252171+ 222,
j=1 =1

g—1 p—1 p—1 ¢g-1
Q= Qe+2) (XIX]+ XIXD) + 2> (XPXD + XDXD) +2)° S (XBXD + XhXD).
=0 =1 =1 j=1
Let us introduce the operators
p—1
Seq =13 T(ZZ] + Z}Z]) = {1 (%) — 7(Qern)},
i=1
gq—-1
Sty =3 T(Z)Z) + Z02]) = () — T(Wm) + 7(20)*}
J=1

acting on A\ pg. Let A be the Hodge laplacian acting on A((G — HK)/K).

Proposition 8. Let ¢ € C*((G — HK)/K;7)? and set ¢(t) = p(a;) (t > 0). Then
A(p)(ar) = —=Dig(t) (t > 0) with D, the (A pe)™-valued differential operator

D, =& 4 ((2p — 1)tanht + (29 — 1)cotht) £
+ 350 4 2% 4 Lcotht — tanht)?r(Z0)® + 7(Qm).

sinh’
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4.3. dd-operator. Since (G — HK)/K is an open subset of the complex manifold G/K,
we have usual operators 9 and 8 acting on A((G — HK)/K). The aim here is to obtain
an expression of the composite operator 0 on the H-invariant forms.

Let us introduce operators acting on A pg:

p-1 p—1 p—-1
Py = Z e(d:;l)r(Z,f‘), P-= Z e(wil)T(Z?)’ 6(’7!;) = @ Z e(wip A @i1),
=1 i=1 i=1
q-1 B g-1 g1
Ri=D e(@p41)7(2]), Ro=D elwpir)7(Z]), elng)= YN e(wpitt A@piar),
i=1 j=1 j=1

and
A= 72_—1‘6(%) + Le(wo A @o) — €(@0o)P- + e(wo) P4,
B = Ase(ny) + e(wo A o) — e(@o) R + e(wo) R+,
C=e(wo)(P+ +Ry)+P-Ry +R_Py4.

Here we set wp = wp ;.

Proposition 9. Let ¢ € C°((G — HK)/K;7)" ad set §(t) = p(a;)(t > 0). Then
(88p)(as) = &:d(t) (¢ > 0) with &; the (A pg)™-valued differential operator

& = Le(wo A o) s + L(tanht A + cotht B) &
+ tanh® P_Py + cotht R_R4 +C
+ (1 + tanh?) (pe(m) — e(@o)P- — elwo)Py) m(2)
+ 511+ coth®)  pe(ny) — e(@o)R- — e(wo)R+ ) 7(20)
+ Y= e(wo A @o)7(2Z8) + i (tanht + cotht)*r(Z7)?.

5. THE SECONDARY SPHERICAL FUNCTIONS

In this section, we fix an integer 0 < d < ¢ and set
DY =C-{2d+p—q—1-2n|n€eN}.
Here is the main theorem of this section.
Theorem 10. (1) There exists a unique family <p§°‘) (s € D) of functions with the
properties:
(i) For s € D@, o{ € C=((G - HK)/K;r%)H.
(i) For each g € G— HK, the value gogd)(g) depends on s € D@ holomorphically.
(iii) For each s € D,
Qe (9) = (s* = (p+a-1)")¢i9), (9 €G- HK).
(iv) It has the ‘small-time behavior’

Jim 20D (@) = A (+volyry).
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(v) It has the ‘large-time behavior’
A2(a) = O(e~CHPH1), (¢ foo).

(2) The radial value cpﬁd)(at) is given by the explicit formula

d
#{(ar) = ) Fuls;0) 09, (¢ >0),

k=0
Here for each k € N, s € C and t > 0, we set
Fus;t) = LEZE D22 — )
’ T(s+1)l(g—1)
X (cosht)=(+7407D)  Fy (HELEL 4 o, opbadl i 415 L)

The next corollary says that only the function <p$") is essential, from which others gogd)
with smaller bidegree (d,d) are obtained by successive application of A.

Corollary 11. We have A<p§d) = <p£d"l) whenever 1 <d < g, s € D@,

5.1. Some properties of the secondary spherical functions. In this subsection, we
fix a family of functions ¢{?(s € D@) satisfying the conditions (1), (i), (iii),(iv) and (v)
in Theorem 10. Starting with these five properties, we deduce several substantial results
which will be used not only to prove Theorem 10 but also to study Poincaré series in the
next section .

Proposition 12. There ezists a (\** p5)™ -valued holomorphic function R(s,z) on D@ x
{lz] < 1} such that

(Pgd)(at) = (1 - z)(s+p+q—1)/2 R(s,l _ z), (3 € D(d), z = tanh?t € (0, 1))

There ezists a unigue family cq(s) (0 < a < ¢—2) of tensors in (N* p&)H"X such that
the following properties hold.

(1) There exist N € N and (/\d'd p&)M -valued holomorphic functions Pu(s,2) (0 < h <
N) on D@ x {|z| < 1} such that

q—-2 N
Cols i
ey =Y =y > (og2) Pale,2), (o€ DO, = tanbt € (0,1)
a=0 =0

(2) We have co(s) = AT4(xvolyny), and c,(s) satisfies the recurrence relation:

dolg—a—1)culs) = 3 {r() + (a — r)((p+ g — 1) — s?)

£=0
—4(p+q-2)(g—k—1)}cul(s), O<a<q-2).
(3) For0 < a < g—2, ca(s) is a polynomial function in s € C such that c,(s) = c,(—s)
and deg c,(s) = 2a.

Since HK is a zero set of G with respect to the Haar measure, the form ¢{® is regarded
as a measurable form on G/K.
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Lemma 13. The measurable form <,o§d) on G/K is locally integrable.
Proposition 14. The (d, d)-current <p£d) satisfies the differential equation:
{&+8*— (p+g— 1)}l = (AT mek

5.2. A differential relation. The functions ¢, = ¢{™ = Ap{® and ¢, = o9 are of
particular importance in our investigation of the modular cycles arising from H. They
are related by the simple formula:

Theorem 15. Let s € D9, Then we have

004.() = L= VD () geg-nK.

6. POINCARE SERIES

Let T' be a discrete torsion free subgroup of G such that the quotient spaces I'\G
and I' N H\H have finite invariant volumes. For simplicity we set Iy = I' N H and
Ky = HN K. Since I' is torsion free, the Kahler manifold structures on the discrete
quotients T'y\H/Ky and I'\G/K are entailed from those on their universal coverings
H/Ky and G/ K. Moreover, I'H is a closed subset of G and the inclusion TNH\H < T'\G
has the closed image.

6.1. Currents defined by Poincaré series. Let ¢§‘) (s € D) be the secondary spheri-
cal function of bidegree (d, d) constructed in Theorem 10. For r € N, we define an auxiliary

function <pg‘,i,) by

1 /-1d\
¢9D(g) == (———> ¢W(g), (s€DY, ge G- HK).

rl \ 2s ds
Let us consider the Poincaré series
(6.1) 2@(g) =" S~ ¢ (vg)

Y€\l

for (s, g) belonging to the set {s € C|Re(s) > p+g—1} x (G—THK), where the series is
convergent as the next theorem shows. Note Re(s) > p+¢—1 is contained in the domain
D@,

Proposition 16. Let U be a compact subset of G — THK and € a positive real number.
Then the series (6.1) converges absolutely and uniformly on U x {s € C|Re(s) > p+q—
1+ €}.

Proposition 17. We have

[ X o0l do < +eo
G

~yeTy\T'

In particular, the measurable function o (g9) on T'\G/K is integrable.
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Therefore the measurable (d, d)-form % on I'\G/K yields a current, denoted by the

same notation ngr) , by the integration:

(@@

5,

@) = W Aa, (Yae A(T\G/K)).
I\G/K

6.2. Poisson equation. Let C} : I'y\H/Ky — T'\G/K be the holomorphic map ob-
tained from the inclusion H/Ky < G/K by passing to the discrete quotients. The image
of C}is a closed complex analytic subset of I'\G/K. Sometimes we use the simpler

notation C for C§. Our currents <I>§‘j‘) satisfy the generalized Poisson equation:
4 Proposition 18.

{A+8 — (p+ g— 17} e = 4n1-45,
forRe(s) >p+q—1,reN.

6.3. Spectral expansion of Poincaré series. In order to obtain meromorphic contin-
uation of the function s — <I>§‘f3 beyond the convergence region Re(s) > p+ g — 1, we
want to use L?-theory, i.e., spectral decomposition of the Laplace-Beltrami operator act-
ing on the Hilbert space of square integrable (d,d)-forms. Unfortunately, the form c1>§'j2
is not square-integrable, even when I'\G is compact. This difficulty is circumvented by

considering <1>£‘,‘) with large r.

Proposition 19. Let r > q¢— 1. Suppose one of the conditions (a) and (b) is satisfied:

(a) I'\G is compact, and Re(s) > p+q—1.
(b) G has a Q-structure with respect to which H is Q-rational and T' is arithmetic,
and Re(s) > (p+¢—1)(3 —2p7}).

Then the measurable (d, d)-form ®{2 on I'\G /K is L**¢ for some € > 0.

REMARK: Since vol(I'\G) < 400, L**¢ implies L? for a function on I'\G by Hélder’s
inequality.

Let A%Y(I'\G/K) be the completion of the space A%4(T'\G/K) by the inner product

(2)
(a]B) = /P e

From now on we further assume that T' is a uniform lattice, i.e., the manifold I'\G/K
is compact. Then the Laplace-Beltrami operator A with the domain A%4(T'\G/K) is

essentially self-adjoint operator on the Hilbert space A‘:{;(F\G /K). The domain of A, the

minimal closed extension of A, consists of all € A?;;(F \G/K) such that the distribution

Aa belongs to A?{;(F\G /K). There exists an orthonormal basis {a, }nen of A?;;(P\G/ K)
consisting of eigenvectors of A; let {)\,} be the corresponding system of eigenvalues:
Ao, = A,a,. Note a,’s are C®-forms and ),’s are non-negative real numbers because

the differential operator A is positive, formally self-adjoint and elliptic.
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Theorem 20. Letr > q— 1 and Re(s) > p+q—1. Then

4(Aq JC *Oln>
(4 — !
q)""' Z {,\ + 82 — P +q- 1)2}r+1

is the spectral expansion of o e (2)(F\G/ K).

n=0

The spectral expansion yields a meromorphic continuation of <I>(d)

Theorem 21. Let r € N and 8 € A(T\G/K). The function s (<I>( |B) has a mero-
morphic continuation to the whole complez plane C. A point so € C with Re(so) > 0 is

a pole of (32 |ﬂ) if and only if there exists an indez n € N such that (AT~%¢,*ay,) # 0,
(on|B) # 0 and s2 — (p+ g—1)* = —\,. The function
—4(Aq_d60 *Q )
(d) ) ¥Qlp
(Q Iﬁ) + Z {A + 82 (P-I' q- )2}r+l (a‘nlﬂ)

n
An=(p+g-1)2—s}

is holomorphic at s = sg. We have the functional equation <I>(,,2 = (I>(_dz',

7. AUTOMORPHIC GREEN CURRENT
Set GL(s) = 8% and UL (s) = 8%,
Theorem 22. The equations
{&+ 5 (p+q—1)*} G5(s) = 4Adr,,
{8+ — (p+q—1)?} U (s) = 400,
ded G(s) + {s* — (p+ ¢ — 1)’} W(s) = 4dcr
hold.

Since G%(s) and Uk (s) are meromorphic on € with at most simple poles at s = p+¢—1,
we can consider the constant term and the residue of their Laurent expansion:

O = %CTs=p+q—lGrI;I(3), Uy = 11;“—1Ress=p+q_1\115(s).
Theorem 23. We have
AGh=Aser, AUR=0, ddGy+ ¥ =dop.

By the Hodge theory for compact Kahler manifolds, the fundamental class of the cycle
C}% has a unique harmonic representative in A%(I'\G/K) called the Poincaré dual form
of C’r Our result tells an explicit way how to construct that harmonic form. Indeed, the
second equa,tlon in Theorem 23 shows the (g, g)-form ¥4 is harmonic and the thlrd one
means VY is cohomologus to the current Jor Therefore, U, meets the requirements of
the Pomcare dual form.

Theorem 23 also tells that (¢g— 1, g — 1)-current G§ is a Green current for the cycle Cf
(¢f. Gillet-Soulé [2]). Though there are many Green currents for C;, our constructlon
fixes a choice, whose dependence on I is tractable. Note the singularity of our Green
current is different from the one considered by Gillet-Soulé.
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8. SOME GLOBAL CONSEQUENCE
Along the K-module decomposition (3.1), the current W5 (s) is decomposed as

9
Ua(s) = 3 Wiu(s), Viu(s) € C°((G - THE)/K; VY.
k=0
Each component function ¥} (s) is also meromorphic in s € C and the Poincaré dual
form U} is a sum of forms U}, = 2Res,=,, U5 .(s) (0 < & < ¢), each of which is also
harmonic. Moreover ‘I’}},q is primitive, i.e., A\Ilglq =0.

r _ vol(Cx\H/K
Vo = J_é_LTMvol(? G/KH 0(‘)”'

About the intermediate forms ¥}, (1 < £ < ¢ — 1), we have the vanishing theorem.

Proposition 24. We have

In particular, W, # 0.

Proposition 25. For 0 < x < g, we have ¥}, =0.

The remaining is the primitive form \Ilg,q, which can be regarded as the essential in-
gredient of the Poincaré dual form.

The secondary spherical function ¢, = (qu) has a simple pole at s = pg ;= p+¢g—1
with ¥ g = Ress=p %, such that

(8.1) pr(a:) = 2pmtta) - (cosht) =% 09, (V¢ > 0).

T(po+1)T(g-1)
The (g, g)-current vy is a harmonic form belonging to the space A%¢(G/K)H. The co-

efficient functions g — (¥ (g)[v) (v € V{?) belong to L*(H\G) and together with their
right U(gc) translates span an irreducible (g¢, K)-submodule 7, of L2(H\G).

Proposition 26. Our global construction \IIII;M , if non-zero, yields an automorphic real-
ization of m, in the sapce of L*-automorphic forms L*(I'\G).

Remark 1: The representation 7, satisfies H#(gc, K; C) = C.
Remark 2: It is a subtle and difficult arithmetic problem to find whether the primitive
form \112, , for a given I' is zero or not. Analogous non-vanishing statements of the Poincaré

series constructed from an ordinary spherical function with regular spectral parameter (for
small T') are found in Oshima [6] and Tong-Wang [10].

9. REMARKS AND FURTHER OBSERVATIONS

o Though our global results after Proposition 20 in this paper are stated under the
assumption that I'\G is compact, the same statements (except a proper modifica-
tion of the functional equation of Q‘(,fr)) should be true for arithmetic non-uniform
lattices I'. But the situation is technically more sophisticated.

o Finally, we should say a few words about existing works related to the theme of
this article.

When the complex codimension of H/H N K in G/K is one, the modular con-
struction of Green current of C% is obtained in [5] by the same way as explained
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here. If G/K and H/H N K are type IV symmetric domains and if T' is a dis-
criminant group of some rational quadratic form, Bruiner [1] constructed a Green
function for a ‘Heegner divisor’ (which is a member of the divisor class group of
I'\G/K expressed as a linear combination of C’P for various H;’s defined over Q)
by a regulanzed theta lifting’. It turns out the Green function in [1] is built from
the one in [5] according to the formation of the relevant Heegner divisor.

Based on a work of Oshima-Matsuki, Tong-Wang [10] provides a fairly general
and simple method to construct an automorphic realization of a discrete series
of a symmetric space, which yields a modular construction of the Poincaré dual
form associated with a cohomology class defined by the symmetric subgroup in
a cohomology group with coefficients in a local system. For analytical reasons,
they need to assume that the coefficient system should be sufficiently regular.
This requirement is related to the L!-condition of the discrete series, which is
indispensable to guarantee the convergence of the Poincaré series they use. This is
a serious technical limitation to obtain the Poincaré dual forms in the cohomology
with constant coefficient.

To be more concrete, let us pick the representation 7, defined above as an
example. It is easy to see that ke is not integrable; so one can not expect the
convergence of the Poincaré series ‘Y- o \r ¥x(79)’ used in [10]. Though the
secondary spherical function 1, has a singularity, it is good enough to assure the
convergence of the Poincaré series W,y(g) = Y. er\r ¥s(79) for large Re(s). We
can recover the object ‘Y- . \r Yr(vg)’ properly by taking the residue at s =
p+ q—1 after the meromorphic continuation of the series ¥,. This regularization
procedure reminds us of the ‘Hecke’s trick’ which is used to obtain an Eisenstein
series with low weight in the classical theory of elliptic modular forms ([11]). In this
analogy, the construction of the automorphic Green current Gf; can be regarded
as a kind of the second limit formula of Kronecker ([11]).

e The paper [3] is also related to this paper. There we also considered modular
symbols derived from the injection H <+ G for a symmetric pair (G, H). But in
this case the image of the locally symmetric space associated with the subgroup
H is totally real, in contrast that here in this paper we consider the holomorphic
embedding. Actually we have some evidence to believe that the modular symbols
considered in [3] have the extremal Hodge components (i.e., (m,0)-type compo-
nents), but our cycles are algebraic hence have only (p, p)-type Hodge components.
In this sense, the two results in this paper and [3] might be the two edges of some
more general phenomena.

o Because of the lack of time and energy we could not handle the cases of symmetric
pairs (G, H) = (SO(2,2m), SU(1,m)). Since the representations of the maximal
compact subgroup K & SO(2m) of G are a bit more complicated to describe than
the case of U(p) x U(q), one might be asked more in computation. But we believe
that basically the same scenario as in this paper is valid for this case too.

REFERENCES

[1] Bruinier, J., Borcherds products on O(2,1) and Chern classes of Heegner divisors, Lecture Notes in
Math. 1780, Springer, 2002.



THE SECONDARY SPHERICAL FUNCTIONS AND GREEN CURRENTS ASSOCIATED WITH CERTAIN SYMMETRIC PAIRS 135

- [2] Gillet, H., Soulé, C., Arithmetic intersection theory, Publication of LH.E.S. 72 (1990), 94-174.

[3] Kobayashi, T., and Oda, T., A vanishing theorem for modular symbols on locally symmetric spaces,
Comm. Math. Helvetici 73, (1998), 45-70.

[4] Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, J.-P. Labesse and J.
Schwermer, eds.), Lecture Notes in Math., 1447, Springer, Berlin, 1990.

[6] Oda, T., Tsuzuki, M., Automorphic Green functions associated with the secondary spherical functions,
Publ. RIMS, Kyoto Univ. 39 (2003), 451-533.

[6] Oshima, T., Asymptotic behavior of Flensted-Jensen’s spherical trace functions with respect to spectral
parameters, Algebraic analysis, geometry and number theory (Baltimore, MD 1988), 313-323, Johns
Hopkins Univ. Press, 1989.

[7] Oshima, T., Sekiguchi, J., The restricted root system of a semisimple symmetric pair, Advanced
Studies in Pure Math. 4 (1984), 433-497.

[8] Satake, L., Algebraic structures of symmetric domains, Publ. of the Math. Soc. of Japan 14, Iwanami
Shoten, Publishers and Princeton Univ. Press, 1980

[9] Tsuzuki, M., Green currents for modular cycles in arithmetic quotients of complex hyperballs, Pacific
J. Math., 227 (2006), 311-359.

[10] Tong, Y. L., Wang, S. P., Geometric realization of discrete series for semisimple symmetric spaces,
Invent. Math. 96 (1989), 425-458.

[11] Weil, A., Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und
ihrer Grenzgebiete 88, Springer-Verlag, 1976.

Takayuki ODA

Department of Mathematical Sciences

The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo, 153-8914, Japan
Email: takayuki@ms.u-tokyo.ac.jp

Masao TSUZUKI

Department of Mathematics

Sophia University, Kioi-cho 7-1 Chiyoda-ku Tokyo, 102-8554, Japan
E-mail : tsuzukiQmm.sophia.ac.jp






