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Compactification of the symplectic group
via generalized symplectic isomorphisms

By

Takeshi ABE*

§1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field &
of characteristic zero. We have a left (G'x G)-action on G defined as (g1, g2)-2 1= g12g5 *.

A (G x G)-equivariant embedding G — X is said to be regular (cf. [BDP], [Br,
§1.4]) if the following conditions are satisfied:

(i) X is smooth and the complement X \ G is a normal crossing divisor Dy U ---U D,,.
(ii) Each D; is smooth.
(iii) Every (G x G)-orbit closure in X is a certain intersection of Dy, ..., D,.

(iv) For every point z € X, the normal space T, X/T,(Gx) contains a dense orbit of the
isotropy group G.

If G — X is a (G xG)-equivariant regular compactification of G, then a sum »_ a; D;
of the boundary divisors is (G x G)-stable. Let G — G be a finite covering. If the line
bundle O(" a; ;) has a (G x G)-linearization, then the vector space H (X, O(>" a;D;))
of global sections of O(3" a; D;) becomes a (G x G)-module. Kato [Ka] and Tchoudjem
[T] described the decomposition of this (G x G)-module into irreducible (G x G)-modules.

Kausz constructed a regular compactification KGL,, of the general linear group
GL, in [Kauszl]. In [Kausz2] he described the structure of the (GL,, x GL,)-modules
of global sections of line bundles associated to boundary divisors. Although he dealt
with only the very special regular compactification KGL,, a good thing is that his
description of the (GL,, x GL,)-modules is canonical. More precisely, he constructed

Received August 6, 2007. Revised March 17, 2008, April 21, 2008.
2000 Mathematics Subject Classification(s): 14L35,14D20
Grant-in-Aid for Young Scientists (B) 20740009

*RIMS, Kyoto University, Kyoto 606-8502, Japan.
email:abeken@kurims.kyoto-u.ac. jp

(© 2008 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
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a canonical isomorphism between the (GL,, x GL,)-modules of global sections of line
bundles associated to boundary divisors on KGL,, and the (GL, x GL,)-modules of
global sections of line bundles on a product of flag varieties. The fact that the decompo-
sition is canonical is important when we apply the compactification of G to the study of
the moduli of G-bundles. In fact, Kausz used the canonical decomposition of the above
(GL,, x GL,)-modules, and proved the factorization theorem ([Kausz3]) of generalized
theta functions on the moduli stack of vector bundles on a curve. (The factorization
theorem has also been obtained by Narasimhan-Ramadas [N-Rd] and Sun [S1], [S2].)

The purpose of this paper is to establish an analogue of the Kausz’s results to the
symplectic group.

If V is a finite dimensional vector space, the general linear group GL(V) is re-
garded as a moduli space of isomorphisms V' — V. In [Kauszl], Kausz introduced a
generalized isomorphism. The compactification KGL(V') of GL(V') is the moduli space
of generalized isomorphisms from V to V.

Now suppose that V' is endowed with a non-degenerate alternate bilinear form.
The symplectic group Sp(V) is regarded as a moduli space of symplectic isomorphisms
V — V. As a symplectic analogue, we introduce a generalized symplectic isomorphism
(Definition 3.1). The regular compactification K Sp(V) of Sp(V) is defined to be the
moduli space of generalized symplectic isomorphisms from V to V. At first glance, it
is not clear whether or not KSp(V) is a closed subvariety of KGL(V'), but a posteriori
we know that it is (Corollary 3.16).

If dim V' = 2r, then the complement KSp(V')\ Sp(V) is a union of smooth divisors
Dy, ..., D,_; intersecting transversely.

In Section 5 we describe the strata N;e;D; for I C {0,...,r—1}. In particular, we
shall obtain a natural isomorphism

Don---ND,_1 ~ SpFI x SpFl,

where SpF1 is a symplectic flag variety parametrizing filtrations V"> Fy(V) D --- D
F.(V) D F,41(V) = 0 such that [F;(V) is isotropic of dimension r + 1 — i.

In Section 6 we study Sp(V') x Sp(V)-modules H(KSp(V), O(>_ a;D;)). The argu-
ment here is the same as [Kausz2]. We shall prove, for example, that there is a natural
isomorphism

r

Z_: n(r — z)D,))

7

HY (KSp(V), O(

fJ- ‘ X4 f,J_ ‘ ®q;
~ @  H|SpFLeL, fji ® HY | SpFl, @f_, [ =LH2=¢ ,

. FL o
n>q1>--->¢,>0 rl—i r+l—i

where V ® Ogpr1 O F1 D --- D F, D Frq1 = 0 is the universal filtration.
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In Section 7 we shall apply the results about KSp(V) to the study of symplec-
tic bundles on a curve. We shall prove the factorization theorem (Theorem 7.3) of
generalized theta functions on the moduli stack of symplectic bundles.

The reason why we develop a symplectic analogue of the Kausz’s results is that it
has an application to the study of the strange duality for symplectic bundles. In Section
8 we prove a proposition which will be used in a forthcoming paper [A].

Notation and Convention. e We denote by Js the matrix

(%)

e For a 2r x 2r matrix A = (a;)1<i,j<2r, we denote by Ay, the 2 X 2 minor

a21—1,2m—1 421—1,2m
az1,2m—1 Azl 2m
e The 2r x 2r matrix Js, is defined by

JQ ifl=m

Jr m] =
(rdum =1 it m.

e For a commutative ring R we denote by Sp,,.(R) the subgroup
{X € Matarx2,(R) | "X Jor X = Joy }
of the group Mato,xo.(R) of 2r X 2r matrices with entries in R.
e The subgroup U3, (R) of Sp,,.(R) consists of such X € Spy,.(R) that X, is of
the form (3 ;) if l <m, ((1) :) if | = m, and (8 *> if I > m. The subgroup U,, (R)

%
of Sps,.(R) is defined as X € Sp,,.(R) is in U,,.(R) iff X € U, (R).

e Let S be a scheme and * be an object (such as a sheaf, a scheme, a morphism
etc.) over S. For an S-scheme T, we denote by (x)r or xp the base-change of % by
T—S.

o Let f: & — F be a morphism of sheaves on a scheme. If £ is a line bundle,
the morphism id ® f : L& E — L ® F is often denoted by f in this paper. When we
make use of this abuse of notation, we shall make clear the source and the target of the
morphism so that no confusion arises.

e For a product X XY X Z x ..., prx denotes the projection to X.

§2. Review on Kausz’s generalized isomorphisms

Here we recall Kausz’s result [Kauszl] on the compactification of the general linear
group. Most part of this section is copied from [Kauszl].



4 TAKESHI ABE

Definition 2.1. Let £ and F be locally free sheaves on a scheme S. A bf-
morphism from £ to F is a tuple

# b
g= (M,u,ehf,M@@N—f,r),

where M is a line bundle on S, and pu is a global section of M such that the following
holds:

1. The composed morphism ¢ o ¢’ and ¢” o ¢! are both induced by the morphism
w:Og — M.

2. For every point x € S with p(z) = 0, the complex

Elo = Fla = MRE)|e = M F)|s
is exact and the rank of the morphism &£|, — F|, is r.

Definition 2.2. Let £ and F be locally free sheaves of rank n on a scheme S.
A generalized isomorphism from £ to F is a tuple

P :(‘cz;)"LaMmu?ngz - M;® Ei+1,6'i — g’i-l-la
Firi = Fi,Li®oF1«—F (0<i<n—1),h:E — Fp),

where £ = &y,&1,...,&n, Fn, ..., F1,Fo = F are locally free sheaves of rank n, and the
tuples

(M, iy Eivr — Eiy M @ Eiq +— &E;,1)
(L, Niy Figr — Fi, Li @ Fipr — Fi, i)

are bf-morphisms of rank 7 for 0 < ¢ < n — 1, such that for each x € S the following
holds:
1. If pi(x) =0 and (f,g) is one of the following two pairs of morphisms:

Ele L (812My) @ &) » L ((®12gM;) ® Eit1) |,
gz|:c i i—|-1|ac i gn|aca

then Im(g o f) = Img. Likewise, if A\;(z) = 0 and (f, g) is one of the following two pairs
of morphisms:

~7:H|:c L i—i—lla; i fﬂm,
((®5=0L5) ® Fir1) s < ((®§;%)£j) ® Fi) |s L Fla,

then Im(g o f) = Img.
2. We have (h|,) (Ker(&E,|x — &olx)) N Ker(Fle — Folz) = {0}.



COMPACTIFICATION OF THE SYMPLECTIC GROUP VIA GENERALIZED SYMPLECTIC ISOMORPHISMS 5

Definition 2.3. A quasi-equivalence between two generalized isomorphisms
® =(Li, Ais My, 13, & — M ® Ei1, & — i,
Fin—= Fi,Li®@ Fin—Fi (0<i<n—1),h:E = Fp),
O = (L3, Xy M 1, & = MR ELy, & — €y
Fiqan—=FLLLQF ,—F (0<i<n—1),h:& = F))
from € to F consists of isomorphisms £; ~ L) and M; ~ M/ for 0 <i < n —1, and
isomorphisms &; ~ &/ and F; ~ F] for 0 < i < n, such that all the obvious diagrams

are commutative. A quasi-equivalence between ® and ®’ is called an equivalence if the
isomorphisms & ~ &) and Fy ~ F are in fact the identity on £ and F respectively.

Remark 2.4. In [Kauszl, Page 579], Kausz proved that there is at most one
equivalence between ® an @’.

Let S be a scheme, €& and F locally free sheaves on S. We denote by KGL(E, F)
the functor from the category of S-schemes to the category of sets that associates to an
S-scheme T the set of equivalence classes of generalized isomorphisms from & to Fr.
Then [Kauszl, Theorem 5.5] says:

Theorem 2.5.  The functor KGL(E,F) is represented by a scheme KGL(E,F)
which is smooth and projective over S.

Kausz also considered a compactification of PGL,,.

Definition 2.6. Let S be a scheme and &, F locally free Og-modules of rank n.
A complete collineation from £ to F is a tuple

U= (L ;Fiy1 = Fi, Li@Fipn —F; (0<i<n—1),)
where &€ = F,,, Fri_1,...,F1,Fo = F are locally free Og-modules of rank n, the tuples
(L, iy Fig1 — Fi, Li @ Fiqy — Fii)

are bf-morphisms of rank ¢ for 0 <+ <n—1 and Ay = 0, such that for each point x € S
and index i € {0,...,n — 1} with the property that A\;(z) = 0, the following holds:
If (f,g) is one of the following two pairs of morphisms:

fn|x L i+1|x i> ]:z'|a:,
(8 _oL:) @ Firn) o & (@120L:) © F) o <& Folas

then Im(g o f) = Im(g).

Two complete collineations ¥ and @' from £ to F are called equivalent if there are

/

isomorphisms £; ~ L, F; ~ F/ such that all the obvious diagrams commute and such

that F,, ~ F/ and Fy ~ F{ are the identity on £ and F respectively.
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Let S be a scheme, and &, F locally free Og-modules of rank n. We denote
by PGI(E,F) the functor from the category of S-schemes to the category of sets that
associates to an S-scheme T the set of equivalence classes of complete collineations from
Er to Fr. Then [Kauszl, Corollary 8.2] says:

Theorem 2.7.  The functor PGI(E,F) is represented by a scheme PGI(E,F)
which is smooth and projective over S.

In fact, PGI(E,F) is a closed subscheme of KGL(E, F).
The following lemma is an easy consequence of [Kauszl, Lemma 6.1 and Proposition
6.2].

Lemma 2.8. Let A, B be vector bundles of rank m, and let
g 9
(L AL B Lo AL B

be a bf-morphism of rank 1.
(1) There is a natural isomorphism

L£2Mm=1) & det A ~ det B.

(2) If A\ =0, then Im(A — B) = Ker(B — L®A) and Ker(A — B) =Im(LY®B —
A), and they are subbundles of rank i and of rank m — i of B and A respectively.

§ 3. generalized symplectic isomorphism

As a symplectic analogue of generalized isomorphisms, we first introduce general-
ized symplectic isomorphisms (Definition 3.1). Then we shall prove that the moduli
space of generalized symplectic isomorphisms gives a compactification of the symplectic

group.
Definition 3.1. Let S be a scheme, £ and F locally free Og-modules of rank
2r, P a line bundle on S, and ¢ : E ® & — P and 7r : F ® F — P non-degenerate

alternate bilinear forms.

A generalized symplectic isomorphism from & to F is a tuple
D =(Mi, 15, E — M @ Ei1,E — Eiqa,
fi+1 — fz,MZ ®fi+1 <—fz (0 S 7 S T — 1),h . 57» l> f,«),

where £ = &y, &1, ..., &y Fry oo, F1, Fo = F are locally free Og-modules of rank 2r and
the tuples

(3.1)

e e’ )
(M, i, i1 — Ei, My @ Eipq «— &, +1)
Fa ’ .
and (Mi,/ii,fi+1 - Fi,M; ® Fir1 <f— Fi,r+ Z)
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are bf-morphisms of rank r + 4 for 0 < i < r — 1 such that for each x € S the following
holds:
1. If pi(x) =0 and (f,g) is one of the following pairs of morphisms
/ g
Erle = Eivilz = Eiles
J i— i
Ele = ((8726M;) ® &) o, (@)= M;) ® Eit1) la,
-Fr|ac i) i—|-1|:c i> fz|ma
f'x L ((®;;%)MJ) ®fz’) |a: L ((®§'=OMJ') ®fi+l) |337
then Im(g o f) = Im(g).

2. (h|z) (Ker (&:]x — &olz)) N Ker (Fprle — Folz) = {0}.
3. The following diagram is commutative:

{(®;€;(%M;/ X 50) xé'k gr} &® {(@7;;3My X .7:0) X}‘k .Fr}

o/ N\ f
(3.2) (REZg M) ® &) ® & Fo ® (REZg MY ® Fo)
TN\ /0

k—1
(®jzoM]) @ P,
where v and § are induced by 7¢ and 7z respectively, and

azqi@(ego-uoeg_loh_lopf)

B=(ffo--off johopf)®dl,
where p‘g, q,‘f, pf and q,“f are defined by

£

(R My 2&) xe & 2 &

(3.3) ol O  lefo--roel,
ei_lo---oe%
and

,
(@M@ F)xn Fr T F

(3.4) a | O | fiooff
Ry MY ® Fo ——— Fi.
fzz—1°"'°f8

3.2.  We can consider the composition of a generalized symplectic morphism
with symplectic isomorphisms as follows. Let o : & — £ and g : F — F be symplectic
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: b b
isomorphisms. Replacing the morphisms &l e—0> Eo, Mo®Ey Lo 50, Mo F; Jo Fo and

f -
Fi f, Fo with & 2, i — &, Mo ® & —— &y, Mo @ Fp —— fooh™” & Fopand F —> pols — Fo
respectively, we obtain another generalized symplectic isomorphism from & to F, which

60 oo™

we denote by fo®oa!

Definition 3.3. Let S be a scheme, £ and F rank 2r locally free Og-modules,
P a line bundle on S, ¢ : E® E — P and 7r : F ® F — P non-degenerate alternate
bilinear forms.

A quasi-equivalence between two generalized symplectic isomorphisms

O =M, i, E — M @ i1, & — Eigas
Fiv1 = Fi, M; @ Fiy1 — F; (0<i§7‘—1),h:5r—>.7‘—1a)

:(./\/lg,,u;,g( - M/' ® gz'/—i—lvgl — 8/4—17
Fia—-F MQF 4 —F (0<i<r—1),h:& — F))

from £ to F consists of isomorphisms M; ~ M} (0 <14 < r — 1) by which u; maps to
ws, and isomorphisms &; ~ &/ and F; ~ F] (0 < i < r) such that & ~ &) and Fy ~ F|
are symplectic and the obvious diagrams are commutative.

A quasi-equivalence between ® and @' is called an equivalence if the isomorphisms
Eo ~ &) and Fy ~ F are in fact the identity on £ and F respectively.

Definition 3.4. Let S be a scheme. Let £ = F = O?QT be given the non-
degenerate alternate bilinear form by the matrix Jo.. To a tuple (mqg,...,my—1) of
regular functions on S, we associate the following generalized symplectic isomorphisms
from & to F:

O(mg,...,mp—1) :=(Mi, i, E — M; @ Eiy1,E — Eiv,

(3.5) N
Fir1 = Fi, Mi @ Fixq — Fi,h: & — F),

where M; = Og, u; = m; for 0 <t <r—1,and & = F;, = OEBQTforOSiSr;the
morphisms & — M; ® ;11 and & « &1 (both are from OF*" to OF?") are described
by the 2r x 2r diagonal matrices

21 times
. e N
(36) dlag(l,mi,l,mi,...,1,mi,mi,...,mi)
and
27 times
——

(3.7) diag(mg, 1,m;, 1,...,m;, 1,1,...,1)
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respectively; the morphisms F;+1 — F; and M; ® F;11 < F; by the matrices

27 times
——
(3.8) diag(1,m;, 1,mg, ..., 1,my, 1,...,1)
and
27 times
(3.9) diag(mg, 1,mg, 1, ... omg, Ly, ... ,my)

respectively; and the isomorphism h : £. — F,. is the identity.

Notation 3.5. We define the subgroup W5, of Matg,.«2, as follows. A matrix
A € Matg, 2, is in Wa, iff there exists a o € &, such that Aj; ;= O if i # o(j), and

Ao e 10 01 —-10 0-1
e@a=\o1) \~10) Lo —1)\10 )"
Definition 3.6. Let S, £ and F as in Definition 3.4. Let

o :(Mznu/z)gz - Mz ®gz'+1,gi — 52'4—17
Fis1 = Fi Mi @ Fig = Fi (0<i<r—1),h:& = F)

be a generalized symplectic isomorphism from & to F. A diagonalization of ® with
respect to (a,3) € Wa, X Wa,. is a tuple (u;,v; (0 < i < r);9; (0 < i < r —1)) of
isomorphisms, where u; : (’)gﬂ” = &L v O?QT = F; and 9 - Og = M, such
that (u;,v; (0 < ¢ < 7);¢; (0 < i < r — 1)) establishes a quasi-equivalence between
(o (o), -, Y (pr—1)) and ® such that a~toug : 02" — 092" = £isin U, (Oy)
and 371 owy: O — O%?" = Fis in U,,.(Og).

Remark 3.7.  Clearly ® has a diagonalization with respect to («, 3) € Wa, x Wa,
if and only if 37! o ® o  has a diagonalization with respect to (id,id) € Wa,. x Wa,..

Proposition 3.8.  Let S be a scheme and let £ = F = (’)gﬂ” be given the non-
degenerate alternate bilinear forms by the matrix Jo,.. Let

D =(My, 113, E — M @ Eiv1, & — Eiv,

(3.10) .
Firl = FiMi@Fi1 —F (0<i<r—1),h:& 5 F),

be a generalized symplectic isomorphism from & to F.

(1) For every point s € S, there exists an open neighborhood U of s such that ®|¢r
has a diagonalization with respect to some (a, 3) € Wa,. X Wa,..

(2) Assume moreover that S = SpecK with K the quotient field of a valuation ring
R. Then the above diagonalization is chosen such that o' oug € UQJ;(R), B lowy €
U,,(R) and 9; *(11;) € R.
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Proof. (1) We proceed by induction on r. Let ey, ..., e, be the standard basis of
E=0F%, and fi,..., £ that of F = OF*".
By the conditions 1 and 2 of Definition 3.1,

gi=flo-ioft ohoe jo---0eh:E — (®5ZgM;) ® Fo
is nonzero at every point of S. We can find (¢, 3) € Wa,. x W, such that
(3.11) o= (0""togod(er),f2) € ®j_5M;

is nowhere vanishing in a neighborhood of s. Replacing S by this neighborhood, we
may assume that ¢ is nowhere vanishing on S. Then the composite of morphisms

b b
e]_10::-0€]

Oe; C 092 &, 02 _ ¢ (@A M;) ® &

induces a line subbundle ®§;%./\/l}/ — &;. By the condition 3 of Definition 3.1, we have
(ela o' lo g/ © ﬁ/(f2)) =0, where

74 ::egO---oeg_loh_lofﬁ_lO---Ofg : Fo— (®§;8Mj) ® &o.
Thus the composite of morphisms

b b
fl_lo...ofo

o, c 08 L, o — p 0 (gl ) @

also induces a line subbundle ®§;%MJV — Fy
For 0 <1 <r, we put

1
Fisfiii=—ffo-off_johoel_jo.ocjoa(er)
(3.12) 01
Eioey = ;e§o~--oe£_1oh_1of,lf_lo---ofgoﬁ’(fg).

Then you can check that & D (®§~_:%./\/l}/) ® Oey; and F; D Of1; @ (®§;BM}/) are
subbundles.

Let v : F = 0%%" — O be given by z — (z,3(f2)), and § : £ = OF?" — O by
g ('(ex), ). Put

(3.13)
51DE:zKer(vofgo~~-off_lohoel;_1o-~~oell’)ﬂKer(éoegmuoelﬁ_l)
.7:1Dﬁ:zKer(yoegou-oeg_loh_lofﬁ_lo---ofll’)ﬂKer('yofgo---oflﬁ_l).

Then & and F; are vector subbundles of & and Fj respectively, and we have the direct

sum decompositions

(3.14) & = (R _GM]) ® Oeyy @&, Fi=0f,@ (@ M))0F
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for 0 <[ < r. Moreover the rank r + [ bf-morphism
My, 1, &1 — E, M@ Ep1 — E,r + 1)

is a direct sum of the bf-morphisms

(Ml, H (o MY) © Oeniir — (B1Z5MY) @ Oey),

(®_6MY) ® Miezi1 — (@4 M) ® Oeqy, 1)

and
(Mlnulagl-i-l - ?laMl ®zl+l HE,T—FZ— 1) .

Likewise (M, i, Fip1 — Fi, M@ Fi11 < Fi,r+1) is a direct sum of the bf-morphisms
(Ml, p,Of1 111 ® (®;~C:O./\/l}/) — Of;; @ (®é~;%./\/l]y),

lel,l—l-l S5 (®§;%)M;/) — Ofl,l S% (®§;:(1)M;/)7 1)

and
(Mlaﬂla?l—kl — F, M @F41 — Fr+1— 1) )

— eﬁ_ — — fﬁ_ — —
Note that & — &,_; and F, =% F,_; are isomorphisms. Let h be the

§—1

composed isomorphism fﬁ_l ohoel 1 :&E-—1 — F,_1. Then the bf-morphisms

(Mivﬂiagi—i—l - Eiagi — M, ®?i+1,r —1- z)

(3.15) o R o
(M, i, Fivr — Fi, Fi = M; @ Fia,r — 1 — 1)

(0 < i < r—2), and the isomorphism h : £,_; — F,_; give an generalized symplectic
isomorphism ® from &, to F.

Since (8/71(f1,0),f2) = 1, we have 3'71(f1 ) =' (1,ca,...,cor—1,C2r). Similarly we
have o/ ~!(e20) =t (d1,1,ds, ..., da;).

Let 0 and 0z be the isomorphisms OF*" — OF*" defined by the matrices

1 dy |—dyds|...|—da dop_y
1
ds | 1

(3.16) ds 1

dor—1 1
do, 1
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and

Co 1 Cqg —C3|...|Cor —C2pr_1

(3.17) Cq 1

C2r—1 1

Copr 1

respectively, where no entry is understood to be zero.

Restricting the symplectic isomorphisms o’ 0 0% : O%2" — O%2" = &, and 3 0 0% :
OP2r — O%2" = Fy to the last (2r — 2) direct summands O%?7~2 C 092" we have
symplectic isomorphisms 09?72 ~ £y and 09?" 2 ~ F,. We regard £, and F
as equal to O®27=2 by these isomorphisms. By induction hypothesis, the generalized
isomorphism ® has a diagonalization with respect to (@, 3) € Wa,_o x Wa._o in a
neighborhood of s. Replacing S by this neighborhood, we may assume that ® has a

diagonalization with respect to (@, 3) € Wa,_o X Wa,._5 on S. So we have isomorphisms

Vi :0s > M;  (0<i<r-—2),
(3.18) T : OF 2 o 0922~ &) Tp: OF7=2 L 0922 ~ F.
up O92r—2 _, gl: T O92r—2 _, ?l (1 <l<r- 1)

such that @ oy € UJ. ,(Og) and B_l 0Ty € Uy, 5(Og). Since o € ®§;3Mj

is nowhere vanishing, there is a unique isomorphism %, _; : Og — M,_; such that

(®j=gws) () =0
For 1 <l <r—1,let

w = ((®Zhy)) @id) 0w :09? © 0% 2 - (RIJM) 0 O) @ & =&

3.19 _
B (e (0126)) 07 :0%2 3 0% 2 - (0@ A MY) 6 T —
and let

u = (@524wy) @id) @ () om,y ) 092 @ 097
— (@M ®O)DE, =&,
(3.20) (®i=oMj @ 0)

Ur i= (id & (®§;é¢;’/)) @ ((ff—l)_l Ovr—l) 092 @ 0922
— (0@ QM) & F, = F,.

Let ug : O%2 @ 09272 = 092" — 092" = &; be the morphism o’ o 0% o (id @ uy) and
let vy : OF2 @ 09272 = 02" — 092" = F be the morphism (3’ o 0z o (id ® vy). We
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have
o/ 0fzo(idddUy) =d o(idea)o{(id@a)  obso(idada)}o(id® (@ ' omuy)),

and we have o := o/ o (id®@) € Wa, and {(id @ @) ! 0 b7 o (id ® @) }o(id® (@ ' owp)) €
U3, (Og). Similarly, if we put 3 := "o (id @ 3), then 37! o vy € U (Og). Therefore
these data give a diagonalization of ® with respect to («, ) € Wa, x W,

(2) Again we proceed by induction on r. We follow closely the argument in (1) and
use the same notation. Let v : K \ {0} — T" be the valuation, where IT" is the valuation
group of R. (By convention v(0) = 4o00.) When V is a one-dimensional K-vector
space, we denote v(z) < v(y) for x,y € V if for one (and all) K -linear isomorphism
t:V — K, we have v(i(z)) < v(i(y)).

In the proof of (1), we can choose (o, ') € Wa, X Wa,. such that

(3.21) v((B togod(er),f)) <v((Fogod(e).f;))

for 1 < 4,7 < 2r. Then for any z € R*" C K" =& andy € R C K*" = F, we
have (g(x),y)/o € R. Therefore we have d;,c; € R in (3.16) and (3.17). By induction
hypothesis, we can choose the diagonalization (3.18) of ® in (1) such that ;' (u;) € R
(0<i<r—2)and @ 'owy € U; ,(R) and B_l o0Tg € U, _4(R).

Therefore arguing as in (1), we obtain a diagonalization of ® with respect to («, 3) €
Wa, x Wa, such that o=t oug € U, (R), B ovg € Uy (R), ¥; (i) € R (0 < i < r—2),
and that

(3.22) £(g(x)) € R* ¢ K*" = Fy

for any z € R?" C K?" = &, where £ is the inverse of the morphism (®§;(1,1pj) ®idg, :
Fo — (R5_gM;) @ Fo.

It remains to show that ¢, (u,—1) € R. If r = 1, then (£ 0 goug)(*(0,1)) =
vo (1(0,10g *(110)?)). Hence we have 1 '(1o) € R by (3.22). If r > 2, then considering
(3.22) for = u(%0,0,1,0,...,0)), we know that 1, (ur_1) € R. O

Proposition 3.9. Let S, £, F and ® as in Proposition 3.8. For a given pair
(a, B) € Wa X Wa,., there exists at most one diagonalization of ® with respect to («, 3).

Proof. This proposition follows from the fact that the construction of the diago-
nalization of ® given in the proof of Proposition 3.8 is the unique way. A rigorous proof
is as follows.

Let eq,...,eq9. be the standard basis of £ = (’)gﬂ”, and fy,...,f5. that of F =
O?QT. By Remark 3.7, we may assume that («,3) = (id,id). Let us be given two
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diagonalization of ® with respect to (id,id):
uz(-m) L O & vgm) 0% S F (0<i <),

W™ O0g - My (0<i<r—1)

with the entries of u(()m) and v(()m)
([ () (m)
Tab Yab ifa<b
0 0
(m)
1
(ut()m)) = Yab ifa="5
[a,b] 0 1
(m)
0
y‘zl:n) ifa>b
\ 0w,
00 if a <b
if a
2 Wy
10
(v(()m)) = (m) ifa=»b
[a,b] Za,'l;n 1
(m)
0
x?:%) if a>b,
Zo 0

(m=1,2).
Both ®;;(1)¢§1) :0g — ®;;(1)Mj and ®§;(1)¢J(.2) :0g — ®§;(1)./\/lj are induced by

fgo--~of£_lohoe';_1o-~~oe(b)

Oe; C @27 ,0e; =& (R_gMy) ® F

= &Ly (@2 My) fi — (59M;) fu,
hence we have ®§;3¢§.1) = ®§;3¢§2).
i Lys wit oyl wiY) (resp. (1,247 28, 2802l 2 )) cor-
responds to the morphism

# # —1 b b
€qo---oe; _ohT Tof’ jo0---0ff

Of, C @\ 0f; = F (®_gM;) ® &

(™t
—

£ = 0%

(resp.

# # b b
0---of,._,ohoe’ _jo---0e)

/
Qe C @?Qloei =&

(®§;3M]) QF
(m)

-1
W) g e,
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1) 2 @1 2 ) (2)

therefore x,; = 2,7, Yo = Yoi s %ol = %ol > wéll) = w((zzl). From this we know that the

restrictions of ugl) and ugz) (resp. vz(l) and vz@)) to the first two factors O%2 c 02"
are equal for 0 < i <7r. Let v: F = 0% — QO and § : £ = 092" — O be given by
x +— (z,f3) and y — (ey,y) respectively.

Let & and F; (0 <i <) be as in (3.13). In particular we have
Eo = ((1,0,...,0), (7 1,y Wl
Fo= (1,2 2t 2y o150, .., 00"

As in the proof of Proposition 3.8, ® induces a generalized symplectic isomorphism ®
from &y to Fo.

Choose

—wy\ [y —w{M\ [y
0 0 0 0
1 0 0 0
0 1 o 0 0 ,
0 0 1
0 0 1

and
0 0 0 0
A || el A || el

1 0 0 0
0 1 0 0 ,
0 0 1
0 0 0 1

as bases of £y and Fy respectively. Then with respect to these bases,
ﬂgm): Og2r_2 — &, Egm): Og2r_2 —F (0<i<r-—1),
¢§m):05—>/\/li 0<i<r-—2)

(m)

i

give diagonalizations of ® (with respect to (id,id)), where @, and @(.m) are the re-
strictions of u7(;m) and v§m) to the last (2r — 2) factors. By induction hypothesis we

have
PV =y (0<i<r-2),

2V = and 3V =7 (0<i<r-1).
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Since the restrictions of 62_1 and ff_l respectively to £, and F, induce isomorphisms
E = &1 and F, = F,_1, the equality ﬂil_)l = ﬂizjland 6,@1 = 6&2_)1 implies that
7t = 7P and vt =5, All together we have go(-l) = goz@) 0<i<r-—1), uz(-l) = uEQ)

(3

and vz(l) = vz@) 0<i<r). O

Remark 3.10. By Proposition 3.9 we know that given two generalized symplec-
tic isomorphisms ®; and ®, from £ to F, there exists at most one equivalence between
®; and ®y. (cf. [Kauszl, the proof of Theorem 5.5 in page 579].)

Proposition 3.11.  Let ® be as in Proposition 3.8. For a point s € S, if ® ®g

k(s), the pull-back of ® to Speck(s), has a diagonalization with respect to (a,3) €
Wayr X Wap, then ® has a diagonalization in a neighborhood of s € S.

Proof. We may assume that (a, 3) = (id,id). Let eq, ..., eq, be the standard basis
of & = O?QT, and f,..., . that of F = Ogﬂ”. Since ® ®g k(s) has a diagonalization
with respect to (id,id), the morphism

fgo---ofﬁ_lohoez_lo---oeg

Oe; C 0% =¢

(®FoM;) @ F
— (M) fi

is nonzero at s, hence nonzero in a neighborhood of s. If we define subbundles & C &
and F; C F; as in the proof of Proposition 3.8, we obtain a generalized symplectic
isomorphism ® from &y to Fy that has a diagonalization with respect to (id,id) at

Speck(s). By induction hypothesis, it has a diagonalization with respect to (id,id) in a
neighborhood of s € S. So ® has a diagonalization with respect to (id,id). O

Definition 3.12. Let S be a scheme, P a line bundle on S, £ and F locally free
Og-modules of rank 2r, £ ® £ — P and F ® F — P non-degenerate alternate bilinear
forms.

The functor KSp(€,F) from the category of S-schemes to the category of sets
is defined to associate to an S-scheme T’ the set of equivalence classes of generalized
symplectic isomorphisms from & to Frp.

Proposition 3.13.  The functor KSp(E,F) is represented by a scheme which is
smooth and of finite presentation over S.

Proof. If we prove the representability locally on S, then by Remark 3.10 we can
glue together locally-constructed universal families. So we may assume that £ = F =
O?QT and the symplectic bilinear forms are given by the matrix Jo,.

For a pair (a, 3) € Wo, x Wha,., we define the subfunctor KSp(&€, F)(@8) ¢ KSp(E, F)
to associate to an S-scheme T' the set of equivalence classes of generalized symplec-
tic isomorphisms from & to Fp that have a diagonalization with respect to (a, ).
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By Proposition 3.11, KSp(E, F)(*#) is an open subfunctor of XSp(E,F). Since Re-
mark 3.10 guarantees that the universal families glue together, it suffices to prove that
KSp(&, F Y(@8) is represented by a smooth scheme of finite presentation over S.

For an S-scheme T, let us given a generalized symplectic isomorphism

S =(Mi, i, & — Mi @ Ei1,E — Eiya,
Fir—=F M Q3F1—F (0<i<r—1),h:& —F,),
from Ep to Fp with its unique diagonalization with respect to (a, 3)
ui:0$2r—>5i, Ui20§‘?2r—>fi (OS’LST)
Vi : Op = M; (0<i<r—1)
with ! oug € U3, (Or) and B~ o vy € U, (Or).

The global sections ;' (11;) (0 < i <r — 1) give rise to a morphism g, : T — A%.
The matrices a™! o ug € U (Or) and B! ovy € U, (Or) give rise to morphisms
g2 : T — Uj.(Os) and g3 : T — U,,.(Og). Conversely, given gy : T — A%, go : T —
U3 (Og) and g3 : T — U, (Os), we can recover an object of KXSp(E, F)(®H) . Therefore
the functor ICSp(é’,]—')(O"ﬁ) is representable by a scheme KSp(S,]-")(O"ﬁ), and we have
an isomorphism
(3.23) KSp(&,F) @B ~ Ul (05) x5 Al x5 Us.(Og).

U

Definition 3.14. We denote by KSp(E,F) the S-scheme that represents the
functor KSp(€, F).

In order to prove the projectivity of K.Sp(&,F), we shall construct a closed immer-
sion of KSp(&,F) to KGL(E, F).

Let S be a scheme, P a line bundle on S, £ and F rank 2r locally free Og-modules,
E®E — P and F®F — P non-degenerate alternate bilinear forms.

We compare the scheme KSp(€,F) and KGL(E,F).

Let

O =(Mi, i, & — M; @ Ei1,E — iy,
Fiir—=FMi@F1«F (0<i<r—1),h:& > F),
be a generalized symplectic isomorphism from &£ to F. If we let
El =&, Fl=F (0<i<r-—1),
E i =E i, F:=Fr (r <i<2r),
Li=M;:=0g, N=p,:=1 (0<i<r-—1),
L= M :=M;_p, No=pi:=pi, (r<i<2r-—1),
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then
Z(L’g,)\;,Mg,ug,é’( - M/' ® gi/—i-lag/ - 5/+17

3.24
( ) ]:{+1—>]-"//3/®.7:/+1<—]:(0<z<2r—1)h 52T—>.7-"§)

is a generalized isomorphism from &£ to F. By this correspondence, we have a natural
transformation

T:KSp(E,F) — KGL(E, F).
Proposition 3.15.  For any S-scheme T, the morphism
KSp(&, F)(T) — KGL(E, F)(T)
of sets is injective.

Proof. Forl=1,2, let

80
l l l e l l ) ¢ l
3O =MD, 0, g0 L 0 g g g0 ZL )

Mg 5 ¢
i
fi()
b

n Y _a ! !
7:z'(+)1 —>7:i()»Mz(')®]:z’(+)1

gl — F),

(3.25) FO o(0<i<r—1),

be a generalized symplectic isomorphisms from £ to Fr. Let s¢; : ME” — M(z)

SF M(l) — /\/l(2) (0 <@ <r—1) be isomorphisms such that sg ;(p; (1 )) = ,uz(2) d
S}‘l(,ugl)) = ,ug ). Let tei: Si(l) — EZ-( ) and tri: .7-"1-(1) — .7-"2-( ) be isomorphisms such

that tg o = idg and tr o = idr, and that

HO) _ 1)

tg,i (@] ei b(l) (2)17

oteit1, (Sgi®@teir1)oe;,  =e " otg,

(326) tr ;0 fiﬁ(l) fﬁ( Vo tritt, (57 @tFir1)o fb(l) fi(Q)b otr; (0<i<r—1)
trro R =13 o ler

Then sg 3, sr,i, tejand tr; (0 <i<r—1,0 <j <r) give an equivalence between o)

and ®?) as generalized isomorphisms. If sgi =57 (0<i<r—1), then they give an

equivalence between ®1) and ®®) as generalized symplectic isomorphisms. Therefore
the proposition follows from the next claim.

Claim. sg;=s7r; (0<i<r-—1).

Proof of Claim. By the commutativity of the diagram (3.2), we have

1) 1)
(1@rr)o(fiV o 0 1 o hWopf™ Y0 gl )

(3.27)
= (1@me)o (g @ (e o - 0efl o hopl "))
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as morphisms from {(®}-g M"Y @ &) x g0 &M} @ {(Q) g MY @ ) x o A}

to ®;:é M;l)v ®P for 1 <k <randl=1,2. Using the equalities in (3.26) we know
that

_ (1) (1)
(@ srs01)o(l@mr)o (Voo i on®opf) 0 gf")

(2) (2)
:(1®7U__)O((fg@)o...off(fl)oh@)opi )®q{: >
o (((®FZgsey @teo) X ter) ® (R gsr; @ tro) X tr,y))

and

(®?;535,j ®1)o(l®mg)o (q;‘i(” ® (eﬁo(z) o0---0 eﬁT(_Q)l o V-1 Opf(l)))
=(1®mg)o (qim ® (eﬁo(2) o0---0 eﬁr(f} o h-1 Opi:@)))
o (((®205e © teo) ¥ ter) ® (€957 @ tr0) X Lrr))

as morphisms from {(®)—y M} @& x . 6y (@25 MY @ g ) x o FHV)
to ®;:é M§2)V ® P. From these equalities, we know that if we denote the morphism

in (3.27) by b; (I =1,2), then we have
(®§;§88,j ®1)oby = (®§;&3}',j ®1)ob;.

Using diagonalization locally, you can check that b, is surjective. So we have ®f;é Sgj =
®f;é sF; (1 <k <r). Hence s¢g j = sz ; (0 <j <r—1). This completes the proof of
the claim. O

This is the end of the proof of Proposition 3.15. O

The natural transformation 7 : KSp(€,F) — KGL(E, F) induces a morphism ¢ :
KSp(€,F) — KGL(E,F) of S-schemes.

Corollary 3.16.  The morphism v is a closed immersion.

Proof. We can check this locally on S, so we may assume that S is an affine
scheme, and that P = Og, £ = F = Og%, and that £E® & — P and F ® F — P are
given by the matrix Jo,.

Let R be a valuation ring over Og, and K the quotient field of R. In the commu-
tative diagram

KSp(E, F)(SpecR) L KGL(E, F)(SpecR)

(3.28) Lo L@

KSp(€, F)(SpecK) 2 KGL(E, F)(SpecK),
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(a) and (c) are injective by Proposition 3.15.

If we are given an element ® of KSp(E, F)(SpecK), we know that it extends over
SpecR by choosing a diagonalization as in (2) of Proposition 3.8. Hence (b) is surjective.
By [Kauszl], KGL(&E,F) is a projective S-scheme, so (d) is bijective by the valuative
criterion. Therefore (b) is also bijective. Then KSp(€,F) is a proper S-scheme by the
valuative criterion. By Proposition 3.15, the morphism ¢ is a closed immersion. O

§4. Relation with the symplectic Grassmannian

Let &, F be locally free sheaves of rank 2r on a scheme S, and 7¢ : E®E — P,
nr : F®F — P be non-degenerate alternate bilinear forms with values in a line bundle
P. We define the non-degenerate alternate bilinear form mggr: (EGF)R(EGF) — P
as ear ((e, )@ (e, 1) i=me(e®e) —mr(f® f'). Let LGr(E @ F) be the symplectic
Grassmannian parametrizing rank 2r isotropic subbundles of £ @ F.

Giving a symplectic isomorphism £ < F is equivalent to giving a rank 2r isotropic
subbundle H C £ @ F which projects isomorphically to both £ and F (Consider the
graph of ). Therefore LGr(E @ F) is also a compactification of Sp(E, F).

The relation of the two compactifications K.Sp(€, F) and LGr(E @ F) is as follows.

Proposition 4.1.  There is a natural morphism g : KSp(€,F) — LGr(E & F).

Proof. Let

q) :(M%/-L’Lag’b - MZ ®g7j_|_]_,gi — 57;_1_1,
Fiv1 = FiMi @ Fipr = F; (0<i<r—1),h:& = Fp)

be the universal generalized symplectic isomorphism from & = Exgp to Fo = Frsp.
Then by the condition 2 of Definition 3.1, the morphism

Bi=(cho--oel i, fio---ofl 1 oh): & — Exsy ® Fisp

is injective, and its image is a subbundle of £xgs, © Firsp. By the condition 3 of
Definition 3.1, this subbundle is isotropic. Hence (&) C Exsp ® Frsp gives us a
morphism KSp(E,F) — LGr(E & F). O

For later use, we prepare some easy lemmas concerning LGr(E & F).

Lemma 4.2. Let0—=U — pri(ERF) — Q — 0 be the universal sequence on
LGr(E @ F). Then there is a natural isomorphism

r—1
(4.1) g det Q ~ priP®" ® ® M?(T_Z).
i=0
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Proof. Let ® be as in the proof of the above proposition. By the construction of

g, we have an isomorphism
g*det Q >~ det(£ @ F)ksp @ (det &) .

By Lemma 2.8 (1), there is a natural isomorphism

r—1
det &, ~det&y ® ® M?(Z_r).

1=0

Combining these isomorphism together with the isomorphism det £ ~ det F ~ P®", we
obtain (4.1). O

Lemma 4.3. Let V and W be vector spaces of dimension 2r over a field K
with non-degenerate alternate forms (—,—)y and (—,—)w. Endow V & W with the
non-degenerate alternate form (—, —)yvew given by ((v,w), (v, w))vew = (v,0")y —
(w,w ).

IfU Cc Ve W is an isotropic subspace of dimension 2r, then we have dimU N (V &
0)=dimUN0®W).

Proof. Easy. O

We denote by t(U) the number dimU N (V @ 0)(= dimU N (0 & W)), and call it
the type of U. We say that U is of type < n if t(U) < n.

Notation 4.4.  We denote by LGr(€ & F)<,, the open subscheme of LG7(E®F)
parametrizing rank 2r isotropic subbundles of type <n of £ & F.

Lemma 4.5. For 0 <n < r, the codimension of LGr(€ ® F)\ LGr(E ® F)<n
in LGr(E © F) is greater than or equal to (n + 1)2.

Proof. Easy dimension counting. O

§5. Geometry of Strata

If & =M, pu, & — M; @Eip1,E — Eiya,
Fiv1 = Fiy M @ Fipr < F; (Oﬁiﬁr—l),h:f,}L]—"r)
with & = Exspe,7) and Fo = Figp(e,7) is the universal family on KSp(€, F), then

vanishing loci of some p;’s are closed subschemes of K.Sp(€, F). In this section we study
the closed subschemes just as Kausz did for KGL(E, F) in [Kauszl, §9].
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When Kausz studied the strata of KGL(E, F), the scheme PGl appeared naturally.
The scheme PGI also appears in our study of strata of KSp(£,F), but in disguise.

Let S be a scheme, P a line bundle on S. Let A, A’, B and B’ be locally free
Og-modules of rank m, and 745 : AQB — P and 7 4 : B& A" — P non-degenerate
pairings.

The S-groupoid Q(m 4 5/, m5,4/) is defined as follows. For an S-scheme T', an object
of Q(map,m5 .4 )(T) is a pair of tuples

af ab
by = (MiaﬂiaAi—i-l — A M QA1 — A (0<i<m-— 1)>
(5.1)

bt be
o5 = (Mz‘,ui,BiH — Bi,M; @By —B; (0<i<m-— 1))

such that ® 4 and ®p are complete collineations from (A')r = A,, to (A)r = Ag and
from (B')r = By, to (B)r = By respectively, and such that the following diagram is
commutative:

{(SA2IMY © Ao) x4, A} @ {(SSZIMY @ Bo) x5, B}

qkA ® pf / \ pk'A ® qE
(5.2) (REZg M ® Ag) ® By, Am ® (RY_ M ® By)
TA,B \ / B, A’

(R M) ® (P)r,
where p;j, qkA, pf and q,f are defined by

A

(®;€;(} M;/ ® AO) XA, Am Ph, Am
(5.3) ait | | afo-oal, ,
®k—1 MV ® AO a?c—lo"'oa(b) Ak
Jj=0 J
and
k—1 Vv pf
(5.4) a5 | Lbloobt |
_ b o---ob”
R}y MY @ By ———— By.

Isomorphisms are defined obviously.
Proposition 5.1.  For any S-scheme T', the functor

(5.5) Q(map, 5.4 )(T) — PGL(A", A)(T)
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which associates ® 4 to an object (P4, Pp) € Q(map, 7B .4 )(T) is an equivalence. In
particular, the functor Q(ma,p, 7B A1) is represented by a scheme which is smooth and
projective over S by Theorem 2.7.

Proof. We shall construct the inverse of the functor (5.5).
Given an object

al b
Py = (Miaﬂz’aAi—i—l —Z>Ai,Mi®Ai+1 & A; (0 <i1<m-— 1))

of PGL(A", A)(T), let By be
{(&" MY @ Ag) x4, Ao} ® @5 IMY @ (P)r (0 <k <m),
and we identify (B)r and (B')y with

{Ao x40 A}’ @ (P)z(= Ay, © (P)r = (AY @ P)r)

and
\
m—1 m—1
QR M) ® Ao | x4, Am p @ Q) M) @ (P)r(= Ay ® (P)r = (A’ ® P)r)
Jj=0 Jj=0

respectively by mp 4/ and m4 5. We have natural morphisms

(RFZGM @ Ag) x4, Am ~ {(@?ZOMJV ® Ao) Xmyea, (MY ® Am)} ® My,

(idxpp)®id {(®§=0M}/ ® AO) X A1 Am} ® M

and

pg xid
_—

(®§=0M}/ & Ao) X Aptt Am (®;€;3M;/ & Ao) X A, Am.-

The duals of these morphisms induce
Bk—l—l — Bk and Bk - Mk X Bk—l—l-

To complete the proof, we need to verify that
e d = (M, us, Bir1 — Biy M;®@B;1 (0 <i < m—1))isanobject of PGL(B', B)(T),
e The diagram (5.2) commutes for ($ 4, Pp),
e This construction gives the inverse of (5.5).

Here we shall just check that if a pair of tuples
4 b
Dy = (Mi,ui,AiH 2L A M, ® Ait1 S A 0<i<m-— 1)>

(5.6) u b
Op = (Mi,uz’,BiH %, Bi, M; ® Bt i Bi (0<i<m-— 1))
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is an object of Q(ma B/, ™5 4/)(T), then there is an isomorphism
(5.7) ~ {(@FIMY ® Ao) X, A} @ @ZIMY @ (P)r,

leaving other verification to the reader.
Let (3 : (®;:& ./\/ljv ® Bo> X By, — By be the morphism which sends (yo,ym) €

(®'2d M © Bo) x By to (B, 0+ o ) (yo) + (b o 0 b, ) (um) € By. By the
definition of collineation, (3 is surjective. We define a bilinear form

(5.8) {( Mv ®Ao) X A, m} ® By — ® Mv ® (P)r

by (20, Zm) @ B(Yo,Ym) — Ta5 (T0,Ym) + T84 (Yo, Tm). Note that if B(yo,ym) = 0,
then (yo, —ym) € (®§:§ M ® Bo) X By, B 80 we have 7 4 5/ (0, Ym) = —75,4 (Y0, Tm)
by the commutativity of (5.2). Therefore (5.8) is well-defined. Since w4 5 and 7p4’ are

non-degenerate, (5.8) is also non-degenerate. Hence we have the isomorphism (5.7). O
Definition 5.2. Let

(5.9) O =(M;, 15, E — M; ® Ei1, & — Eiya, .

Firi = Fi, Mi@Fp1«—F, (0<i<r—1),h:& — F),

be the universal generalized symplectic isomorphism from & = (€)kspe,7) to Fo =
(F)kspe,r)- Forasubset I C {0,...,r—1}, we denote by X the subscheme ;. {p: =
0} C KSp(&,F).

Definition 5.3. For a subset [ = {i; <--- <14;} C {0,...,r — 1}, let SpFl;(E)
be the functor from the category of S-schemes to the category of sets that associates to
an S-scheme T the set of filtrations

0cC Fl(gT) C Fl—l(gT) c---C Fl(gT) c&r

of isotropic subbundles with rank IF;(E7) = r — ;. We understand that F;11(Ep) = 0.
We denote by SpF1;(£) the S-scheme that represents SpFI(E).

Put SpFl; := SpF1;() xs SPF1;(F), € = (E)spr1,, F := (F)spr, and P :=
(P)SpFlI~ Let
0CF/(E)C - CFi(E) CE,
0CF(F)C--CF(F)CF

be the pull-backs to SpF1; of the universal filtrations of £ and F on SpFl;(€) and
SpF1; (F) respectively. The non-degenerate alternate bilinear forms 7¢ : E® E — P and

(5.10)

nr : F ®F — P induce nondegenerate alternate bilinear forms

Te :F1(E)/F1(E) @ F1(E)Y /F1(E) — P,
7r By (F)E /F(F) @ Fy(F)H [FL(F) — P
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and non-degenerate bilinear forms

Fei Fin1(E)FJF{(E): @ Fs(E)/Fisr(E) — P,
Tri i Bt (F) /Ry F): @ F(F) [Figr(F) =P (1<i<l).

Then the stratum X7 is described as follows. This is a symplectic analogue of [Kauszl,
Themorem 9.3]:

Proposition 5.4.  There is an isomorphism
(5.11) X1 — KSp(F1(E)" /F1(E), F1(F)*"/F1(F)) xspri, Q
of S-schemes, where Q = Q(Tg 1,Tr 1) XspFl, - XspFl, QTe 1, TF1)-

Proof. For an S-scheme T', we shall give a bijective correspondence between the
sets of T-valued points of both sides of (5.11). For simplicity of notation we assume
that T=S.

An S-valued point of X; is a generalized symplectic isomorphism &£ to F

b et
& =(M;, 1, & LM ® Eiv1,E — Eita,

ft

(5.12) b
Fiv1 — Fi, M; @ Fipa L]:i 0<i<r—1),h:& 5 F),

such that p; = 0 for ¢ € I. For i < 7, we put

b b J—1
e;_j0--0€;

51.[j] = Ker(§; ———— ®Mk ® &j),

k=i
12 yoof? I
fzm = Ker(F; == - ®Mk ® Fj),
k=i
i 6?0'“062_1 i ff f]ﬁ—1
el = Ker(g &), Fil=Ker(F, F).
For i < k < 7, we put
5.13) £ gl0 1 £ and #0101 . £ 2,

Claim 5.4.1. €&, D &[i’“] and F,. D ]:T[ik] are subbundles of rank r—i (1 < k <1).

i
Proof of Claim 5.4.1. By Lemma 2.8 (2), Im(&;, +1 S, Ei,) is a rank r 4 iy

subbundle of &;, . By the condition 1 of Definition 3.1,

f oe0et i
€, 00y e’

gr E— Im(SikH i) g’bk)
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[ik]

is surjective. Hence & "' is a subbundle of rank r — iz of &,. O

Put & O (F) ks = (el o o€l | o A" )(FE) and 7 o () cps = (flo

-0 ff_l h)(&E T[]) By the condition 2 of Definition 3.1, (]:,L ])<0> and (5[ ]) 0> are

subbundles of rank r — i of £ and F respectively. By the same reasoning in the proof

of Claim 5.4.1, 5&”" 1 and ]-'([)ik 1 are subbundles of rank r +1y of £ and F respectively.
So we obtained filtrations

EDE oo T S () coe 5 0 (i) <os D0,

F D F[Z’H] - D .7:[“+1] (5r[i1])<0> DD (57[~il])<0> D 0.

Claim 5.4.2. (F*hZ_ =gl ™ and DL = 7t (1 <k <.

Proof of Claim 5.4.2. We shall check that the morphism
(@ My 0 €5Y) @ (W) <n — @iy M)

induced by m¢ is zero. Take sections z € ®Zk ! M ® E(Eikﬂ] and (eg o---0 ef,_l o

ﬂo..oﬁ

Ay € (FE¥) o5 with o' € FI*1. Since &,
find o’ € &, such that (z,2') € (@;’;_11 /\/ljv ®50) xg,;, Er. Since Yy € fr[ik], we have
0,vy') € (®;’;_11 M ® .7-"0> x 7, Fr. By the commutativity of the diagram 3.2, we have
re(x® (el o0l oh™1(y)) = mr(a/ ®0) = 0. Therefore ( T[ik])é(» D Eéikﬂ]. Both

( T[ik])i(b and Séikﬂ] are subbundles of rank r + i, hence ( ,[,i’“])é0> = S(Eikﬂ]. O

—1 g[ik+1]

is surjective, we can

In particular £ D (f,[ik])<0> and F D (é}[ik])<o> are isotropic subbundles, therefore
the filtrations

ED (FM)cos D+ D (Flih)os D0,

(5.14) , .
FD (5r[“])<0> DD (57[»“])<0> 20

determine an S-valued point of SpF1;, and induce non-degenerate pairings

TE K

515 e 5([)ik+1+1]/80[ik+1] ® (f,'[’ilc])<0>/(f1[’ik+l])<0> — P,
mra s Fo T FS @ (€ <o /(7 o5 — P
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The bf-morphisms of rank j + i3
(Mﬂ" i ESTFI) s — €T (F)
M; ® z‘,'[“Jrl]/(}",LZ Nejiis < gj[i1+1]/(~7:1£i1])<j>>,
(Maa Ja]:g[:jl]/(gyl])<j+l> - ]'-j['i1+1]/(57[»i1])<j>7
M; @ FI/E) s f[“+”/<e#1]><j>>

(0 < j <1y —1) together with the isomorphism

£ (FI ) s = 0/ (€8 + n7NFD)) = By (BEE) + FI)
~ P E ) <

r

determine an S-valued point of KSp(5(gi1+1]/(f,Lil])<o>,féi1+l]/(5,[~i1])<o>). For i <
Jj <ig+1 (1 <k <land i =r by convention), we can see that the induced tuples

(Mg L3 gl st g glisfienstl _ gl

(5.16)

(Mj7uj,fj[l_’lf]1[lk+1+1] _ f}ik][ik+1+1]7M f‘y[z+k]1[1k+1+l] fj[lk][lk+1+1])

are bf-morphisms of rank j — ;. The isomorphisms
gl e My @@ MY @ My~ gl
(F Ty o MY @ -0 MY @ MY o FiE]

induce bf-morphisms of rank 0
( ik “ oM, 0 51;’:]_[1%4-1-!-1] g([)ik-i-l—i-l]/g(gik_i_l]’

M ®5z,zl:-[12k+1+1] - go[lk+1+1 /5[%4—1]),
(5.17)
( ©  Ma, 0, I’il:]_[fk-{-l"‘l] _ F£Zk+1+1]/f([)1k+l]’

M ’tki’]_[lzk+1+1] - f([)ik+1+1]/Féik+l]) )

We also have isomorphisms

(5.18) gttt o glin fefivnn] o (€14) o/ (EF4+) <o
| Froy ot o Fll fFll (fi"k]><o>/(fi"k+ﬂ)<o>.

Th41
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The data (5.16), (5.17) and (5.18) determine an S-valued point of Q(mg 1,7mF,1) XspFI,
-- XspF1, Q(me 1, mr,1). This defines the morphism (5.11).
Now we shall construct the inverse of (5.11). An S-valued point of

KSp(Fy (£)* /F1(€), Fy(F)* /F1(F)) xspr1, O

is data:

e EDF(E)D - DFI(E) D0, FOF(F)D---DIF(F) D0, where F;(£) and
IF;(F) are isotropic subbundles of rank r — i; of £ and F respectively,

e a generalized symplectic isomorphism from Fy (€)1 /F; (&) to Fy(F)*L/F1(F)

f b
g; 9;
(M;,M;,gj+1 o gjaM; & gj—i—l — gja

# b

Hjta b, Hj, M @ Hja & Hj h:Giy, — Hiy (0<j <iy— 1)),
e an object of Q(me i, mrx) (1 <k <)
( GG = G My ¢ — g,
HED = 1P My @ B — 1P (i < G <ipr — 1))

with G = Fipa (€)1 /Fu(@)*, 1y = Fra(F)L/Fu(F)E, GiF), = Fu(F)/Fria(F)
and H(k) =Fr(&)/Frt1(E), where

Lh41

ek Fry1(E)1 /Fr(E)" @ Fry1(E)/Fr(E) — P,
Trk  Fro1 (F)HJF(F)F @ Pyt (F)/Fu(F) — P.

Then we put M; := Mj, p; := pj for i ¢ I. For i =iy, M;, := M| ® ®;’“:_01 M
and p;, = 0. For 0 < j <y, put Qj =F1(E)* xg, G; and Hj = I[?;l(]-')L X1, Hj. Then
for 0 < j <14y — 1, we have bf-morphisms of rank r + j

(Mjaujvgﬂ-l =G, M; @G — §j> :
(Mjaﬂjaﬁj—kl — Hj,M; @ Hjpr — ﬁj) :
For 0 < j <1, we define £; and .7-"j so that the diagrams

Go— G, ® Ry Mo Ho—H; ®QL_y M
) o ) o
E—-QR_M®E, F—-Q_iM,®F,

are cocartesian.
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Then for 0 < j <143 — 1, we have bf-morphisms of rank r + j
(M, 1y, &1 — £, M ® 1 < &),
(M g, Fjpr — Fj My @ Fin — Fj).
We define &, = F, by the cartesian diagram:

6; ==]5~—* ézl
! !

Hiy, —Giy ~Hiy.
Then we have
Ker(&, — Gi,) ~ Fy(F) and Ker(F, — H;,) ~ Fy(E).

By this we can consider F1(F) D --- D F)(F) D 0 and Fy(£) D --- DF(E) DO as
filtrations of &£, and F, respectively.

For iy < p < igp1 (1 <k < 1), we define G5, ‘Hy, G, and H, by the cocartesian
diagrams:

G®) = Fy(F)[Frs1(F) = & [Frir (F)

k+1
! !
(k) _ .
HE = Fi(€)/Frsr(E) = Fr/Fria(€)
! !
H; —~ M
gl(kﬂ-l ® ®a i1 Ma = (‘C/'/IFIC(‘C/')L ® ®§;(1)MZ)
| |
(k) . g,
Hihr © @, 1 MY = (F/FL(F) © @1 MY)
! |
Hz(jk) — H;,

and &, and F, by the cocartesian diagrams:

W ge HP S
| | | |
G, =&, M, —=Fp.
Then for i, < p <ig41 — 1, we have bf-morphisms of rank r + p

(Mp7 Hp, gp+1 - gpa Mp ® gp+1 — gp) )

(5.19)
(Mo, iy Fp1 — Fpy Mp @ Fpi1 — Fp) .
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Moreover for 1 < k < [ we have morphisms
o k
gik+1 Zk+1/gzk+1 = gzk+1 /gz(k_,)_l
~ (€/Fr1(€)") ® @25 My,

~ {(E/Fr1(E)) @ @ MY} @ M,
= g§k+1+l ® Mik+1 = Cipp1+1 ® Mik_,_l

and

o (k+1)
gik—',—l"‘]- - gilc+1+]-/gik+1+l lk+1—|—1/gzk+1+l
~ *
- gT/IFk+1( ) gzk_H 'Llc—',-l .

So we have bf-morphism of r + ;41

(Mik+1 s iy = 0, 5ik+1+1 - gik+1 ) Mik-u ® gik+1+1 - gik+1)

(5.20)
(Mik,-+17,uik+1 = Oafik+1+1 - fik—i—l?'/\/lik—',-l ®fik+1+l — Fik-}-l) (1 < k< l)

We also have morphisms
Eiy = €, /Giy = E/F1(E)T @ RIS MY ~ €11 @ M,
o 1
Eiv1 = Ei41/G 1 = 7,1+1/g7,(1—)|—1 ~ & [F1(F) = Gi, — &,
Hence we have bf-morphisms of rank r + i,

(M iy, = 0,841 = &y, My, @Ei 41— &iy),

(5.21)
(Mg, piy = 0, Fiy1 — Fiy, My @ Fiyr — Fiy) -
Then the data (5.19), (5.20), (5.21) and &, = F,. determine an S-valued point of X;. O

We denote by ¢ the inclusion X; < KSp(€, F). We denote the set{0,1,...,r—1}
by [0,7 — 1]. When I = [0, — 1], the isomorphism (5.11) is

(5.22) Xo,r—1) = SpFljg . _q),

and for the universal filtrations (5.10) on SpFly, ,_4j, we have [ = r and rank[F; (&) =
rankIFj(j-v') =r+1-—j.

Notation 5.5.  For tuples (ay,...,a,) and (b,...,b,) of integers, we denote by
O(ay,...,a;;b1,...,b.) the line bundle

é(FHzﬂ( &) /Frai( > ®®( v (F) T /Fri1- j(}")L>®bj

J=1

on SpFl[O,r—l](: SpFl[O,r—l](g) X5 SpFljg 1 (F))-
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We often identify Xjo 1) with SpFly .4 by the isomorphism (5.22).

Lemma 5.6. Let

D =M, 13, E — M ® Eig1,E — Eiga,

5.23
( ) Fir1 > Fi,Mi@F1«—F, (0<i<r—1),h:& — F),

be the universal generalized symplectic isomorphism from & = (&) kspe,7) to Fo =

(F)xspe.7)-
There are natural isomorphisms

LFO,T—I]MO ~ O(e,;e;) ®pr§’Pv7
and for1 <j<r—1

* ~Y - - . - .
tor—1yMi = O(er—j —€r_jrii€r—j —€rjy1)

of line bundles on Xg 1] =~ SpFl[O,r_l], where

Proof. This lemma follows from the correspondence of scheme-valued points of
Xio,r—1) and SpFl[O,r_l] given in Proposition 5.4:
Using the notation of the proof of Proposition 5.4, we have

j n
Fii2(E) A+ Fip1(F)
5.24 QM) @ <—J+ > ~ g I
(5:24) Fi1(&)+ it Fii2(F)

a=0

§6. Global sections

Let S be a scheme over Spec k with k an algebraically closed field of characteristic
zero. Let P be a line bundle on S, and &£, F locally free Og-modules of rank 2r with
non-degenerate alternate bilinear forms g : E Q€ — P and 7nr : FQ F — P.

If g : & — F is a symplectic isomorphism, then composing it with symplectic
isomorphisms v : £ — &£ and § : F — F, we obtain a symplectic isomorphism dogoy =1 :
& — F. This induces a left action on Sp(&, F) of the group S-scheme Sp(&) x g Sp(F).

For a generalized symplectic isomorphism ® from £ to F, we can also consider the
composition Jo® oyt (See Paragraph 3.2). So the action of Sp(€) x 5 Sp(F) extends to

KSp(E,F). Moreover the action naturally lifts to the line bundles ®::_3 MP% (c; € 7).
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The subschemes X; C KSp(E,F) (I C [0,r — 1]) are stable under the action. Thus
vector bundles prg.t} ®::_01 MP% (¢; € Z) on S have an action of Sp(€) xs Sp(F)
(Here we consider left action). The goal of this section is to describe this action.

The arguments in this section are straightforward translation of the corresponding
arguments in [Kausz2] to the symplectic case.

We shall use the following well-known theorem in the sequel.

Theorem 6.1. If S = SpecK with K a field of characteristic zero, then for
—
tuples of integers @ = (ay,...,a,) and b = (by,...,b,),
H (SpFly, 1, O(@; b)) #0
if and only if a1 > --- > a, >0 and by > --- > b, > 0. When it is nonzero, it is an
irreducible Sp(E) xg Sp(F) -module.

Definition 6.2.  For a tuple of integers (co,...,c,—1) € Z%®" and a subset I C
[0,7 — 1], the set A(co,...,c,—1)r is defined to consist of tuples of integers ¢ =
(q1,--.,qr) such that

i)g>->¢ >0,

(ii) Zézlqi <c¢pgifr—1¢1 and Zé:lqi =ciftr—1lel.

For ¢ = (q1,...,q), we denote by | ¢| the sum i1 i

Theorem 6.3. (1) Let (co,...,cr—1) be a tuple of integers. There is a unique di-

rect sum decomposition of the vector bundle prs...} ®:=_01 ME indexed by A(co, . .., cr_1)1
r—1
prsu?@/\/l?ci = @ V%CO”“’C’”*)
=0 GEA(cos.rCro1)1
such that
(a) V%O""’CT_I) is a Sp(E) x g Sp(F)-stable vector subbundle of prg..; ®:=_01 M
(b) For every ¢ € A(co,...,cr—1)1, the direct summand V%CO”"’CT”) is included in
the subbundle prs..; @(Zg M; 7" © pr.; @y ME,

(¢) The composite of Sp(E) x g Sp(F)-equivariant morphisms

r—1 ) r—1 )
rCre * ®> 114 . ®> 114
(H’CO’ o) QPTS*L1®Mz‘ i = Prss<lio,r—1] ®Mz i
i=0 i=0

s an isomorphism.
(2) For two tuples (co,...,cr—1) and (cp, ..., cp_y) with c; > ¢} for 0 < j <r —1, the
subbundle
r—1

& o) & Vo) = prgas Q ME

7EA(067'~~7C;~_1)I ?EA(C(]a“'»C'I‘—l)I 1=0
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is equal to the subbundle pre.t} ®::_g M?Ci C pro«ts ®::_3 MPe

V(_c>0,...,cT_1)
q

The direct sum decomposition € gives the direct sum

TEA(ch,-- 1

decomposition of prgsty ®:=_01 M?Cg satisfying (a), (b), (c) in (1), that is, V(CO’ sCr—1) _

(chs--vChq)
70 Y for ¢ € Ach,...,ch_1)r1-

Before starting the proof of the theorem, we present two corollaries.

Corollary 6.4.  There is a natural isomorphism

pro. @4 MEMTTD @prs* 7;q)oP Tl
7

of Sp(&€) xs Sp(F)-equivariant vector bundles on S, where ¢ = (qu,...,q) varies
through all tuples of integers with n > q1 > --- > q, > 0, and prg on the left is the
projection of KSp(€, F) to S, and prs on the right is the projection of SpFly . _11(€) x5
SpFlg . —17(F) to S.

Proof. Take I = () in the above theorem, and use Lemma 5.6. O

Corollary 6.5. Let 0 — U — prs(E @ F) — Q — 0 be the universal sequence
on LGr(E @ F). Then there is a natural isomorphism

pros(det Q)% @prg* (¢:7) P 7D

of Sp(€) xs Sp(F)-equivariant vector bundles on S, where ¢ = (qu,...,q,) varies
through all tuples of integers with n > q1 > -+ > q, > 0, and prs on the left is the
projection of LGr(EDF) to S, and prg on the right is the projection of SpFljg 1] (E)xg
SpFly,_1y(F) to S.

Proof. Let g: KSp(€,F) — LGr(E®F) be the morphism in Proposition 4.1. We
have the pull-back morphism

g% prs«(det Q)%™ — prg.g*(det Q)"

where prg on the right-hand side is the projection of K.Sp(€, F). To show that ¢* is an
isomorphism, we may assume that S = Speck because locally on S, the bundles &, F,
P and the bilinear forms are pull-backs of those on Speck. Since g is proper birational
and LGr(E © F) is smooth (hence normal), we have g.Ogspe 7) ~ Orarear) by
[EGAIII, Corollaire 4.3.12]. From this and the projection formula, it follows that ¢g* is

an isomorphism.
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By Lemma 4.2, we have a natural isomorphism

r—1
g*(det Q)®n ~ pr‘gp@mr ® ®M;®n(1"—z)‘
1=0

Now the corollary follows from Corollary 6.4. O

Now we move on to the proof of Theorem 6.3. Since locally on S, the bundles &,
F, P and the bilinear forms are pull-backs of those on Spec k, we have only to prove the
theorem for S = Speck. We may assume that & = F = k®?" and the nondegenerate
bilinear forms of £ and F are given by the matrix Ja,.. In the rest of this section, we
write E' and F' instead of £ and F.

Let Tsp, C Spy,.(k) be the subgroup of consisting of diagonal matrices in Spy,.(k).
Put Bg := Uj, Tsp. C Sp(E) = Spy,. (k) and Br := U,, Ts,,  C Sp(F) = Sp,, (k). Let

(6.1) UL x A" x Uy, ~ KSp(E, F)(did)

be the isomorphism (3.23). The restriction of (6.1) to the open subscheme Sp(E, F)(idid) .
KSp(E, F)(did) 0 Sp(E, F) gives an isomorphism

UJ, x (A\{0})" x Uy, ~ Sp(E, F)(did),

which is given by U3, x (A\{0})"xU,,. 3 (2,y,2) — x0Dyoz~ 1 wherey = (yo, ..., yr—1)

and
r—1 r—1 r—2 r—2
Dy - dla’g ((H ?Ji)_l, H Yi, (H yi)_17 H Yiy- - 7y0_17 yO) .
i=0 i=0 i=0 i=0
o ~1 ~1 ST —1 -1
For p = diag(p1,p1 .-, pr,py ), T =diag(r; *,71,...,7,,7) € Tsp, , and ug €
Ug, and up € U,,, we have

1 1

(upT)omoDyoz to(ugp) ' = (upoTozor Ho(roDyop t)o(poztop” Oug,l)

with upoToxor €U, and poz~top~touy' € Uj,. We have 70 Dyop~t = Dy,
with

(62) y/ = diag(Tryoﬂm R aTr—jTr__lj+1yjp7’—jpr__lj+1a ce )

By this we know that K Sp(E, F)(did) ¢ KSp(E, F) is a Bg xBp-stable open subscheme
such that under the isomorphism (6.1), the action of (ugp,up7) on KSp(E, F)(did) jg
expressed by

(6.3) (z,¥,2) — (uppzp b,y ,upTert)

with y’ as in (6.2).
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Corollary 6.6.  ForI C [0,r—1], the scheme X;NKSp(E, F)4id has an open
dense Bg x Bp-orbit.

Proof. Under the isomorphism (6.1), a point (z,y,x) € Uj. x A™ x Uy lies in
X; N KSp(E, F)14id) if and only if y; = 0 for i € I, where y = (yo,...,yr—1). By the
description (6.3) of Bg x Bp-action, the open dense subset

X;NSp(E, F)i4id « X, N KSp(E, F)
is a Bg x Bp-orbit. O

Proposition 6.7.  IfW is a finite dimensional irreducible Sp(E)xSp(F')-module,
then dim Hom(W, HO(X7, 15 @1_g MP4)) < 1.

Proof. 1f Bg x Br acts on nonzero sections s, s2 € H(Xy, 3 ®:=_01 ./\/ll@c") by the
same character, then s;/s5 is a By X Bp-invariant meromorphic function of X;. Since
X7 has an open dense Br x Bp-orbit, s1/s9 is a constant. O

Proposition 6.8. If W C H%(Xy,:; ®:=_(} MP) is an irreducible Sp(E) x
Sp(F)-submodule, then for some 7 € Alco,...,cr 1)1, we have the inclusion W C
HO (X, o ®::_& M? S qj) and the composite of morphisms

r—1 —i r—1 i
W — HO (XI7 L? ®M;® Zj=1 q]) N HO (X[O”r’—l]p LFO’T_l] ®M;® Zj:l ‘b)

i=0 1=0

1$ an 1somorphism.

Proof.  The restriction of the isomorphism (6.1) induces an isomorphism
U x A1 x Uy ~ X7 0 KSp(E, F)(4id) =, xidid)

where A” D ATl = {3, = 0;i € I}.

Since a line bundle on AV is trivial, we can find a nowhere vanishing section
50 € L} ®:=_01 M?Ci|X§id,id). The section sg is unique up to scalar, so Bg x Br acts on
sp as a character. Since Bp X Br acts on a highest weight vector s € W as a character,
it acts on the algebraic function (s| Xgid,id))/ S0 on X}id’id) as a character. Hence we find
that (S|X§id,id))/80 = [Licjo,r—1pr ¥ with oy = 0. For i € I we put a; = 0. Then s is

a global section of ¢} ®::_01 MP%~% which is nowhere vanishing on X}id’id). Thus the

composite of morphisms

r—1 r—1
W — H' (XI» y ®M?ci_ai> — H’ (X[O,r—1]> L0, —1] ®M?ci_ai>

=0 i=0
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is nonzero, hence an isomorphism because both W and H° (X 0,0 —1]5 [0 r—1] ® ./\/l®c1_°“)
are irreducible Sp(F) x Sp(F')-modules.

It remains to show that if we define ¢ = (qi1,...,q,) by the equation ¢; — o; =
Zg;i qj, then ¢ € A(co,...,c,—1)r. Since

r—1
HO (X[O»T_l]’ L>[k0,1"—1] ®Mfi_ai> = HO (SpFl[O,r—1]7 0(7, 7))
=0

is nonzero, (i) of Definition 6.2 is satisfied. Since a; > 0 and a; = 0 for i € I, (ii) of
Definition 6.2 is satisfied. Ll

Proposition 6.9.  For integers q¢1 > --- > qr > 0, the morphism

o 10 (s . @ ) (g @)

=0 1=0

18 surjective.

Z] 1qJ

Proof. Since H° (X[O,, 1 40— 1] R, is an irreducible Sp(F) X

Sp(F)-representation, it suffices to prove that (6.4) is nonzero. It suffices to prove that
for
! times
—
(¢1,---,q-)=(1,...,1,0,...,0) (1<1<r),

(6.4) is nonzero.

Let ~; : (’)KS o(E,F) (’)KSP(E Py = = Ekspe,r) be the inclusion of direct sum of
(24 — 1)-th component for 1 <14 <1, and 0; : Frsp(p,r) = O;‘?%’;)(E’F) OKlSp(E ) the
projection to the direct sum of (2¢ — 1)-th component for 1 < i < [. The determinant

of the morphism of rank [ vector bundles
0 f(j)i e 0 fﬁ—l oho 63—1 O 0 60 ° - OKlSp(E F) (®§:_01Mi)

defines a section o € ®r_1 ./\/l®l By using diagonalization, you can see that oy | g Sp(E, F)lidid)
vanishes along the divisor > "_ i=r—111X{j}, and that oy gives a section of ®r_l M @
Qi Tl g MET “ which is nowhere vanishing on K Sp(E, F) (idid) Qg g E Q. M?l@)

®:;=1"1—l+1 ME" " induces a nonzero section of % [0,r—1] (® ./\/l®l ® ®1 i1 M®r_i) .
This completes the proof of the proposition.

§ 7. Factorization of generalized theta functions

In this section we shall apply the results about the compactification K Sp obtained
in the previous sections to the study of the generalized theta functions on the moduli
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of (parabolic) symplectic bundles on an algebraic curve. More precisely, we shall prove
the so-called factorization theorem of generalized theta functions on the moduli of stack
of symplectic bundles. For ordinary vector bundles, the factorization theorem has been
proved by Narasimhan-Ramadas, Sun and Kausz ([N-Rd], [S1], [S2], [Kausz3]).

Let us start with the definition of the moduli stack of (parabolic) symplectic bun-
dles.

Let C be a connected projective nodal curve over an algebraically closed field k,
PO .. P distinet smooth points of C, and L a line bundle on C. Put P =
(PM, ..., pim),

Definition 7.1. (1) We define the moduli stack M (C, ?; L) as follows. For an
affine k-scheme T', an object of the groupoid M(C, ]_3; L)(T) is the following data:

e a T-flat coherent Ocxpr-module G whose restriction to every geometric fiber
C x Speck(t) (t € T) is a rank 2r torsion-free sheaf,

e a non-degenerate bilinear alternate form G ® G — pr§ L, (Here "non-degenerate”
means that the induced morphism G — Hom/(G,pr§ L) is an isomorphism. )

e for every point PU) (1 < j <m), a filtration

Glpirxr D F1(Glpirxr) D+ D Fr(Glpurxr) D0
of isotropic vector subbundles with rankF;(G|pu) ) =7+ 1 —i.

Isomorphisms of the groupoid M (C, ]_3; L)(T) are defined obviously.

(2) The substack M(C’,]_3>;L) of M(C, P, ;L) is defined such that an object of
M(C’,?;L)(T) described above is in M(C, ]_3> L)(T) if and only if G is locally free.
Clearly if C is smooth, then M(C, ?; L) = M( ]_5, L).

Let
(guniv,guniv ® guniv N p?“éL,
gunzv|P(j)><H(C,]_:;;L) D) Fl(gunZU|P(j)XM(C,]_3;L)) DR (1 S .,7 S m))

be the universal object of the moduli stack M (C, ]_5; L).

Definition 7.2. Let n be an integer. If each point PY) (1 < j < m) is given
— . ‘ , SO
. G) — () (4) (s AT :
a tuple of integers A\ (A, ... A7), we denote by = ST , or simply
E(”?’\(l)""’k(m)), the line bundle
L ®>\(,j)
T Frgos (gunw|pu>xﬁ(cjﬁ,m)

(det Rpr*gumv ®(=n) ® ®

1
]:]_ =1 ]F’I’-i-].—i (gunZ’U|P(j)XM(C,I_)),L))
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—_— =g N — — —
on M(C, P; L), where pr is the projection C x M(C, P;L) — M(C, P; L).

In this paper, for simplicity of notation, we restrict ourselves to the case of a nodal
curve with only one singular point. In this case, C' is either irreducible or having two
irreducible components. We first state and prove the factorization theorem for the
irreducible case, and later we shall comment on how to modify the argument for the
reducible case.

Let C be an irreducible projective nodal curve with only one singular point P, and
n:C — C the normalization. Put {P;, P>} := n~1(P). Let Ps,..., P, € C\ {P} be
distinct points. We denote by the same letters Ps, ..., P, the corresponding points of
C.Put L:=n*L and P = (Ps,...,Pp).

Theorem 7.3. Let AG) = ()\gj),...,)\gj)) (3 < j < m) be tuples of integers.
Then we have a canonical isomorphism

10 (M, Py, 203 X
PO (o, PiL)

N 0 = 3.7y =57 7X@ LX) ®(rn—|7|)
- @ H (M(C7{P1’P2}UPjL)’HM(é,{Pl,Pz}U]_:’);E) > Rk (L|P) )

72(‘11»~~7(h~)

where ¢ = (q1,--.,q) varies through all tuples of integers withn > q; > -+ > q, > 0.
For simplicity of notation, we shall deal with the case ? = (. Let
(guniv’ a:univ . guniv ® guniv N pr*éz)

be the universal object of the stack M (C; L). Let o; be the section (P, id) : M (C; L) —
C x M(C;L) (i = 1,2). There is a non-degenerate alternate bilinear form ¢*G*"*

0;G"""" — oiprgL induced by T Since there are natural isomorphisms

oiprsl ~ Lip, ® Oy ~ Ll ® Oy =~ Llp, ® Oy ez ~ osprs L,
we can consider the stacks
Sp = Sp(ai‘é“m“, aSé””i“) and LGr:= LGT(UI?“”” ® a;@““‘”).
Let ¢’ : LGr — M(é’, Z) be the projection. Let

Uc g/* (O_ikgum'v ® O_;guniv)

be the universal isotropic rank 2r subbundle. We denote by g " the vector bundles
(idg x ¢')*G“""™ on C x LGr. Put o} := (P;,id) : LGr — C' x LGr.
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We define a sheaf H on C' x LGr to be the kernel of the composite of morphisms

. ~/univ . ~/univ
o ® oy )
)

U

~ UNILV

(n').g'

~ UNIv ~ UNIv
= (oG @oyg ) = (

where n = (P,idpgy) : LGr — C x LGr and v’ :=n x idpg, : C x LGr — C x LGr.
Then H is flat over LGr and the restriction to every geometric fiber is torsion-free of
rank 2r. You can easily see that there is a unique non-degenerate alternate bilinear
form 'H ® H — prg L such that the diagram

! . 1k ~
. ) d= x
~ univ ~ univ i ((dg X g7)"7)

W (G @l (@) W, (priL)
H®H préL

commutes. Then (H,H ® H — prL) is an object of M(C;L). This gives rise to a
morphism f : LGr — M(C; L). We have a commutative diagram:

M(C;L)

g

rar LML)
U U

Sp LMoL,
where f, the restriction of f, is an isomorphism of stacks.
Lemma 7.4. If A is a line bundle on M(C; L), then we have isomorphisms
H° (2Gr, T"A) =1 (Sp, T A) <= B (M(C; 1), A)
of vector spaces.

Proof. Since f is an isomorphism, f* is clearly bijective. Let us prove that the
restriction map

(7.1) HO (LGT, f*A> — HO (Sp,f*A)

is an isomorphism.

If H is a rank 27 torsion-free sheaf on C, then it is known that Hp, the stalk of
H at P, is isomorphic to m® @ O%’:;a, where m is the maximal ideal of O¢ p. If H
has a non-degenerate alternate bilinear form H ® H — L, then the restriction of the
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bilinear form to the free summand of Hp is non-degenerate. Hence Hp is isomorphic to
m2:(H) @(’)é(}_i(H)) for some 0 < i(H) < r. We denote by M (C; L)<, the open substack
of M(C;L) parametrizing H’s with i(H) < n. We put LGr<, := LGT(J{?“”“’ b
o5 é“”i“)gn (See Notation 4.4). We have a commutative diagram:
LGroy LTI(C; L)<y
U U
sp L ML),

here by abuse of notation, the restriction of f to LGr<; is also denoted by f. Corre-
spondingly we have a commutative diagram of vector spaces

HO(LGr<y, T A) L HO(M(C; L) <1, A)
(7.2) @ | Lo
HO(Sp, f*A) <~ HO(M(C; L), A).

By Lemma 4.5, the restriction map HO(LGr, f A) — HO(LGTS;[,?*A) is an isomor-
phism. Therefore in order to prove the bijectivity of (7.1), it suffices to prove that the
morphism (a) in the diagram (7.2) is an isomorphism.

By the claim below, M (C; L)< is normal. Using [EGAIV, Théoréme 5.10.5] on the
atlas on the moduli stack M (C; L)<1, we know that the map (b) in the diagram (7.2)
is an isomorphism. This and the bijectivity of f* imply that the map (a) is surjective.
Since (a) is clearly injective, it is bijective.

Claim 7.4.1. M(C;L)<; is normal.

Proof of Claim. The claim is a consequence of Faltings’s description of the versal
deformation of symplectic sheaves on a nodal point as follows.

Fix an isomorphism @ ~ k[[x, y]]/(zy) of k-algebras, and an isomorphism Lp ~
Oc,p of O¢ p-modules. Fix a rank 2r torsion-free sheaf H on C' and a non-degenerate
alternate bilinear form H ® H — L.

We define the two functors D and Dy, from the category of local artinian k-algebras
to the category of sets as follows. D is the deformation functor of the symplectic sheaf
(HHH®H — L), i.e., for an artinian local R, D(R) is the set of equivalece classes of the
data (H,H®H — Lz, H®pk ~ H), where (H, HQ H — L) is a famlly of symplectic
sheaves on C over Spec R such that the restriction of the bilinear form Ho H— L R
over Speck is, by the isomorphism H Qr k ~ H, equal to H® H — L. Dj,. is the
deformation functor of the symplectic k[[z, y]]/(xy)-module Hp(:= Hp R®0¢. p (9/(;7:), ie
for an artinian local k-algebra R, Dj..(R) is the set of equivalence classes of the data
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(E, E®R[[m y]]/(xy)E — Rz, y]]/(a:y) E®gk ~ I/-I;) where E is an R-flat R[[z,y]]/(xy)-
module, and E ® Rl[z,y]]/(xy) E — R[z,y]]/(zy) is a non-degenerate alternate bilinear
form whose restriction over Speck is, by the isomorphism E® rk >~ Hp p, equal to
Hp @ Hp — Lp ~ k[[z,3]]/(xy).

Given an element of D(R), its completion at P is an element of Dj,.. So we have
a natural transformation D — Dj,., which is smooth (cf. [BL]).

As noted at the beginning of the proof of the lemma, we have an isomorphism
Hp ~ (E[[z, y])/ (zy) 220D @ ((z,5)/(xy))®? of k[[x,y]]/(xy)-modules. If E C Hp is
the orthogonal complement of the direct summand (k[[z, y]]/(xzy))®>" ), the restriction
to E of the bilinear form Hp ® Hp —~ El[x,y]]/(xy) is non-degenerate. Let Dg be
the deformation functor of the symplectic k[[z,y]]/(zy)-module (E, E @[z y))/(zy) E —
kl[z,y]]/(zy)). Given a deformation of (E, F Q(zy]/(xy) E — Kl[x,y]]/(2y)) over an
artinian local k-algebra R, by taking the direct sum with R[[z, 3]]/(2y)®2("~% we obtain
an element of Dj,.(R). So we have a natural transformation Dg — Dj,., which is an
isomorphism (cf. the argument in the last paragraph of [Fal, page 492]).

The hull of the deformation functor Dp has been calculated by Faltings. Let
Y = (yap) be a 2i x 2i matrix, where y,g is an indeterminate. Put Z := J2_il PJy. (Z
is the adjoint of Y with respect to the alternate form determined by Js;.) Let I be the
ideal of k[[yap |l < a, 8 < 2i]] generated by all the entries of the matrix Y Z. Faltings
constructed a deformation of the symplectic k[[z, y]]/(zy)-module E over Spf k[[yas]]/I
and proved its versality (cf. [Fal, Theorem 3.7 and Remark 3.8]). In particular, when
i = 1, the ideal I is generated by y11922 — y12y21. So the singularity of M(C; L)< is
of the form uv — zw = 0 for a local coordinate (u,v,z,w,...). Hence M(C;L)<; is

normal. This completes the proof of the claim. U
This is the end of proof of the lemma. O
Lemma 7.5.  We have a natural isomorphism

—*.:.(n) ~ /*.:.(n) ®n

(7.3) Stten =9 Ene ) ® (det Q)

univ

of line bundles on LGr, where Q := (c}*G’ o " ® oG ) U

Proof. We have isomorphisms

(7.4

Fr=n) ®(—n)
o) = ~ (det Rprrgr«H)

ung ~ univy "
~ . ®(—n) Ix 2/ /* /
~ g'* (det RprM(aE)*gum”> ® det (Ul Z/I 29 )
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®(—n)
~ =M by definition. O

and we have (det RprM(g;E)*guniv) M(C,L)

Proof of Theorem 7.3. We put
SPF1:= SpFly ,_11(01G""™) X 4.7y SPFlpo 17 (03G"™™),

and let ¢” : SpF1 — M(C; L) be the projection.
Applying Corollary 6.5, we have a canonical isomorphism

(7.5) g(det Q" >~ D IO(T;T) ®k (L]p)E 1D,

FZ(QIVWQT)

where n > q1 > -+ > g > 0.
We have isomorphisms

( (C; L)7:§\Z)(C L)) ~ H° (LGT, T*E(—n) ) by Lemma 7.4

M(C;L)

~ 10 ( LGr. **E\'ZO 7 ® (det Q)®”) by (7.3)

~ H° (M _E\Z)(C i) ® g’ (det Q)®”) by projection formula

~ @R (M(C;D),E0) ) ©g/0(q57) ) @ (LIp)® T by (75)

~ 0 ~ T ':'(m?»?) ®nr—|7|

- @H (M(C’ {Pl’P2}’L)’“M@,{Pl,Pz};E)) @k (Z]p) ’
where ¢ = (qi1,...,q,) varies through all tuples of integers with n > ¢; > --- > ¢, >
0. O

Reducible case. Let C be a connected reducible nodal curve with only one singular
point P. Then C is a union of smooth curves C; and (5 intersecting at P. Let
n:C = C,UC, — C be the normalization. Put L; := L|¢, for i = 1,2. Put
{Q1,R1} := n1(P) such that Q; € C; and Ry € Cy. Let Qa,...,Q, € C1\ {Q1}
and Ra,...,R; € Co \ {R1} be distinct points. Put @) = (Q2,...,Qm) and R =
(Ra,...,R;). Let NG = (Agj),...,/\$j)) (2 <j<m)and W = (ugj),...,ugj))
(2 < j <) be tuples of integers.

With these notations prepared, in the reducible case, the counterpart of Theorem
7.3 is the following:
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Theorem 7.6. There is a canonical isomorphism

== AL R @ o)y
(M(C’ QU R’L)’“M(C GUR:L)

—= TN N
~ D H°(M(Ol,{czl}uQ;Ll),am’q’A o) >>

M(C1,{Q1}UQ;L1)

ng, g, m®
®H (M(CQ’{Rl}UE;Lz),E( TR NNTAL

o E )’ (®rn—|7q])
M(Cz,{R1}UR;L2)) ®( |P) 5

where ¢ = (q1,---,qr) varies through all the tuples of integers withm > q1 > -+ > q, >
0.

You can prove the above theorem by similar argument as in the proof of Theorem

_>
7.3. Let us mention how to modify the argument. For simplicity, we assume that Q = ()
H
and R = (). Let
(gunzv ~univ gunzv ® gun'w N pT,C L >
? Z

be the universal object of the stack M (Cj; L;). Let 01 and o2 be the morphisms

(Ql,ld) : M(Cl;Ll) — Cl X M(Cl;Ll),
(Rl,id) : M(CQ;LQ) — Cg X M(CQ;LQ)

respectively. Let ¢; : M(C1; Ly) x M(Cq; Lo) — M(C;; L;) be the projection.
Then we can consider the stacks
Sp = Sp (#1010, 0303 G5™)

o LGr = LGr (91071 @ 6503057 )

which are stacks over M (Cy; Ly) x M(Cq; La).
If in the proof of Theorem 7.3, you substitute M (C1; L1) x M (Cy; Ls) for M (C'; L)

and understand that Sp and LGr are given by (7.6), then you will obtain a proof of
Theorem 7.6.

§8. A result on the multiplication pull-back

The purpose of this section is to prove Proposition 8.1. Its importance might not
be clear at the moment. But it will be used in [A] at a crucial point.

Orthogonal Grassmannian. Let (V,(—,—)v) be a 2n-dimensional k-vector space
with a non-degenerate symmetric bilinear form. Assume that n is even. Let OGr, (V)
be the orthogonal Grassmannian parametrizing isotropic subspaces of V' of dimension
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n. Then OGr, (V) has two connected components OGr, (V) and OGr,, (V); U and
U’ € OGr, (V) lie in the same connected component if and only if dimU N U’ is even.
On OGr, (V), there is a short exact sequence

0—>U—>V®00Grn(v)LQ—>0

given by the universal subbundle ¢/ and the universal quotient bundle Q.
Let @ € {+,—}, and take a point [U C V] € OGr,, (V). Taking the determinat of
the composed morphism

U ® Oogrs (v) = V @ Oogrs (v) — Q,

we have the morphism
0:N"U® OOGr;(V) — det Q.

It is well-known that the zero divisor div(d) is divisible by two, i.e., div(d) = 2-(2div(d))
with 1div(d) a Cartier divisor. (In fact, take a point p = [W C V] € OGr} (V). We

can find a form-preserving isomorphism
a:C"e (C")Y -V

such that a(C") = U and a((C™")¥)NW = 0, where C" & (C")" is endowed with the
standard symmetric form. In a neighborhood of p, the composed morphism

T:=ToO0 ((Oé|((Cn)\/) &® ido) : ((Cn)v R0 — Q
is an isomorphism. Then the composed morphism
T lomo ((aen) ®idp) : C"® O — (C")Y ® O

is represented by a skew-symmetric matrix, whose determinant is a square of the phaf-
fian.)

Note that Q ~ O(div(d)). Thus we can take a square root of the line bundle det Q,
i.e, we define (det Q)®2 to be O(3div(6)). Then (det Q)®2 does not depend on the
choice of the point [U C V] € OGr, (V), and it is well-define.

Note that by definition, (det Q)®z has a section whose zero divisor is 1div(é),
which is set-theoretically the locus of [W C V] € OGr,, (V) with W NU # 0.

Multiplication pull-back. Let B! = E®) = @?2” ke; and G = G = 2 | kg;
be k-vector spaces endowed with the symplectic forms (—, —)gu) and (—, =) given
by the matrices Jo, and Jos. We give the tensor product E®W @ G(9 the symmetric
bilinear form (—, —) g g determined by (e®g, €' ®¢") iy oam = (€,€)p@ (9, 9") aw -
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We give the vector space (E() @ GW) @ (BE®) © G®)) the symmetric bilinear form
(= =) EOecm)a(E@ec) determined by

((a1,a2), (a/laa/2)>(E<1)®G(1))®(E(2)®G(2)) = <a1;a/1>E<1>®G<1> - <a27a/2>E<2>®G<2)

for a;,a, € B @ GO,

Let OGry,s := OGry (B @ GW) @ (E® © G?)) be the orthogonal Grass-
mannian parametrizing 4rs-dimensional isotropic subspaces of (F) @ GW) @ (E®) @
G,

For symplectic isomorphisms a : E?) — E® and g : GV — G®, the tensor
product a® f: EM @ GM) — F®? @ G® is an isomorphism preserving the symmetric
bilinear forms of EM @ G and E® @ G?). The graph I'ygp of @ ® B determines a
point of OGry,s. We denote by m the morphism

Sp(EW, E@) x Sp(GY, G?) = OGr],, C OGry,.,

given by (o, 8) — I'n 3, where OGrITs is the one of the two components of OGry,.,
that contains the image of Sp(EM), E?)) x Sp(GW), G(?),
We denote by LGr° the open subset

(LGr(EM @ E®) x Sp(GW, ) U (Sp(EW, E®) x LGr(GY ¢ G?)))

of LGr := LGr(EW @ E®) x LGr(GM @ G?). The morphism m extends to a
morphism
m : LGr® — OGrj,,.
In fact, for maximal isotropic subspaces U € EMW @ E® and V ¢ GM & G, the map
UV - (EYecM) e (E? oa®)

is injective if either [U ¢ EW @ E@] ¢ Sp(FEW E@) or [V ¢ GV ¢ G?)] ¢
Sp(GM,GA?).
Let

0-u—{(EV0c™) o (BY06®) | 206gs —Q—0

be the universal sequence on OGr}, .. Let Qp and Qg be the universal quotient bundles
on LGr(EM @ E@)) and LGr(GY @ G®?) respectively. You can easily obtain an
isomorphism

m*(det Q)®F ~ (det Q)®* M (det Qc)®" | qpo -

So we have morphisms of vector spaces

HO(OGry,,, (det ©)®%) 25 HO(LGr?, (det Qp)®* K (det Q¢ )®")

8.1
(8.1) ~ HO(LGT(E(l) ® E(Q)), (det QE)®8) & HO(LGT(G(l) @ G(Q))’ (det QG)@)T’).
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By Corollary 6.5, there are natural isomorphisms

HO(LGr(EWY @ E®), (det Qp)®?)

— —
(82) ~Pn’ (SpFl[O,r_l](E(l)) x SpFly 11 (E®),0(X, A ))
>

and
HY(LGr (G & G?), (det Qi)®")
(83) = @HO (SpFl[O,s—l](G(l)) x SpFl[O,s—l](G(2))7 O, 7)) g
w

ﬁ
where

and 70 = (p1,...,pus) with r > pg > --- > g > 0. Composing (8.1) with the tensor
product of (8.2) and (8.3), we have a morphism

(A1, ..., Ay) runs through all tuples of integers with s > Ay > -+ > A\, >0,

o H° (OGr;;s, (det Q)®%)

— —
-~ &P {HO (SpF][O,r—l] (EM) x SpFly 1 (E®), O(X; )\))
X7

@H” (SpFlg 1) (GY) x SpFly ) (G)O(: 7)) |

We denote by 7 = the projection of the target of ¢ to the (Y, I )-component.

For X — (A, ..., Ar) with s > Ay > -+ > A\, > 0, we denote by M the tuple
(AT,..., AY) of integers such that r > A\ > --- > A¥ > 0 and

AN +s, A +s—1,. . X+ 1u{+nr +r—1 A +1}=[1,7r+5s]

ﬁ
Proposition 8.1. For A = (Ay,...,A,) with s > Ay > -+ > A\, > 0, the
composed morphism Ty 2O 1S non-zero.

Proof. 'We shall find explicitly an element of H*(OGrj, , (det Q)®%) the image of
which by T 3# © ¢ is non-zero.
Let L be the subset of [1,2r] x [1,2s] consisting of all pairs (a,b) satisfying one of

the following conditions.
e Both a and b are odd.
e ais odd, and b is even, and s +1 — (b/2) < A(ay1)/2-

e bisodd, and a is even, and r + 1 — (a/2) < Alb+1)/2-



COMPACTIFICATION OF THE SYMPLECTIC GROUP VIA GENERALIZED SYMPLECTIC ISOMORPHISMS 47

Let Vi ¢ EM @ G be the 2rs-dimensional subspace spanned by e, ® gy with (a,b) €
L. Let Vo ¢ E® @ G® be the 2rs-dimensional subspace spanned by e, ® g with
(a,b) € [1,2r] x [1,2s] \ L. You can check easily that V; and V5 are isotropic.

The subset of OGrj,

{W c(BW @G0y g (E® g GO)|\Wn (V@ Va) £ 0}

is a support of a zero-divisor of some section of (det Q)®%, which we denote by ov, ov, .
We shall check that (WT,F op)(ov,ev,) # 0. For this, we need to recall the construction
of the isomorphisms (8.2) and (8.3).

We denote by KSp® the open subset
(KSp(EW, E®)) x 5p(GM, ) u (Sp(EYW, EP) x KSp(GM,G?)))

of KSp := KSp(EW, E@) x KSp(GM,GP).
By Proposition 4.1, there is a morphism KSp° — LGr°, which we denote by g.
Let

(Mia i, 51(1) - Mz & 57)(41_)1, gz(l) — 5;_11_)1,
ED =P Miw e — &P (0<i<r—1),EM S el)

and

(Afia Viagi(l) - M ® gi(—}-)lﬂgi(l) A gi(—ll—)la
G2 =GP N, 06 —G6® (0<i<s—1),6 = g?)

be the universal generalized symplectic isomorphism on K Sp(EM), E?)) and K Sp(GWY, G?))
respectively. By Lemma 4.2, we have

r—1 s—1
G ((det Qp)®* B (det Q)®") = <® M?S(’"_i)> 2| QA
=0 j=0

Put m’ :=mog. In order to compute (75 1z 0 ¢)(ov0v;), we first determine with how

many orders the section m'*(ov, ev,) vanishes along divisors {u; = 0} and {v; = 0}.
Let us see how the morphism 7’ is expressed in the open subset K Sp(E(), F(2))(idid) 5
KSp(GW, G@)4i0) 4 KSp®.
Let

Ul x A" x Uy, ~ KSp(E®M | E(?))(idid)

and
U}, x A® x Uy, ~ KSp(GW, G2))(did)
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be the chart given in (3.23). For yg = (yg.1,...,YE,r) € A", we define the 2r x 2r
matrices (yg) and (yg)” as follows:

r—1 r—2
(yE), = diag (H YE i) 1, H YE i) 1, -, YE 0, 1)

1=0 1=0
r—1 r—2
(yE)// = diag (1, H YE,i, 1, H YE, iy - - - 17yE,O> .
=0 =0

We define (yg)' and (ya)” for yo = (ya1,- .-, ya,s) € A® similarly.

Recall that the point (zgz,ym,xg) € Uj. x (A\ {0})" x U, = Sp(EM), E?)
corresponds to the symplectic isomorphism xg o (yg)” o (yg)' ' ozg'.
For ((zg,yE,XE), (za,Ya,xc)) € Sp(EM, E@))x Sp(GM, G?)), consider the ten-

sored morphism
(xe@xc)o((yr)" @ (ya)")o(ye) ®(ya)) to(zrzg) " EVoGW - E®ec®.
Its graph is equal to the image of

(:=((ze®2zc)o ((yE) ® (ya)), (xE ®%c) 0 ((yE)" ® (¥6)"))
. ED g aq® (Eu) ® G<1>) o (E<2> ® G(z)) .

Now let us calculate the zero-divisor of the section m'* (o, av,) -

Let V¢ ¢ EM ® GM) be the 2rs-dimensional subspace spanned by e, ® g with
(a,b) € [1,2r]x[1,2s]\ L. Let Vi ¢ E@®G® be the 2rs-dimensional subspace spanned
by e, ® gy with (a,b) € L (“c” means the complement). Let 7 be the projection

(BYeeW) o (B? 0 6?) - Vi o Vs,

The intersection of the image of ¢ and V; @ V4 is non-zero if and only if the composed
morphism 7 o ( is not an isomorphism. The zero-divisor defined by the determinant of
7 o ( is the twice of the zero-divisor defined by m™* (v, v, )-

Since V1 @ Vz is U3, x Uy, x Uj, x U, -invariant (easily checked), the zero-divisor
of m'*(ov,ev,) is a pull-back of some divisor on A™ x A® by the projection (U x A" x
U,,) x (U;rs x A® x Uy,) — A" x A®. When zg = xp = idy, and zg = x¢ = idgs, the
morphism 7 o ¢ is expressed by a diagonal matrix with respect to the basis {e, ® g},
and its determinant is easily computed to be

e VIR = P e
r—i)s—> /N s—j)r— 2
ITvE. o U 7N e
i=0 j=0
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Therefore on K Sp(E™) | E@)(did) 5 ir gp(G1) | G(2))(did) the zero-divisor of m™* (ov, avs)
is defined by

— ) s—1 )
r—i)s—> | A s—j)r=>""7 \r

Hy(E,i )s=221=1 A x Hyé’,jj) 2=t Am 0.

=0 j=0

This implies that on K Sp(EM), B())(did) » g 5p(GM), G(2))(id"id), m’™*(ov, v, ) becomes

a nowhere vanishing section of the line bundle ®:=_11 MZ@ 2= M g ®‘;;i N; DX mi A

Since (WY,F o ¢)(ov,av,) is nothing but the restriction of

r—1 . s—1 .
~ @STTIA 2D S
i (ovion) € @ M TN BN

i=1 j=1

to the closed subscheme
SpFljg, 1) (E) x SpFlg 1) (E®) x SpFl ,_13(GM) x SpFlyg , 1;(G),

it is non-zero. (Note that the intersection of the closed subscheme and the open subset
KSp(EM, B2))(did) s g Sp(GM), GR))(did) j5 not, empty. In fact, the closed subset is
defined by yg,; = yg,; = 0 for all 4, j on the open subset.) O
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